
Computing Rank-Revealing QR
Factorizations of Dense Matrices

CHRISTIAN H. BISCHOF
Argonne National Laboratory
and
GREGORIO QUINTANA-ORTÍ
Universidad Jaime I

We develop algorithms and implementations for computing rank-revealing QR (RRQR) factor-
izations of dense matrices. First, we develop an efficient block algorithm for approximating an
RRQR factorization, employing a windowed version of the commonly used Golub pivoting
strategy, aided by incremental condition estimation. Second, we develop efficiently implement-
able variants of guaranteed reliable RRQR algorithms for triangular matrices originally
suggested by Chandrasekaran and Ipsen and by Pan and Tang. We suggest algorithmic
improvements with respect to condition estimation, termination criteria, and Givens updating.
By combining the block algorithm with one of the triangular postprocessing steps, we arrive at
an efficient and reliable algorithm for computing an RRQR factorization of a dense matrix.
Experimental results on IBM RS/6000 and SGI R8000 platforms show that this approach
performs up to three times faster than the less reliable QR factorization with column pivoting
as it is currently implemented in LAPACK, and comes within 15% of the performance of the
LAPACK block algorithm for computing a QR factorization without any column exchanges.
Thus, we expect this routine to be useful in many circumstances where numerical rank
deficiency cannot be ruled out, but currently has been ignored because of the computational
cost of dealing with it.

Categories and Subject Descriptors: G.1.3 [Numerical Analysis]: Numerical Linear Algebra;
G.4 [Mathematics of Computing]: Mathematical Software

General Terms: Algorithms, Performance

This work was supported by the Applied and Computational Mathematics Program, Advanced
Research Projects Agency, under contracts DM28E04120 and P-95006. Bischof was also
supported by the Mathematical, Information, and Computational Sciences Division subpro-
gram of the Office of Computational and Technology Research, U.S. Department of Energy,
under Contract W-31-109-Eng-38. Quintana also received support through the Spanish
Research Agency CICYT under grant TIC96-1062-C03-03. During part of this work, Quintana
was a research fellow of the Spanish Ministry of Education and Science of the Valencian
Government at the Universidad Politecnica de Valencia and a visiting scientist at the
Mathematics and Computer Science Division at Argonne National Laboratory.
Authors’ addresses: C. H. Bischof, Mathematics and Computer Science Division, Argonne
National Laboratory, Building 221, 9700 South Cass Avenue, Argonne, IL 60439; email:
bischof@mcs.anl.gov; G. Quintana-Ortí, Departamento de Informática, Universidad Jaime I,
Campus Riu Sec, Castellon, 46071, Spain; email: gquintan@inf.uji.es.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1998 ACM 0098-3500/98/0600–0226 $5.00

ACM Transactions on Mathematical Software, Vol. 24, No. 2, June 1998, Pages 226–253.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F290200.287637&domain=pdf&date_stamp=1998-06-01


Additional Key Words and Phrases: Block algorithm, least-squares systems, numerical rank,
QR factorization, rank-revealing orthogonal factorization

1. INTRODUCTION
We briefly summarize the properties of a rank-revealing QR (RRQR)
factorization. Let A be an m 3 n matrix (without loss of generality m $

n) with singular values

s1 $ s2 $ . . . $ sn $ 0, (1)

and define the numerical rank r of A with respect to a threshold t as
follows:

s1

sr

# t ,
s1

sr11

.

Also, let A have a QR factorization of the form

AP 5 QR 5 QS R11 R12

0 R22
D, (2)

where P is a permutation matrix, Q has orthonormal columns, R is upper
triangular, and R11 is of order r. Furthermore, let k~A! denote the
two-norm condition number of a matrix A. We then say that (2) is an RRQR
factorization of A if the following properties are satisfied:

k~R11! ' s1/sr (3.1)

and

iR22i2 5 smax~R22! ' sr11. (3.2)

Whenever there is a well-determined gap in the singular-value spectrum
between sr and sr11, and hence the numerical rank r is well defined, the
RRQR factorization (2) reveals the numerical rank of A by having a
well-conditioned leading submatrix R11 and a trailing submatrix R22 of
small norm. From now on, whenever the word “rank” appears, it means the
“numerical rank with respect to threshold t.” We also note that the matrix

PTS R11
21 R12

2 I D,

Computing Rank-Revealing QR Factorizations of Dense Matrices • 227

ACM Transactions on Mathematical Software, Vol. 24, No. 2, June 1998.



which can be easily computed from (2), is usually a good approximation of
the null vectors, and a few steps of subspace iteration suffice to compute
null vectors that are correct to working precision [Chan and Hansen 1992].

The RRQR factorization is a valuable tool in numerical linear algebra
because it provides accurate information about rank and numerical null
space. Its main use arises in the solution of rank-deficient least-squares
problems, for example, in geodesy [Golub et al. 1986], computer-aided
design [Grandine 1989], nonlinear least-squares problems [Moré 1978], the
solution of integral equations [Eldén and Schreiber 1986], and the calcula-
tion of splines [Grandine 1987]. Other applications arise in beam forming
[Bischof and Shroff 1992], spectral estimation [Hsieh et al. 1991], regular-
ization [Hansen 1990; Hansen et al. 1992; Waldén 1991], and subset
selection [Hotelling 1957; de Hoog and Mattheij 1989].

Stewart [1990] suggested another alternative to the singular-value de-
composition, a complete orthogonal decomposition called URV decomposi-
tion. This factorization decomposes

A 5 US R11 R12

0 R22
DVT,

where U and V are orthogonal and where both iR12i2 and iR22i2 are of the
order sr11. In particular, compared with RRQR factorizations, URV decom-
positions employ a general orthogonal matrix V instead of the permutation
matrix P. URV decompositions are more expensive to compute, but they are
well suited for null space updating. RRQR factorizations, on the other
hand, are more suited for the least-squares setting, since one need not store
the orthogonal matrix V (the other orthogonal matrix is usually applied to
the right-hand side “on-the-fly”). Of course, RRQR factorizations can be
used to compute an initial URV decomposition, where U 5 Q and V 5 P.

We briefly review the history of algorithms for computing RRQR factor-
izations. From the interlacing theorem for singular values [Golub and Van
Loan 1983, Corollary 8.3.3], we have

smin~R~1 : k, 1 : k!! # sk (4.1)

and

smax~R~k 1 1 : n, k 1 1 : n!! $ sk11~A!. (4.2)

Hence, to satisfy conditions (3.1) and (3.2), we need to pursue two tasks:

—Task 1: Find a permutation P that maximizes smin~R11!.

—Task 2: Find a permutation P that minimizes smax~R22!.

Golub [1965] suggested what is commonly called the “QR factorization with
column pivoting.” Given a set of already selected columns, this algorithm
chooses as the next pivot column the one that is “farthest away” in the

228 • C. H. Bischof and G. Quintana-Ortí

ACM Transactions on Mathematical Software, Vol. 24, No. 2, June 1998.



Euclidean norm from the subspace spanned by the columns already chosen
[Golub and Van Loan 1983, p. 168, P.6.4–5]. This intuitive strategy
addresses Task 1.

While this greedy algorithm is known to fail on the so-called Kahan
matrices [Golub and Van Loan 1989, p. 245, Example 5.5.1], it works well
in practice and forms the basis of the LINPACK [Dongarra et al. 1979] and
LAPACK [Anderson et al. 1992; 1994] implementations. The drivers from
both libraries are point algorithms: LINPACK subroutine xQRDC1 is based
on BLAS-1, and LAPACK subroutine xGEQPF is based on BLAS-2. Re-
cently, Quintana-Ortí et al. [1995] developed an implementation of the
Golub algorithm that allows half of the work to be performed with BLAS-3
kernels. Bischof also had developed restricted-pivoting variants of the
Golub strategy to enable the use of BLAS-3 type kernels [Bischof 1989] for
almost all of the work and to reduce communication cost on distributed-
memory machines [Bischof 1991].

