
5

Autotuning Runtime Specialization for Sparse
Matrix-Vector Multiplication

BUSE YILMAZ and BARIŞ AKTEMUR, Ozyegin University
MARÍA J. GARZARÁN, University of Illinois at Urbana-Champaign and Intel Corporation
SAM KAMIN, University of Illinois at Urbana-Champaign and Google
FURKAN KIRAÇ, Ozyegin University

Runtime specialization is used for optimizing programs based on partial information available only at
runtime. In this paper we apply autotuning on runtime specialization of Sparse Matrix-Vector Multiplication
to predict a best specialization method among several. In 91% to 96% of the predictions, either the best or
the second-best method is chosen. Predictions achieve average speedups that are very close to the speedups
achievable when only the best methods are used. By using an efficient code generator and a carefully designed
set of matrix features, we show the runtime costs can be amortized to bring performance benefits for many
real-world cases.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Code generation; G.1.3
[Numerical Analysis]: Numerical Linear Algebra—Sparse, structured, and very large systems (direct and
iterative methods); D.4.8 [Operating Systems]: Performance—Modeling and prediction

General Terms: Performance, Experimentation, Measurement

Additional Key Words and Phrases: Autotuning, runtime code generation, sparse matrix-vector
multiplication

ACM Reference Format:
Buse Yılmaz, Barış Aktemur, Marı́a J. Garzarán, Sam Kamin, and Furkan Kıraç. 2016. Autotuning runtime
specialization for sparse matrix-vector multiplication. ACM Trans. Archit. Code Optim. 13, 1, Article 5
(March 2016), 26 pages.
DOI: http://dx.doi.org/10.1145/2851500

1. INTRODUCTION

Sparse Matrix Vector Multiplication (SpMV) is the kernel operation used in many
iterative methods to solve large linear systems of equations. Sparse matrices appear
in many problem domains. In the scientific or engineering domain they are obtained
by discretization of partial differential equations and represent physical phenomena,

This material is based upon work supported by Tübitak under grant 110E028 and by the National Science
Foundation under Award CCF 1017077.
Intel and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries. Software and work-
loads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, com-
ponents, software, operations and functions. Any change to any of those factors may cause the results to
vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products. For
more information, go to http://www.intel.com/performance.
Authors’ addresses: B. Yılmaz, B. Aktemur, and F. Kıraç, Ozyegin University, 34794 Çekmeköy, Istanbul,
Turkey; emails: {buse.yilmaz, baris.aktemur, furkan.kirac}@ozyegin.edu.tr; M. J. Garzarán and S. Kamin,
University of Illinois, 201 N. Goodwin Ave., Urbana, IL, USA, 61801; emails: {garzaran, kamin}@illinois.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 1544-3566/2016/03-ART5 $15.00
DOI: http://dx.doi.org/10.1145/2851500

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 1, Article 5, Publication date: March 2016.

http://dx.doi.org/10.1145/2851500
http://www.intel.com/performance
http://dx.doi.org/10.1145/2851500
http://crossmark.crossref.org/dialog/?doi=10.1145%2F2851500&domain=pdf&date_stamp=2016-03-28

5:2 B. Yılmaz et al.

such as heat, electrodynamics, or quantum mechanics. They can also be obtained from
graphs, in which case they represent the Internet structure or social interactions.
For iterative solutions, various approaches, such as Krylov subspace methods, can be
used. Usually, they converge after a large number of iterations. Thus, they are often
combined with preconditioners to decrease the number of iterations. Preconditioning
can increase the running time of each iteration, but the total runtime is reduced. The
problem with preconditioning is that finding a good preconditioner is usually viewed
as a combination of art and science [Saad 2003]. For some matrices, there is no good
preconditioner. Thus, the problem of generating efficient code for SpMV, the kernel
operation in these iterative solvers, is a critical problem; it has been and continues to
be extensively researched [D’Azevedo et al. 2005; Jain 2008; Buluç et al. 2009, 2011;
Kourtis et al. 2011; Williams et al. 2009; Belgin et al. 2011; Mellor-Crummey and
Garvin 2004; Bell and Garland 2009; Venkat et al. 2015; Liu et al. 2013].