One approach to Task 2 is based, in essence, on the following fact, which
is proved in Chan and Hansen [1992].

LEMMA 1. For any R { Rn3n and any W 5 S W1

W2
D { Rn3p with a nons-

ingular W2 { Rp3p, we have

iR~n 2 p 1 1 : n, n 2 p 1 1 : n!i2 # iRWi2iW2
21i2. (5)

This means that if we can determine a matrix W with p linearly
independent columns, all of which lie approximately in the null space of R
(i.e., iRWi2 is small), and if W2 is well conditioned such that ~smin~W2!!

21

5 iW2
21i2 is not large, we are guaranteed that the elements of the bottom

right p 3 p block of R will be small.
Algorithms based on computing well-conditioned null space bases for A

include those by Golub et al. [1976], Chan [1987], and Foster [1986]. Other
algorithms addressing Task 2 are those by Stewart [1984] and Gragg and
Stewart [1976]. Algorithms addressing Task 1 include those of Chan and
Hansen [1994] and Golub et al. [1976].

Bischof and Hansen combined a restricted-pivoting strategy with Chan’s
algorithm [Chan 1987] to arrive at an algorithm for sparse matrices
[Bischof and Hansen 1991] and developed a block variant of Chan’s
algorithm [Bischof and Hansen 1992]. Reichel and Gragg [1990] supplied
some basic tools in Fortran 77 very useful for building Chan’s algorithm.

Chan’s algorithm [Chan 1987] guaranteed

si

În~n 2 i 1 1!2n2i
# smin~R~1 : i, 1 : i!! # si (6)

1Here as in the sequel we use the convention that the prefix “x” generically refers to the
appropriate one of the four different precision instantiations: SQRDC, DQRDC, CQRDC, or
ZQRDC.

Computing Rank-Revealing QR Factorizations of Dense Matrices • 229

ACM Transactions on Mathematical Software, Vol. 24, No. 2, June 1998.



and

si # smax~R~i : n, i : n!! # siÎn~n 2 i 1 1!2n2i. (7)

That is, as long as the rank of the matrix is close to n, the algorithm is
guaranteed to produce reliable bounds, but reliability may decrease with
the rank of the matrix.

Hong and Pan [1992] then showed that there exists a permutation matrix
P such that for the triangular factor R partitioned as in (2), we have

iR22i2 # sr11~A!p1~r, n! (8)

and

smin~R11! $ sr~A!
1

p2~r, n!
, (9)

where p1 and p2 are low-order polynomials in n and r (versus an exponen-
tial factor in Chan’s algorithm).

Chandrasekaran and Ipsen [1994] were the first to develop RRQR
algorithms that satisfy (8) and (9). Their paper also reviews and provides a
common framework for the previously devised strategies. In particular,
they introduce the so-called unification principle, which says that running
a Task-1 algorithm on the rows of the inverse of the matrix yields a Task-2
algorithm. They suggest hybrid algorithms that alternate between Task-1
and Task-2 steps to refine the separation of the singular values of R.

Pan and Tang [1992] and Gu and Eisenstat [1992] presented different
classes of algorithms for achieving (8) and (9), addressing the possibility of
nontermination of the algorithms because of floating-point inaccuracies.

The goal of our work was to develop an efficient and reliable algorithm
and implementation for computing an RRQR factorization suitable for
inclusion in a numerical library such as LAPACK. Specifically, we wished
to develop an implementation that was both reliable and close in perfor-
mance to the block-oriented algorithm for computing the QR factorization
without any pivoting. Such an implementation would provide algorithm
developers with an efficient tool for addressing potential numerical rank
deficiency by minimizing the computational penalty for addressing poten-
tial rank deficiency. Our strategy involves the following ingredients:

—an efficient block algorithm for computing an approximate RRQR factor-
ization, based on the work by Bischof [1989] and

—efficient implementations of RRQR algorithms well suited for triangular
matrices, based on the work by Chandrasekaran and Ipsen [1994] and

230 • C. H. Bischof and G. Quintana-Ortí

ACM Transactions on Mathematical Software, Vol. 24, No. 2, June 1998.



Pan and Tang [1992]. These algorithms seemed better suited for triangu-
lar matrices than those suggested by Gu and Eisenstat [1992].

We find that

—in most cases the approximate RRQR factorization computed by the block
algorithm is very close to the desired RRQR factorization, requiring little
postprocessing, and

—the almost entirely BLAS-3 preprocessing algorithm performs consider-
ably faster than the algorithm currently included in LAPACK for com-
puting the QR factorization with column pivoting, and close to the
performance of the LAPACK algorithm for computing the QR factoriza-
tion without pivoting.

The article is structured as follows. In the next section, we review the
block algorithm for computing an approximate RRQR factorization based
on a restricted-pivoting approach. In Section 3, we describe our modifica-
tions to Chandrasekaran and Ipsen’s “Hybrid-III” algorithm and Pan and
Tang’s “Algorithm 3.” Section 4 presents our experimental results on IBM
RS/6000 and SGI R8000 platforms. In Section 5 we summarize our results.

2. A BLOCK QR FACTORIZATION WITH RESTRICTED PIVOTING

In this section, we describe a block-oriented algorithm that employs a
restricted pivoting strategy to approximately compute an RRQR factoriza-
tion, employing the ideas described by Bischof [1989].

We compute Q by a sequence of Householder matrices

H [ H~u! 5 I 2 2uuT, iui2 5 1. (10)

For any given vector x, we can choose a vector u so that H~u!x 5 ae1,
where e1 is the first canonical unit vector and ?a? 5 ixi2 (e.g., see Golub
and Van Loan [1989, p. 196]). The application of a Householder matrix B
:5 H~u!A involves a matrix-vector product z :5 ATu and a rank-one
update B :5 A 2 2uzT.

Golub’s algorithm for computing the QR factorization with column pivot-
ing of an m 3 n matrix A works as follows [Golub 1965]. It consists of n
stages. In stage i, the complete column with largest two-norm in block
A~i : m, i : n! is pivoted to the ith position. Then, the Householder reflec-
tor that nullifies the elements i 1 1 : m in column i is computed and
applied to the mentioned block. In order to avoid the recomputation of the
norms of the block A~i : m, i : n! for every stage i 5 1,2, . . . , n, an
auxiliary vector can be used. Initially, the two-norms of the columns of the
matrix are saved in this vector, and afterward, in every stage they are
downdated. After step i is completed, the values of this vector are the
lengths of the projections of the columns of the currently permuted AP onto

Computing Rank-Revealing QR Factorizations of Dense Matrices • 231

ACM Transactions on Mathematical Software, Vol. 24, No. 2, June 1998.



the orthogonal complement of the subspace spanned by the first i columns
of AP.

The bulk of the computational work in this algorithm is performed in the
applying of the Householder vector to the rest of the matrix, which relies on
matrix-vector operations. However, on today’s cache-based architectures
(ranging from workstations to supercomputers) matrix-matrix operations
perform much better. Matrix-matrix operations are exploited by using
so-called block algorithms, whose top-level unit of computation is matrix
blocks instead of vectors. Such algorithms play a central role, for example,
in the LAPACK implementations [Anderson et al. 1992; 1994]. LAPACK
employs the so-called compact WY representation of products of House-
holder matrices [Schreiber and Van Loan 1989], which expresses the
product

Q 5 H1· · ·Hnb

of a series of m 3 m Householder matrices (10) as

Q 5 I 1 YTY T, (11)

where Y is an m 3 nb matrix and where T is an nb 3 nb upper triangular
matrix. Stable implementations for generating Householder vectors as well
as forming and applying compact WY factors are provided in LAPACK.

To arrive at a block-oriented algorithm for computing the QR factoriza-
tion with pivoting, we would like to avoid updating part of A until several
Householder transformations have been computed. This strategy is impos-
sible with traditional pivoting, since we must update the vector with
partial two-norms before we can choose the next pivot column. While we
can modify the traditional approach to do half of the work using block
transformations, this is the best we can do (these issues are discussed in
detail in Quintana-Ortí et al. [1995]). Therefore, we instead limit the scope
of pivoting as suggested in Bischof [1989]. We choose not to update the
remaining columns until we have computed enough Householder transfor-
mations to make a block update worthwhile.

The idea is graphically depicted in Figure 1. At a given stage we are done
with the columns to the left of the pivot window. We then try to select the

Fig. 1. Restricting pivoting for a block algorithm.

232 • C. H. Bischof and G. Quintana-Ortí

ACM Transactions on Mathematical Software, Vol. 24, No. 2, June 1998.



next pivot columns exclusively from the columns in the pivot window, not
touching the part of A to the right of the pivot window. Only when we have
combined the Householder vectors defined by the next batch of pivot
columns into a compact WY factor do we apply this block update to the
columns on the right.

Since the leading block of R is supposed to approximate the large
singular values of A, we must be able to guard against pivot columns that
are close to the span of columns already selected. That is, given the upper
triangular matrix Ri defined by the first i columns of QTAP and a new

column S v
g
D determined by the new candidate pivot column, we must

determine whether

Ri11 5 S Ri v
0 g

D
has a condition number that is larger than a threshold t, which defines
what we consider a rank-deficient matrix.

We approximate

smax~Ri11! ' ŝmax~Ri11! [ n~1/3!max
1#k#i

iR~1 : k, k!i2, (12)

which is easy to compute. To cheaply estimate smin~Ri11!, we employ
incremental condition estimation (ICE) [Bischof 1990; Bischof and Tang
1991]. Given a good estimate ŝmin~Ri! 5 1/izi2 defined by a large norm

solution z to Ri
Tz 5 d, idi2 5 1, and a new column S v

g
D , incremental

condition estimation, with only 3k flops, computes s and c, s2 1 c2 5 1,
such that

smin~Ri11! ' ŝmin~Ri11! 5 1 / IS sz
c DI

2

. (13)

A stable implementation of ICE based on the formulation by Bischof and
Tang [1991] is provided by the LAPACK routine xLAIC1. ICE is an order of
magnitude cheaper than other condition estimators (e.g., see Higham
[1986]). Moreover, it is considerably more reliable than simply using ?g? as
an estimate for smin~Ri11! (e.g., see Bischof [1991]). We also define

k̂~Ri! [
ŝmax~Ri!

ŝmin~Ri!
. (14)

Computing Rank-Revealing QR Factorizations of Dense Matrices • 233

ACM Transactions on Mathematical Software, Vol. 24, No. 2, June 1998.



2.1 The Algorithm

The restricted block pivoting algorithm proceeds in four phases:

Phase 1: Pivoting of Column with Largest Two-Norm into First Position.
The column with largest two-norm in the full matrix A is pivoted into the
first position. This phase is motivated by the fact that the largest two-norm
of the columns of A is usually a good estimate for s1~A!.

Phase 2: Block QR Factorization with Restricted Pivoting. Given a
desired block size nb and a window size w, w $ nb, we try to generate nb
Householder transformations by applying the Golub pivoting strategy only
to the columns in the pivot window, using ICE to assess the impact of a
column selection on the condition number. When the pivot column chosen
from the pivot window would lead to a leading triangular factor whose
condition number exceeds t, we mark all remaining columns in the pivot
window (k, say) as “rejected,” pivot them to the end of the matrix, generate
a block transformation (of width not more than nb), apply it to the
remainder of the matrix, and then reposition the pivot window to encom-
pass the next w not-yet-rejected columns. When all columns in the matrix
have been either accepted as part of the leading triangular factor or
rejected at some stage of the algorithm, this phase stops.

Assuming we have included r2 columns in the leading triangular factor,
we have at this point computed an r2 3 r2 upper triangular matrix Rr2 5
R~1 : r2, 1 : r2! that satisfies

k̂~Rr2! # t. (15)

That is, r2 is our estimate of the numerical rank with respect to the
threshold t at this point.

In our experiments, we chose

w 5 nb 1 maxH10,
nb

2
1 0.05nJ. (16)

This choice tries to ensure a suitable pivot window and “loosens up” a bit as
the matrix size increases. A pivot window that is too large will reduce
performance because of the overhead in generating block orthogonal trans-
formations and the larger number of unblocked operations. On the other
hand, a pivot window that is too small will reduce the pivoting flexibility
and thus increase the likelihood that the restricted-pivoting strategy will
fail to produce a good approximate RRQR factorization. In our experiments,
the choice of w had only a small impact (not more than 5%) on overall
performance and negligible impact on the numerical behavior.

Phase 3: Traditional Pivoting Strategy among “Rejected” Columns.
Since Phase 2 rejects all remaining columns in the pivot window when the
pivot candidate is rejected, a column may have been pivoted to the end that

234 • C. H. Bischof and G. Quintana-Ortí

ACM Transactions on Mathematical Software, Vol. 24, No. 2, June 1998.



should not have been rejected. Hence, we now continue with the traditional
Golub pivoting strategy on the remaining n 2 r2 columns, updating (14) as
an estimate of the condition number. This phase ends at column r3, say,
where

k̂~Rr3! # t, (17)

and the inclusion of the next pivot column would have pushed the condition
number beyond the threshold. We do not expect many columns (if any) to be
selected in this phase. It is mainly intended as a cheap safeguard against
possible failure of the initial restricted-pivoting strategy. Indeed, this
phase is not strictly necessary, since the postprocessing can fix bad rank
estimates, but this is a much cheaper way to improve the rank estimate
since the postprocessings are more expensive.

Phase 4: Block QR factorization without Pivoting on Remaining Columns.
The columns not yet factored (columns r3 1 1 : n) are with great probabil-
ity linearly dependent on the previous ones, since they have been rejected
in both Phases 2 and 3. Hence, it is unlikely that any kind of column
exchanges among the remaining columns would change our rank estimate,
and the standard BLAS-3 block QR factorization as implemented in the
LAPACK routine xGEQRF is the fastest way to complete the triangulariza-
tion.

After the completion of Phase 4, we have computed a QR factorization
that satisfies

k̂~Rr3! # t,

and for any column y in R(:, r3 1 1 : n) we have

k̂SS Rr3r
0 D, yD . t.

This result suggests that this QR factorization is a good approximation to
an RRQR factorization and that r3 is a good estimate of the rank. However,
this QR factorization does not guarantee to reveal the numerical rank
correctly. Thus, we back up this algorithm with the guaranteed reliable
RRQR implementations introduced in the next two sections.