In a previous work [Kamin et al. 2014] we investigated how much speedup can
be obtained by applying runtime specialization for the SpMV operation (w ← w +
Av). In that work, we experimented with five methods requiring specialization and
compared them with methods that did not, including Intel R© Math Kernel Library (Intel
MKL) [MKL 2013], and other state-of-the-art libraries such as CSB [Buluç et al. 2009],
BiCSB [Buluç et al. 2011], and CSX [Kourtis et al. 2011], whose code was available
online. We found that, in most cases, a method using runtime specialization was the
fastest. However, we also found that no single method is the best, as the best method
varies across machines and across matrices. While offline code generation is possible
for many problem domains (e.g. when the matrix, or at least its pattern, is known
beforehand), in the general case, runtime specialization can only be profitable if:

—the best specialization method can be predicted without having to generate and run
all the code variants;

—code of the method predicted to be the best can be generated quickly.

In this paper, we address the issues above and show that runtime specialization of
SpMV for real-world matrices is feasible. Our contributions are threefold:

—We investigate how accurately we can predict the best SpMV method for a given
matrix. We use a Support Vector Machine (SVM) machine-learning technique to
predict the best among six methods (including Intel MKL as the baseline method)

—We give a list of matrix features to determine the performance of SpMV. Several of
these features are unique to our work. We also experiment with an early-exit strategy
when extracting the matrix features to decrease matrix analysis costs significantly.

—We developed an end-to-end special-purpose compiler that takes a matrix and gen-
erates specialized executable code for the X86_64 architecture at runtime. We show
that the runtime costs and break-even points are low enough that runtime special-
ization of SpMV for many real-world matrices is feasible.

The novelty of our work is not in the use of autotuning for SpMV; that problem has
been studied extensively, in particular for selecting a matrix storage format (see Sec-
tion 8 for related work). We also do not claim that we generate aggressively optimized
SpMV code, for which there also exist outstanding body of work. The novelty of our
work lies in using autotuning for selecting a runtime specialization method, defining
the matrix features for this purpose and in generating long SpMV code very rapidly.
These make runtime specialization of SpMV profitable in practice.

Organization: In Section 2, we explain the SpMV specialization methods we evalu-
ated. Section 3 presents how we do code generation. Section 4 describes the autotuning
approach we applied. Our experimental setup and results are presented in Sections 5
and 6, respectively. In Section 7, we evaluate the latency incurred by runtime special-
ization. Section 8 gives related work. Finally, Section 9 presents our conclusions.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 1, Article 5, Publication date: March 2016.

Autotuning Runtime Specialization for Sparse Matrix-Vector Multiplication 5:3

2. BACKGROUND: SPECIALIZATION METHODS CONSIDERED

In this section, we briefly describe the methods that we use to specialize the SpMV
code. For performance comparison, we use Intel MKL’s SpMV as the baseline imple-
mentation. We could not use the AMD Core Math Library (ACML) [ACML 2013] on
our testbed machine that has an AMD CPU, because ACML lacks SpMV.

In the discussion of the methods below, we assume A is an N×N matrix, with NZ
nonzeros. In the code snippets, the rows array contains the row indices, the cols array
contains the column indices, and the vals array contains the nonzero elements of the
matrix; v is the input vector, w is the output vector. The type of rows and cols is int*;
the type of vals, v, and w is double*.

We feed matrices into Intel MKL in Compressed Sparse Row (CSR) format. In this
format, the vals array contains NZ double precision floating-point values; the cols
array contains the column indices of nonzero elements (NZ integers); the rows array
contains, for each row, the starting/ending index of elements in the cols and vals arrays
(N+1 integers). Hence, the data size is (NZ+N+1)×4 + NZ×8 bytes, assuming 4-byte
integers. The interpretation and size of the arrays change according to the method.

CSRbyNZ

This method groups the rows of A according to the number of nonzeros they contain
(i.e., the row length) and generates a loop for each group of rows [Mellor-Crummey
and Garvin 2004]. This method gains its efficiency from long basic blocks in each loop,
which can be compiled efficiently. It provides, in effect, a perfect unrolling of the inner
loop of CSR and so reduces loop overhead, which is important in SpMV [Goumas et al.
2008]. CSRbyNZ would generate the following code for 100 rows with a length of 3:

Data order: CSRbyNZ reorders the matrix data to group rows with the same length
together. Because of reordering, accesses to the output vector w are not sequential.

Data size: The rows array contains the indices of nonempty rows. Hence, the data size
of the matrix is the same as CSR, except for when there are rows with no elements.

Code size: Since this method generates one for-loop for each row length, and the body of
a loop contains as many multiplications as the row length, the code size is proportional
to the number of distinct row lengths and their sum.