3. POSTPROCESSING ALGORITHMS FOR AN APPROXIMATE RRQR
FACTORIZATION

In 1991, Chandrasekaran and Ipsen [1994] introduced a unified framework
for the algorithms that compute RRQR factorizations, and they developed
an algorithm guaranteed to satisfy (8) and (9) and thus to properly reveal
the rank. Their algorithm assumes that the initial matrix is triangular and
thus is well suited as a postprocessing step to the algorithm presented in
the preceding section. Shortly thereafter, Pan and Tang [1992] introduced
another guaranteed reliable algorithm for computing an RRQR factoriza-

Computing Rank-Revealing QR Factorizations of Dense Matrices • 235

ACM Transactions on Mathematical Software, Vol. 24, No. 2, June 1998.



tion for triangular matrices. In the following subsections, we describe our
improvements and implementations of these algorithms.

Both the preprocessing and the postprocessing employ Bischof’s ICE
(implemented in LAPACK’s xLAIC1) to estimate the smallest singular
value because of its accuracy and speed. We recompute the ICE estimates
in the postprocessing since its cost is negligible compared with the total
cost. In the postprocessing, to estimate the corresponding right singular
vector we first estimate the left singular vector by using ICE and then we
estimate the right vector by means of a backsolve.

To estimate the largest singular value we use two different methods. In
the preprocessing we use a very cheap estimate: the largest two-norm of
the columns times the third root of the matrix dimension. In the postpro-
cessings we use ICE since it is more accurate, though more expensive than
that used in the preprocessing.

3.1 The RRQR Algorithm by Pan and Tang

We implement a variant of what Pan and Tang [1992] call “Algorithm 3.”
Pseudocode for our algorithm is shown in Figure 2. It assumes as input an
upper triangular matrix R. P i, j

R , i , j, denotes a right cyclic permutation
that exchanges columns i and j; in other words, i 3 i 1 1, . . . , j 2 1 3
j, j 3 i, whereas P i, j

L , i , j denotes a left cyclic permutation that ex-
changes columns i and j; in other words, j 4 i, i 4 i 1 1, . . . , j 2 1 4
j. In the algorithm, triang ~A! denotes the upper triangular factor R in the
factorization A 5 QR of A. As can be seen from Figure 2, we use this
notation as shorthand for retriangularizations of R after column ex-
changes.

Fig. 2. Variant of Pan-Tang RRQR algorithm.

236 • C. H. Bischof and G. Quintana-Ortí

ACM Transactions on Mathematical Software, Vol. 24, No. 2, June 1998.



Given a value for k, and a so-called f-factor 0 , f # 1/ Îk 1 1, the
algorithm is guaranteed to halt and produce a triangular factorization that
satisfies

smin~R11! $
f

Îk~n 2 k 1 1!
sk~A! (18)

smax~R22! #
Î~k 1 1!~n 2 k!

f
sk11~A!. (19)

Our implementation incorporates the following features:

(1) Incremental condition estimation is used to arrive at estimates for
smallest singular values and vectors. Thus, s (line 5) and v (line 9) of
Figure 2 can be computed inexpensively from u (line 2). The use of ICE
significantly reduces implementation cost.

(2) The QR factorization update (line 4) must be performed only when the
if-test (line 6) is false. Thus, we delay it if possible.

(3) For the algorithm to terminate, all columns need to be checked, and no
new permutations must occur. In Pan and Tang’s algorithm, rechecking
of columns after a permutation always starts at column k 1 1. We
instead begin checking at the column right after the one that just
caused a permutation. Thus, we first concentrate on the columns that
have not just been “worked over.”

(4) The left cyclic shift permutes the triangular matrix into an upper
Hessenberg form, which is then retriangularized with Givens rotations.
Applying Givens rotations to rows of R in the obvious fashion (as done,
for example, in Reichel and Gragg [1990]) is expensive in terms of data
movement, because of the column-oriented nature of Fortran data
layout. Thus, we apply Givens rotations in an aggregated fashion,
updating matrix strips ~R~1 : jb, ~j 2 1!b 1 1 : jb!! of width b with
all previously computed Givens rotations.
Similarly, the right cyclic shift introduces a “spike” in column j, which
is eliminated with Givens rotations in a bottom-up fashion. To aggre-
gate Givens rotations, we first compute all rotations only touching the
“spike,” and then apply all of them one block column at a time. In our
experiments, we choose the width b of the matrix strips to be the same
as the blocksize nb of the preprocessing.

(5) The final pivoting (lines 16 and 17) improves the estimates for the
condition number of R~1 : k 1 1,1 : k 1 1!, and makes the rank esti-
mate more accurate.

Improvements (1) through (3) on average decreased runtime by a factor
of five on 200 3 200 matrices on an Alliant FX/80 when compared with a

Computing Rank-Revealing QR Factorizations of Dense Matrices • 237

ACM Transactions on Mathematical Software, Vol. 24, No. 2, June 1998.



straightforward implementation of the original algorithm by Pan and Tang.
When retriangularizations were frequent, improvement (4) had the most
noticeable impact, resulting in a twofold to fourfold performance gain on
matrices of order 500 and 1000 on an IBM RS/6000-370.

Pan and Tang introduced the f-factor to prevent cycling of the algorithm.
The higher f is, the tighter are the bounds in (18) and (19), and the better
the approximations to the k and k 1 1st singular values of R. However, if
f is too large, it introduces more column exchanges and therefore more
iterations; and, because of round-off errors, it might present convergence
problems. We used f 5 0.9/ Îk 1 1 in our work.

3.2 The RRQR Algorithm by Chandrasekaran and Ipsen

Chandrasekaran and Ipsen introduced algorithms that achieve bounds (18)
and (19) with f 5 1. We implemented a variant of the so-called Hybrid-III
algorithm, pseudocode for which is shown in Figures 3–6.

Compared with the original Hybrid-III algorithm, our implementation
incorporates the following features:

(1) We employ the Chan-II strategy (an O~n2! algorithm) instead of the
so-called Stewart-II strategy (an O~n3! algorithm because of the need
for the inversion of R~1 : k, 1 : k!) that Ipsen and Chandrasekaran
employed in their experiments.

(2) The original Hybrid-III algorithm contained two subloops, with the first
one looping over Golub-I(k) and Chan-II(k) untill convergence, the
second one looping over Golub-I(k11) and Chan-II(k11). We present a
different loop ordering in our variant, one that is simpler and seems to
enhance convergence. On matrices that required considerable postpro-
cessing, the new loop ordering required about 7% fewer steps for 1000
3 1000 matrices (one step being a call to Golub-I or Chan-II) than
Chandrasekaran and Ipsen’s original algorithm. In addition, the new
ordering speeds detection of convergence, as shown below.

(3) As in our implementation of the Pan-Tang algorithm, we use ICE for
estimating singular values and vectors, and the efficient “aggregated”
Givens scheme for the retriangularizations.

Fig. 3. Variant of Chandrasekaran-Ipsen Hybrid-III algorithm.

238 • C. H. Bischof and G. Quintana-Ortí

ACM Transactions on Mathematical Software, Vol. 24, No. 2, June 1998.



(4) We employ a generalization of the f-factor technique to guarantee
termination in the presence of rounding errors. The pivoting method
assigns to every column a “weight,” namely, iR~k : i, i!i2 in Golub-I(k)
and vi in Chan-II(k), where v is the right singular vector corresponding
to the smallest singular value of R~1 : k, 1 : k!. To ensure termina-
tion, Chandrasekaran and Ipsen suggested pivoting a column only
when its weight exceeded that of the current column by at least n2e,
where e is the computer precision; they did not analyze the impact of
this change on the bounds obtained by the algorithm. In contrast, we
use a multiplicative tolerance factor f like that of Pan and Tang; the
analysis in Quintana-Ortí and Quintana-Ortí [1996] proves that our
algorithm achieves the bounds

smin~R11! $
f 2

Îk~n 2 k 1 1!
sk~A! (20)

and

Fig. 4. “f-factor” variant of Golub-I algorithm.