RowPattern

This method analyzes the matrix to find the exact pattern of nonzero entries in each
row of Aand generates, for each pattern, a loop that handles all the rows that have that
pattern. Specifically, the pattern of each row is defined as the location of the nonzeros
with respect to the main diagonal. So if row r has nonzeros in columns r − 2, r, r + 1,
and r +3, then its pattern would be {−2, 0, 1, 3}. Sample code corresponding to this row
pattern, assuming there are 100 rows with that pattern, is given below.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 1, Article 5, Publication date: March 2016.

5:4 B. Yılmaz et al.

Data order: RowPattern reorders the matrix data to group rows with the same pattern
together; similarly to CSRbyNZ, accesses to the output vector w are not sequential.

Data size: RowPattern provides matrix data reduction by making the column indices
explicit in the code and thus eliminating the need to store column indices. This is a
saving of NZ-many integer values. Similarly to CSRbyNZ, the length of the rows array
is equal to the number of nonempty rows.

Code size: For matrices with a modest number of row patterns, this method can be
the most efficient. However, if there are many patterns, the code can get quite large,
reducing its efficiency. Since this method generates one for-loop for each row pattern,
and the body of a loop contains as many multiplications as the length of the pattern, the
code size is proportional to the number of row patterns and the sum of their lengths.

RowPattern turns indirect indexing on the vector v (e.g., v[cols[b]]) to direct in-
dexing (e.g., v[row]), except for a single initial memory load per row. This can reduce
latency and utilize the CPU pipeline better [Goumas et al. 2008].

GenOSKI

This method analyzes the matrix to find the patterns of nonzero entries in each block
of size r × c and, for each pattern, generates straight-line code [Belgin et al. 2011].
A motivation of this method is to avoid the zero-fill problem of OSKI [Im et al. 2004]
that generates efficient per-block code by inserting some zeros into the matrix data.
GenOSKI generates one loop for each block pattern of nonzeros. A sample 4 × 4 block
pattern and the corresponding code is given below, assuming there are 100 blocks with
that pattern. The rows and cols arrays store indices of blocks, not individual nonzero
elements. The index of a block is the location of the top-left corner of the block.

Data order: GenOSKI reorders matrix data to group blocks with the same pattern
together. The accesses to w are sequential within a block but not across blocks.

Data size: Because this method stores indices of blocks, not individual nonzero el-
ements, it can provide significant savings on the data size, unless there is a large
number of very sparse blocks.

Code size: GenOSKI generates one for-loop for each block pattern, and the body of a
loop contains as many multiplications as the length of the pattern. Hence, the code size
is proportional to the number of block patterns and the sum of their lengths.

GenOSKI often performs well, especially when most blocks are fairly dense. This is
because (1) locality within blocks is improved, (2) matrix data are usually reduced, and
(3) there is room for compiler optimizations in for-loop bodies. Similarly to RowPattern,
GenOSKI also eliminates indirect indexing on v. Nevertheless, this method may greatly
increase the number of writes into the output vector w; the other methods write each
w element only once. For the evaluation in this paper, we use blocks of size 4 × 4 and

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 1, Article 5, Publication date: March 2016.

Autotuning Runtime Specialization for Sparse Matrix-Vector Multiplication 5:5

5 × 5, as these were the block sizes that obtained the best performance in our previous
study. We abbreviate these as GenOSKI44 and GenOSKI55, respectively.

Unfolding

This method completely unfolds the CSR loop and produces a straight-line program
that consists of a long sequence of assignment statements of the form

w[i] += Ai, j0 * v[j0] + Ai, j1 * v[j1] + . . .;

where the italicized parts—i, Ai, j0 , j0, and so on—are fixed values, not variables or
subscripted arrays. This method eliminates the need to store rows or cols arrays
separately because all the matrix information is implicit in the code. It also produces
the lowest number of executed instructions but should produce, by far, the longest code.
The size of the code is proportional to NZ. For this reason, it is not expected to yield good
performance usually. However, it occasionally beats the other methods substantially.
We have measured Unfolding as the best method for 13–21 matrices of 610. For these
matrices, Unfolding’s performance was on the average 1.23–1.35× of the performance
of the second-best method. The ratio goes as high as 2.52×. These results show that
Unfolding is not the winner method in most of the time, but when it is, its performance
may substantially exceed the other methods. Therefore we decided to include Unfolding
among the specialization methods we evaluate. It is also an interesting case from the
point of view of machine learning to include a class that does not have many samples.