Fig. 5. “f-factor” variant of Chan-II algorithm.

Fig. 6. Algorithm for computing rank-revealing QR factorization.

Computing Rank-Revealing QR Factorizations of Dense Matrices • 239

ACM Transactions on Mathematical Software, Vol. 24, No. 2, June 1998.



smax~R22! #
Î~k 1 1!~n 2 k!

f 2
sk11~A!. (21)

These bounds are identical to (18) and (19), except that an f2 instead of
an f enters into the equation and that now 0 , f # 1. We used f 5
0.5 in our implementation.

We claimed before that the new loop ordering can avoid unnecessary
steps when the algorithm is about to terminate. To illustrate, we apply
Chandrasekaran and Ipsen’s original ordering to a matrix that almost
reveals the rank:

1. Golub-I(k) Final permutation occurs here. Now the rank is revealed.

2. Chan-II(k)

3. Golub-I(k) Another iteration of inner k-loop since permutation oc-
curred.

4. Chan-II(k)

5. Golub-I(k11) Inner loop for k 1 1.

6. Chan-II(k11)

7. Chan-II(k11) Another iteration of the main loop since permutation
occurred in last pass.

8. Chan-II(k)

9. Golub-I(k11)

10. Han-II(k11) Termination

In contrast, the Hybrid-III-sf algorithm terminates in four steps:

1. Golub-I-sf(k) Final permutation

2. Golub-I-sf(k11)

3. Chan-II-sf(k11)

4. Chan-II-sf(k) Termination

3.3 Determining the Numerical Rank

As Stewart [1993] pointed out, both the Chandrasekaran-Ipsen and Pan-
Tang algorithms, as well as our versions of those algorithms, do not reveal
the rank of a matrix per se. Rather, given an integer k, they compute tight
estimates for sk~A! ' smin~R~1 : k, 1 : k!! and sk11~A! ' smax~R~k 1 1
: n, k 1 1 : n!!.

Thus we need an initial estimate for the rank, which we compute from
the upper triangular matrix obtained by the preprocessing, by using the
ICE estimator. Given that initial estimate for the rank, to obtain the

240 • C. H. Bischof and G. Quintana-Ortí

ACM Transactions on Mathematical Software, Vol. 24, No. 2, June 1998.



numerical rank with respect to a given threshold t, we employ the algo-
rithm shown in Figure 6. In our actual implementation, a and b are
computed in Hybrid-III-sf or PT3M.

This algorithm works as follows. It first calls to algorithms Hybrid-III-rsf
or PT3m in order to get a column ordering in A that makes

sk~A! ' smin~R11! and sk11~A! ' smax~R22!, (22)

where R11 5 R~1 : k, 1 : k! and R22 5 R~k 1 1 : n, k 1 1 : n!, which
values a and b can be obtained from. It can be easily determined if the
numerical rank with respect to threshold t is larger, equal, or smaller than
the current estimate k. For instance, if a # t and b . t, then the numer-
ical rank is k and the algorithm ends. If a # t and b # t, then the
numerical rank is larger than k. If a $ t and b $ t, then the numerical
rank is smaller than k. As the preprocessing usually offers very accurate
estimates for the rank, this algorithm only updates the estimates for the
rank in one unit. In the last two cases, the algorithm Hybrid-III-rsf or
PT3m must be applied on the new estimates. The current implementation
has been specifically designed to avoid cycling (infinite looping) in the
presence of clusters of singular values.

4. EXPERIMENTAL RESULTS

We report in this section experimental results with the double-precision
implementations of the algorithms presented in the preceding section. We
consider the following codes:

—DGEQPF: The implementation for computing the QR factorization with
column pivoting provided in LAPACK. This is not a block-oriented
algorithm and, hence, its performance does not depend on the block-size.

—DGEQPB: A BLAS-3 implementation for computing the “windowed” QR
factorization scheme described in Section 2.

—DGEQPX: DGEQPB followed by an implementation of the variant of the
Chandrasekaran-Ipsen algorithm described in Sections 3.2 and 3.3.

—DGEQPY: DGEQPB followed by an implementation of the variant of the
line break Pan-Tang algorithm described in Sections 3.1 and 3.3.

—DGEQRF: The block-oriented and BLAS-3 implementation for computing
the QR factorization without any pivoting provided in LAPACK.

In the implementation of our algorithms, we make heavy use of available
LAPACK infrastructure. The code used in our experiments, including
test and timing drivers and test matrix generators, is available as
rrqr_acm.tar.gz in pub/prism on ftp.super.org .

We tested matrices of size 100, 150, 250, 500, and 1000 on an IBM
RS/6000 Model 370 and SGI MPIS R8000-75MHz. In each case, we em-

Computing Rank-Revealing QR Factorizations of Dense Matrices • 241

ACM Transactions on Mathematical Software, Vol. 24, No. 2, June 1998.



ployed the vendor-supplied BLAS in the ESSL and SGIMATH libraries,
respectively.

4.1 Numerical Reliability

We employed 18 different matrix types to test the algorithms, with various
singular value distributions and numerical rank ranging from 3 to full
rank. Details of the test matrix generation are beyond the scope of this
article, and we give only a brief synopsis here. For details, the reader is
referred to the code.

Test matrices 1 through 5 were designed to exercise column pivoting.
Matrix 6 was designed to test the behavior of the condition estimation in
the presence of clusters for the smallest singular value. For the other cases,
we employed the LAPACK matrix generator xLATMS, which generates
random symmetric matrices by multiplying a diagonal matrix with pre-
scribed singular values by random orthogonal matrices from the left and
right. For the break1 distribution, all singular values are 1.0 except for one.
In the arithmetic and geometric distributions, they decay from 1.0 to a
specified smallest singular value in an arithmetic and geometric fashion,
respectively. In the “reversed” distributions, the order of the diagonal
entries was reversed. For test cases 7 though 12, we used xLATMS to
generate a matrix of order ~N/ 2! 1 1 with smallest singular value 5.0e-4,
and then interspersed random linear combinations of these “full-rank”
columns to pad the matrix to order n. For test cases 13 through 18, we used
xLATMS to generate matrices of order n with the smallest singular value

Table I. Test Matrix Types (n 5 rank for n 5 1000)

Description r smax sr sr11 smin

1 Matrix with rank ~min~m, n!/2! 2 1 499 1.0e0 1.0e0 2.0e-7 1.2e-19
2 A~: , 2 : min~m, n!! has full rank 999 1.0e0 5.0e-4 6.7e-19 6.7e-19

5~A! 5 5~A~: , 2 : min~m, n!!!
3 Full rank 1000 1.0e0 5.0e-4 NA 5.0e-4
4 A~: , 1 : 3! small in norm 997 2.9e11 5.0e-4 2.4e-4 4.2e-5

A~: , 4 : n! of full rank end
5 A~: , 1 : 3! small in norm 3 1.0e0 5.0e-4 5.5e-14 7.6e-21