The main reason why Unfolding may yield very good performance is the repeated
nonzero values of the matrix. To see why, suppose the following statements are produced
after unfolding the SpMV loop, where 1.1 and 2.2 are matrix values:

Compilers (we experimented with icc, clang, and gcc) tend to put only the unique float-
ing point values into the data section and load values from there. Since the nonzero val-
ues of the matrix are available, this is a valid optimization. Furthermore, the nonzero
values can be loaded into registers once and reused multiple times. Hence, the state-
ments are compiled as if the code were

In effect, using a pool of unique values may significantly reduce the memory traffic
required to transfer nonzero values and open up more space in the cache for other data.
This optimization was studied previously by Kourtis et al. [2010] as “Value Compres-
sion.” We also reported the impact of unique values on the performance in a previous
work [Kamin et al. 2014].

Unfolding also enables arithmetic optimizations because nonzero values become ex-
plicit in the code. An expression of the form e + 1.0 * v[i] can be simplified to e +
v[i], and e + -1.0 * v[i] can be simplified to e - v[i]. Futhermore, the inverse of
distribution of multiplication over addition can be performed. For example, 7.0 * v[6]
+ 7.0 * v[8] can be transformed into 7.0 * (v[6] + v[8]). These arithmetic opti-
mizations decrease the total number of FP operations needed in SpMV. Having fewer
unique values increases the opportunities for these optimizations.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 1, Article 5, Publication date: March 2016.

5:6 B. Yılmaz et al.

Table I. The Impact of Optimizations Possible in Unfolding. Best Performing Method’s Speedup is in Bold Font

Matrix Unique
MUL inst.

Memory traffic (MB) and Speedup wrt Baseline
N NZ values Baseline CSRbyNZ RowPattern GenOSKI44 GenOSKI55 Unfolding

Andrews 29 60,000 9.0 9.0 14.7 9.8 9.8 9.1
60,000 410,077 1.32× 0.80× 1.00× 0.89× 1.50×

EAT RS 91 42,333 6.6 8.3 11.5 7.9 8.0 6.4
23,219 325,592 1.00× 0.73× 0.78× 0.77× 1.23×
kron g500-logn16 103 29,281 47.8 71.1 84.8 59.6 59.4 42.9
65,536 2,456,398 0.63× 0.49× 0.75× 0.76× 1.03×

Reuters911 165 14,856 3.0 4.3 5.3 3.6 3.7 2.9
13,332 148,038 0.97× 0.78× 0.82× 0.83× 1.55×

soc-sign-Slashdot081106 2 0 10.8 11.8 18.5 12.4 12.5 9.9
77,357 516,575 1.49× 0.68× 1.04× 1.04× 1.87×

delaunay n21 6,291,408 6,291,407 155.8 154.8 240.6 130.3 138.1 237.9
2,097,152 6,291,408 0.81× 0.73× 0.40× 0.44× 1.21×

roadNet-CA 2,766,607 2,766,606 87.8 87.1 94.2 62.4 62.4 125.6
1,971,281 2,766,607 1.19× 0.55× 0.46× 0.52× 1.50×

af 5 k101 9,027,150 9,027,150 181.8 181.8 147.5 150.4 144.6 299.8
503,625 9,027,150 0.74× 1.07× 0.96× 1.41× 0.49×

torso3 3,121,632 4,429,042 89.4 89.4 80.5 82.2 80.3 147.2
259,156 4,429,042 1.08× 1.17× 0.98× 0.91× 0.50×

Finally, Unfolding also increases opportunities for Common Subexpression Elimina-
tion (CSE) when few distinct values exist. Consider the code snippet we used above.
CSE can reduce the FP operations as follows:

In our code generator (detailed in Section 3), when using the Unfolding method,
we create a pool of unique values if the matrix has sufficiently few distinct nonzero
values. We set the threshold for this to 5000. We also do the arithmetic optimizations
mentioned above. Our generator does not employ CSE.

To give concrete evidence of the impact of Unfolding optimizations, let us look at
Table I. Here we give the number of rows (N), number of nonzero values (NZ), number
of unique values, the number of MUL instructions generated by Unfolding, and “mem-
ory traffic” values for plain CSR format (Baseline) and the specialization methods. The
memory traffic values imply the amount of data elements “touched” by the correspond-
ing SpMV computation, according to the model in Gropp et al. [1999], which ignores
the cache. So, in addition to the traffic incurred by the rows, cols, and vals arrays,
whose elements are accessed once, we also include the data accesses to the input and
output vectors v and w. This means, for each method, an additional traffic of NZ×8 is
incurred because of the accesses to v. In Baseline, CSRbyNZ, RowPattern, and Unfold-
ing, an element of the output vector w is accessed twice (once for read, once for write).
This incurs an additional NE×8×2 bytes, where NE is the number of nonempty rows.
For GenOSKI, the traffic incurred by the accesses to w is calculated according to the
block patterns and the number of blocks. The traffic values for specialization methods
also include the generated code size. In our previous work, we presented formulas to
calculate the matrix data and code sizes for these methods [Kamin et al. 2014].