5~A! 5 5~A~: , 1 : 3!!
6 5 smallest sing. values clustered 1000 1.0e0 7.0e-4 NA 7.0e-4
7 Break1 distribution 501 1.0e0 5.0e-4 1.7e-15 1.0e-26
8 Reversed break1 distribution 501 1.0e0 5.0e-4 1.7e-15 1.2e-27
9 Geometric distribution 501 1.0e0 5.0e-4 3.3e-16 1.9e-35
10 Reversed geometric distribution 501 1.0e0 5.0e-4 3.2e-16 5.4e-35
11 Arithmetic distribution 501 1.0e0 5.0e-4 9.7e-16 1.4e-34
12 Reversed arithmetic distribution 501 1.0e0 5.0e-4 9.7e-16 1.2e-34
13 Break1 distribution 999 1.0e0 1.0e0 2.0e-7 2.0e-7
14 Reversed break1 distribution 999 1.0e0 1.0e0 2.0e-7 2.0e-7
15 Geometric distribution 746 1.0e0 5.0e-5 9.9e-6 2.0e-7
16 Reversed geometric distribution 746 1.0e0 5.0e-5 9.9e-6 2.0e-7
17 Arithmetic distribution 999 1.0e0 1.0e-1 2.0e-7 2.0e-7
18 Reversed arithmetic distribution 999 1.0e0 1.0e-1 2.0e-7 2.0e-7

242 • C. H. Bischof and G. Quintana-Ortí

ACM Transactions on Mathematical Software, Vol. 24, No. 2, June 1998.



being 2.0e-7. We believe this set to be representative of matrices that can
be encountered in practice.

We report in this section on results for matrices of size n 5 1000, noting
that identical qualitative behavior was observed for smaller matrix sizes.
We decided to report on the largest matrix sizes because the possibility for
failure in general increases with the number of numerical steps involved.
For this case, we list in Table I the numerical rank r with respect to a
condition threshold of t 5 105, the largest singular value smax, the rth
singular value sr, the ~r 1 1!st singular value sr11, and the smallest
singular value smin for our test cases.

The three figures in this subsection (Figures 7–9) contain seven panels,
each of which shows the results obtained with the 18 test matrices and a
block size ranging from 1 to 24 (shown in the top of each panel). Since the
pivoting strategy (and hence the numerical behavior of DGEQPB) is
potentially affected by the block size chosen, we show the results ordered
by block size.

Figures 7 and 8 display the ratio

Q :5
~s1/sr!

k̂~Rr!
, (23)

Fig. 7. Ratio between optimal and estimated condition number for DGEQPB. Each panel
contains the results for the 18 matrix types on one different block size.

Computing Rank-Revealing QR Factorizations of Dense Matrices • 243

ACM Transactions on Mathematical Software, Vol. 24, No. 2, June 1998.



where k̂~R! as defined in (14) is the computed estimate of the condition
number of R after DGEQPB (Figure 7) and DGEQPX and DGEQPY (Figure
8). Thus, Q is the ratio between the ideal condition number and the
estimate of the condition number of the leading triangular factor identified
in the RRQR factorization. If this ratio is close to 1, and k̂ is a good
condition estimate, our RRQR factorizations do a good job of capturing the
“large” singular values of A.

We see that except for matrix type 1 in Figure 7, the block size does not
play much of a role numerically, although close inspection reveals subtle
variations in both Figures 7 and 8. With block size 1, DGEQPB just
becomes the standard Golub pivoting strategy. Thus, the first panel in
Figure 7 corroborates the experimentally robust behavior of this algorithm.
We also see that except for matrix type 1, the restricted pivoting strategy
employed in DGEQPB does not have much impact on numerical behavior.
For matrix type 1, however, it performs much worse. Matrix 1 is con-
structed by generating ~n/ 2! 2 1 independent columns and generating the
leading ~n/ 2! 1 1 as random linear combinations of those columns, scaled
by e ~1/4!, where e is the machine precision. Thus, the restricted pivoting
strategy, in its myopic view of the matrix, gets stuck (so to speak) in these
columns.

Fig. 8. Ratio between optimal and estimated condition number for DGEQPX (dashed line) and
DGEQPY (dotted). Each panel contains the results for the 18 matrix types on one different
block size.

244 • C. H. Bischof and G. Quintana-Ortí

ACM Transactions on Mathematical Software, Vol. 24, No. 2, June 1998.



The postprocessing of these approximate RRQR factorizations, on the
other hand, remedies potential shortcomings in the preprocessing step. As
can be seen from Figure 8, the inaccurate factorization of matrix 1 is
corrected, while the other (in essence correct) factorizations get improved
only slightly. Except for small variations, DGEQPX and DGEQPY deliver
identical results.

We also computed the exact condition number of the leading triangular
submatrices identified in the triangularizations by DGEQPB, DGEQPX,
and DGEQPY, and compared it with our condition estimate. Figure 9 shows
the ratio of the exact condition number to the estimated condition number
of the leading triangular factor. We observe excellent agreement, within
about an order of magnitude in all cases.

In summary, these results show that DGEQPX and DGEQPY are reliable
algorithms for revealing numerical rank. They produce RRQR factoriza-
tions whose leading triangular factors accurately capture the desired part
of the spectrum of A, and thus reliable and numerically sensible rank
estimates. Thus, the RRQR factorization takes advantage of the efficiency
and simplicity of the QR factorization, yet it produces information that is
almost as reliable as that computed by means of the more expensive
singular value decomposition.

Fig. 9. Ratio between exact and estimated condition number of leading triangular factor for
DGEQPB (dashed), DGEQPX (dashed-dotted), and DGEQPY (dotted). Each panel contains the
results for the 18 matrix types on one different block size.

Computing Rank-Revealing QR Factorizations of Dense Matrices • 245

ACM Transactions on Mathematical Software, Vol. 24, No. 2, June 1998.



4.2 Computing Performance

In this section we report on the performance of the LAPACK codes
DGEQPF and DGEQRF as well as the new DGEQPB, DGEQPX, and
DGEQPY codes. For these codes, as well as all others presented in this
section, the Mflop rate was obtained by dividing the number of operations
required for the unblocked version of DGEQRF by the runtime. This
normalized Mflop rate readily allows for timing comparisons. We report on
matrix sizes 100, 250, 500, and 1000, using block sizes (nb) of 1, 5, 8, 12, 16,
20, and 24.

Figures 10 and 11 show the Mflop performance (averaged over the 18
matrix types) versus block size on the IBM and SGI platforms. The dotted
line denotes the performance of DGEQPF, the solid one that of DGEQRFand
the dashed one that of DGEQPB; the 3 and 1 symbols indicate DGEQPXand
DGEQPY, respectively.

Fig. 10. Performance versus block size on IBM RS/6000-370: DGEQPF (· · ·), DGEQRF (—*),
DGEQPB (- –*), DGEQPX (-z-x), DGEQPY (-z-1).

246 • C. H. Bischof and G. Quintana-Ortí

ACM Transactions on Mathematical Software, Vol. 24, No. 2, June 1998.



On both machines, the performances of the two new algorithms for
computing RRQR are robust with respect to variations in the block size.
The two new block algorithms for computing RRQR factorization are,
except for small matrices on the SGI, faster than LAPACK’s DGEQPFfor all
matrix sizes. We note that the SGI has a data cache of 4MB, while the IBM
platform has only a 32KB data cache. Thus, matrices up to order 500 fit
into the SGI cache, but matrices of order 1000 do not. Therefore, for
matrices of size 500 or less, we observe limited benefits from the better
inherent data locality of the BLAS-3 implementation on this computer.
These results also show that DGEQPX and DGEQPY exhibit comparable
performance.

Figures 12 and 13 offer a closer look at the performance of the various
test matrices. We chose nb 5 16 and n 5 250 as a representative exam-
ple. Similar behavior was observed in the other cases.

Fig. 11. Performance versus block size on SGI R8000: DGEQPF (· · ·), DGEQRF (—*),
DGEQPB (- -*), DGEQPX (-z-x), DGEQPY (-z-1).

Computing Rank-Revealing QR Factorizations of Dense Matrices • 247

ACM Transactions on Mathematical Software, Vol. 24, No. 2, June 1998.



Fig. 13. Performance versus matrix type on an SGI R8000 for n 5 250 and nb 5 16:
DGEQPF (· · ·), DGEQRF (—), DGEQPB (- -), DGEQPX (x), DGEQPY (1).

Fig. 12. Performance versus matrix type on an IBM RS/6000-370 for n 5 250 and nb 5 16:
DGEQPF (· · ·), DGEQRF (—), DGEQPB (- -), DGEQPX (x), DGEQPY (1).

248 • C. H. Bischof and G. Quintana-Ortí

ACM Transactions on Mathematical Software, Vol. 24, No. 2, June 1998.



We see that on the IBM platform (Figure 12), the performance of
DGEQRF and DGEQPF does not depend on the matrix type. We also see
that, except for matrix types 1, 5, 15, and 16, the postprocessing of the
initial approximate RRQR factorization takes very little time, with
DGEQPX and DGEQPY performing similarly. For matrix type 1, consider-
able work is required to improve the initial QR factorization. For matrix
types 5 and 15, the performances of DGEQPX and DGEQPY differ notice-
ably on the IBM platform, but there is no clear winner. We also note that
matrix type 5 is suitable for DGEQPB, since the independent columns are
up front and thus are revealed quickly, and the rest of the matrix is
factored with DGEQRF.

The SGI platform (Figure 13) offers a different picture. The performance
of all algorithms shows more dependence on the matrix type, and DGEQPB
performs worse on matrix type 5 than on all others. Nonetheless, except for
matrix 1, DGEQPX and DGEQPY do not require much postprocessing
effort.

The pictures for other matrix sizes are similar. The cost for DGEQPX and
DGEQPY decreases as the matrix size increases, except for matrix type 1,
where it increases as expected. We also note that Figures 10 and 11 would
have looked even more favorable for our algorithm had we omitted matrix 1
or chosen the median (instead of the average) performance.

Fig. 14. Cost of pivoting (in % of flops) versus matrix types of algorithms DGEQPXand DGEQPY
on an IBM RS/6000-370 for matrix sizes 100 (1), 250 (x), 500 (*) and 1000 (o).

Computing Rank-Revealing QR Factorizations of Dense Matrices • 249

ACM Transactions on Mathematical Software, Vol. 24, No. 2, June 1998.



Figure 14 shows the percentage of the actual amount of flops spent in
monitoring the rank in DGEQPB and in postprocessing the initial QR
factorization for different matrix sizes on the IBM RS/6000. We show only
matrix types 2 through 18, since the behavior of matrix type 1 is rather
different: in this special case, roughly 50% of the overall flops is expended
in the postprocessing. Note that the actual performance penalty due to
these operations is, while small, still considerably higher than the flop
count suggests. This is not surprising given the relatively fine-grained
nature of the condition estimation and postprocessing operations.

One may wonder whether the use of DGEQRF to compute the initial QR
factorization would lead to better results, since DGEQRF is the fastest
implementation for computing the QR factorization. This is not the case,
since DGEQRF does not provide any rank preordering, and thus perfor-
mance gains from DGEQRF are annihilated in the postprocessing steps.
For example, for matrices of order 250 on an IBM RS/6000-370, the average
Mflop rate, excluding matrix 5, was 4.5, with a standard deviation of 1.4.
The percentage of flops spent in postprocessing in these cases was on
average 76.8%, with a standard deviation of 6.7. For matrix 5, we are lucky,
since the matrix is of low rank and all independent columns are at the front
of the matrix. Thus, we spend only 3% in postprocessing, obtaining a
performance of 49.1 Mflops overall. In all other cases, though, considerable
effort is expended in the postprocessing phase, leading to overall disap-
pointing performance. These results show that the preordering done by
DGEQPB is essential for the efficiency of the overall algorithm.

5. CONCLUSIONS

In this article, we presented algorithms for computing rank-revealing QR
(RRQR) factorizations that combine an initial QR factorization employing a
restricted pivoting scheme with postprocessing steps based on variants of
algorithms suggested by Chandrasekaran and Ipsen and Pan and Tang.

The restricted-pivoting strategy results in an initial QR factorization
that is almost entirely based on BLAS-3 kernels, yet still achieves a good
approximation of an RRQR factorization most of the time. To guarantee the
reliability of the initial RRQR factorization and improve it if need be, we
improved an algorithm suggested by Pan and Tang, relying heavily on
incremental condition estimation and “blocked” Givens rotation updates for
computational efficiency. As an alternative, we implemented a version of
an algorithm by Chandrasekaran and Ipsen, which among other improve-
ments uses the f-factor technique suggested by Pan and Tang to avoid
cycling in the presence of roundoff errors.

In our experiments, both postprocessing approaches behaved very simi-
larly and revealed the rank in all cases. However, the theoretical bounds of
our version of Chandrasekaran and Ipsen’s method are usually tighter than
the bounds by Pan and Tang. Thus, in light of our limited experience, we
are hesitant to recommend one approach over the other and instead, the

250 • C. H. Bischof and G. Quintana-Ortí

ACM Transactions on Mathematical Software, Vol. 24, No. 2, June 1998.



“plug-compatible” design of the codes for the two approaches is meant to
encourage users to experiment with both of them.

Numerical experiments on 18 different matrix types with matrices rang-
ing in size from 100 to 1000 on IBM RS/6000 and SGI R8000 platforms
show that this approach produces reliable rank estimates while outper-
forming the (less reliable) QR factorization with column pivoting, the
currently most common approach for computing an RRQR factorization of a
dense matrix.

ACKNOWLEDGMENTS

We thank Xiaobai Sun, Peter Tang, and Enrique S. Quintana-Ortí for
stimulating discussions on the subject. We also thank the anonymous
referees for their interesting comments.

REFERENCES

ANDERSON, E., BAI, Z., BISCHOF, C., DEMMEL, J., DONGARRA, J., DU CROZ, J., GREENBAUM, A.,
HAMMARLING, S., MCKENNEY, A., OSTROUCHOV, S., AND SORENSEN, D. 1992. LAPACK User’s
Guide. SIAM, Philadelphia, PA.

ANDERSON, E., BAI, Z., BISCHOF, C., DEMMEL, J., DONGARRA, J., DU CROZ, J., GREENBAUM, A.,
HAMMARLING, S., MCKENNEY, A., OSTROUCHOV, S., AND SORENSEN, D. 1994. LAPACK User’s
Guide Release 2.0. SIAM, Philadelphia, PA.

BISCHOF, C. H. 1989. A block QR factorization algorithm using restricted pivoting. In
Proceedings of the 1989 Conference on Supercomputing (Reno, NV, Nov. 13–17). ACM Press,
New York, NY, 248–256.

BISCHOF, C. H. 1990. Incremental condition estimation. SIAM J. Matrix Anal. Appl. 11, 2
(Apr.), 312–322.

BISCHOF, C. H. 1991. A parallel QR factorization algorithm with controlled local
pivoting. SIAM J. Sci. Stat. Comput. 12, 1 (Jan.), 36–57.

BISCHOF, C. H. AND HANSEN, P. C. 1991. Structure-preserving and rank-revealing
QR-factorizations. SIAM J. Sci. Stat. Comput. 12, 6 (Nov.), 1332–1350.

BISCHOF, C. H. AND HANSEN, P. C. 1992. A block algorithm for computing rank-revealing QR
factorizations. Num. Alg. 2, 3-4, 371–392.

BISCHOF, C. H. AND SHROFF, G. M. 1992. On updating signal subspaces. IEEE Trans. Signal
Process. 40, 1, 96–105.

BISCHOF, C. H. AND TANG, P. T. P. 1991. Robust incremental condition estimation. Tech. Rep.
CS-91-133. Mathematics and Computer Science Division, Argonne National Laboratory,
Argonne, IL. Also LAPACK Working Note 33.

CHAN, T. F. 1987. Rank revealing QR factorizations. Lin. Alg. Appl. 88/89, 67–82.
CHAN, T. F. AND HANSEN, P. C. 1992. Some applications of the rank revealing QR

factorization. SIAM J. Sci. Stat. Comput. 13, 3 (May), 727–741.
CHAN, T. F. AND HANSEN, P. C. 1994. Low-rank revealing QR factorizations. Num. Lin. Alg.

Appl. 1, 1, 33–44.
CHANDRASEKARAN, S. AND IPSEN, I. C. F. 1994. On rank-revealing factorisations. SIAM J.

Matrix Anal. Appl. 15, 2 (Apr.), 592–622.
DE HOOG, F. R. AND MATTHEIJ, R. M. M. 1989. Subset selection for matrices. Tech. Rep. RANA

89-07. Dept. of Mathematics and Computing Science, Eindhoven University of Technology,
Eindhoven, Netherlands.

DONGARRA, J. J., MOLER, C. B., BUNCH, J. R., AND STEWART, G. W. 1979. LINPACK Users’
Guide. SIAM, Philadelphia, PA.

ELDÉN, L. AND SCHREIBER, R. 1986. An application of systolic arrays to linear discrete
ill-posed problems. SIAM J. Sci. Stat. Comput. 7, 3 (July), 892–903.

Computing Rank-Revealing QR Factorizations of Dense Matrices • 251

ACM Transactions on Mathematical Software, Vol. 24, No. 2, June 1998.



FOSTER, L. V. 1986. Rank and null space calculations using matrix decomposition without
column interchanges. Lin. Alg. Appl. 74, 47–71.

GOLUB, G. H. 1965. Numerical methods for solving linear least squares problems. Numer.
Math. 7, 206–216.

GOLUB, G. H. AND VAN LOAN, C. F. 1983. Matrix Computations. Johns Hopkins University
Press, Baltimore, MD.

GOLUB, G. AND VAN LOAN, C. F. 1989. Matrix Computations. 2nd ed. Johns Hopkins
University Press, Baltimore, MD.

GOLUB, G. H., MANNEBACK, P., AND TOINT, P. P. L. 1986. A comparison between some direct
and iterative methods for certain large scale geodetic least squares problems. SIAM J. Sci.
Stat. Comput. 7, 3 (July), 799–816.

GOLUB, G. H., KLEMA, V., AND STEWART, G. W. 1976. Rank degeneracy and least squares
problems. Tech. Rep. TR-456. Department of Computer Science, University of Maryland,
College Park, MD.

GRAGG, W. B. AND STEWART, G. W. 1976. A stable variant of the secant method for solving
nonlinear equations. SIAM J. Numer. Anal. 13, 6, 889–903.

GRANDINE, T. A. 1987. An iterative method for computing multivariate C1 piecewise
polynomial interpolants. Comput. Aided Geom. Des. 4, 307–319.

GRANDINE, T. A. 1989. Rank deficient interpolation and optimal design: An example. Tech.
Rep. SCA-TR-113. Engineering and Scientific Services Division, Boeing Computer Services.

GU, M. AND EISENSTAT, S. 1992. A stable and efficient algorithm for the rank-one modification
of the symmetric eigenproblem. Tech. Rep. YALEU/DCS/RR-916. Department of Computer
Science, Yale University, New Haven, CT.

HANSEN, P. C. 1990. Truncated SVD solutions to discrete ill-posed problems with ill-
determined numerical rank. SIAM J. Matrix Anal. Appl. 11, 3 (July), 503–518.

HANSEN, P. C., SEKII, T., AND SHIBAHASHI, H. 1992. The modified truncated SVD-method for
regularization in general form. SIAM J. Sci. Comput. 13, 1142–1150.

HIGHAM, N. J 1986. Efficient algorithms for computing the condition number of a tridagonal
matrix. SIAM J. Sci. Stat. Comput. 7, 1 (Jan.), 150–165.

HONG, Y. P. AND PAN, C.-T. 1992. The rank revealing QR decomposition and SVD. Math.
Comput. 58, 213–232.

HOTELLING, H. 1957. The relation of the newer multivariate statistical methods to factor
analysis. Br. J. Stat. Psychol. 10, 66–79.

HSIEH, S. F., LIU, K. J. R., AND YAO, K. 1991. Comparisons of truncated QR and SVD methods
for AR spectral estimations. In SVD and Signal Processing II (Amsterdam), R. J. Vaccaro,
Ed. Elsevier Sci. Pub. B. V., Amsterdam, The Netherlands, 403–418.

MORÉ, J. 1978. The Levenberg-Marquardt algorithm: Implementation and theory. In
Proceedings of the Dundee Conference on Numerical Analysis (Berlin), G. A. Watson,
Ed. Springer-Verlag, Berlin, Germany.

PAN, C.-T. AND TANG, P. T. P. 1992. Bounds on singular values revealed by QR
factorization. Tech. Rep. MCS-P332-1092. Mathematics and Computer Science Division,
Argonne National Laboratory, Argonne, IL.

QUINTANA-ORTÍ, G. 1996. Guaranteeing termination of Chandrasekaran & Ipsen’s algorithm
for computing rank-revealing QR factorizations. Preprint MCS-P564-0196. Mathematics
and Computer Science Division, Argonne National Laboratory, Argonne, IL.

QUINTANA-ORTÍ, G., SUN, X., AND BISCHOF, C. H. 1995. A BLAS-3 version of the QR
factorization with column pivoting. Preprint MCS-P551-1295. Mathematics and Computer
Science Division, Argonne National Laboratory, Argonne, IL. To appear in SIAM J. Sci.
Comput.

REIGHEL, L. AND GRAGG, W. B. 1990. Algorithm 686: FORTRAN subroutines for updating the
QR decomposition. ACM Trans. Math. Softw. 16, 4 (Dec.), 369–377.

SCHREIBER, R. AND VAN LOAN, C. 1989. A storage-efficient WY representation for products of
Householder transformations. SIAM J. Sci. Stat. Comput. 10, 1 (Jan.), 53–57.

STEWART, G. W. 1984. Rank degeneracy. SIAM J. Sci. Stat. Comput. 5, 403–413.

252 • C. H. Bischof and G. Quintana-Ortí

ACM Transactions on Mathematical Software, Vol. 24, No. 2, June 1998.



STEWART, G. W. 1990. An updating algorithm for subspace tracking. Tech. Rep.
UMIACS-TR-90-86. Department of Computer Science, University of Maryland, College
Park, MD.

STEWART, G. W. 1992. Determining rank in the presence of error. UMIACS
TR-92-108. Department of Computer Science, University of Maryland, College Park, MD.

WALDÉN, B. 1991. Using a fast signal processor to solve the inverse kinematic problem with
special emphasis on the singularity problem. Ph.D. Dissertation. Department of Mathe-
matics, Linköping University.

Received: March 1996; revised: January 1997; accepted: October 1997

Computing Rank-Revealing QR Factorizations of Dense Matrices • 253

ACM Transactions on Mathematical Software, Vol. 24, No. 2, June 1998.