We show information for nine matrices in Table I. Unfolding gives the best perfor-
mance for the first seven of these on turing (our testbed machine that has the Intel

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 1, Article 5, Publication date: March 2016.

Autotuning Runtime Specialization for Sparse Matrix-Vector Multiplication 5:7

CPU), using sequential execution. The best method for af_5_k101 is GenOSKI55; for
torso3, it is RowPattern. The first five matrices have few unique elements while the
other four have many. Normally, SpMV executes one multiplication instruction per each
nonzero element. Hence, a naive unfolding would result in NZ-many MUL instructions
in the code. However, due to the optimizations we explained before, the MUL instruc-
tions have been substantially reduced. An extreme case is soc-sign-Slashdot081106,
where no MUL instruction remains in the generated code, because the matrix contains
only 1 and −1 as its nonzero values. Also, due to creating a unique value pool, Unfold-
ing’s output is almost always smaller in terms of memory traffic when compared to the
outputs of other methods. It is usually smaller than even the baseline. The reductions
in the number of instructions and the size is only possible if the number of distinct
values is small. The data for af_5_k101 and torso3 matrices illustrate this.

Finally, to our surprise, we have also observed that Unfolding gives the best perfor-
mance for some matrices that have no or very few repeated values. The delaunay_n21
and roadNet-CA in Table I are two such matrices. Even though the optimizations we
discussed above are not applicable to these matrices, Unfolding performs very well
because it eliminates indirect indexes on the vector v and replaces them with constant
indices (e.g., v[9]). A common property we observed in these matrices is that they
are connectivity matrices that have a very large number of row patterns and a high
number of sparse blocks. So RowPattern and GenOSKI do not perform well. Also, the
average length of rows is very low (e.g., 3.0 in delaunay_n21, 1.4 in roadNet-CA). This
causes loop overheads and branch prediction penalties in other methods.

We acknowledge that our list of methods is not complete. There exist many other
matrix storage formats (e.g., ELL [Grimes et al. 1978] and DIA [Saad 2003]) that
require no specialization yet may give better performance for some matrices. The
problem is, covering all the possibilities seems practically impossible, as there is a very
large number of formats and also hybrid combinations. So, we did not include generic
storage formats except CSR in our evaluation; we specifically focused on specialization
methods, and we limited ourselves to the SpMV methods presented here. That said, in
our previous work [Kamin et al. 2014], we had compared our specialization methods
with BiCSB [Buluç et al. 2011] and CSX [Kourtis et al. 2011]. The specialization
methods we use in this paper had performed the best most of the time. We had also
experimented with hybrid approaches but had not obtained high speedups.

3. CODE GENERATION APPROACH

We developed a special-purpose compiler that generates executable SpMV code at
runtime. We do not generate source code, use scripts, or invoke an external compiler
at runtime. The compiler takes a matrix and a method name as inputs and emits
X86_64 object code into a memory buffer. The emitted code is dynamically loaded into
the program and a function pointer is returned to the user.

For boilerplate tasks such as managing the object file format (e.g., arranging the
code/data sections in the Elf, Mach-O formats) and dynamic loading, we use LLVM
[Lattner and Adve 2004; LLVM 2013]. Instructions are emitted into LLVM’s internal
buffer at its machine-code layer. We do not generate any LLVM intermediate rep-
resentation code but rather emit machine instructions directly—bit by bit—to avoid
time-consuming compiler passes (e.g., alias analysis, register allocation, and global
value numbering). We took this approach to minimize runtime code generation cost.
The compiler is implemented in C++ to best integrate with the LLVM API.

Our compiler generates parallel code. For this, the matrix is split into as many
partitions as the number of threads. Partitioning is row oriented and aims to assign
roughly an equal number of nonzero values to each partition, using the following
approach: If there are t threads, starting from the first row, then we assign consecutive

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 1, Article 5, Publication date: March 2016.

5:8 B. Yılmaz et al.

ALGORITHM 1: The Pseudo-Code of the CSRbyNZ Code Generator. This Generator Produces
X86 64 Code for Each Distinct Row Length, Corresponding to the Source Snippet on Page 3.
// rows array is in %rdx, cols is in %rcx, vals is in %r8,
// v is in %rdi, w is in %rsi, a is in %rbx, b is in %r9

foreach row length L do
M ← number of rows with row length L;
emit(xor %rbx, %rbx) ; // reset a to 0
emit(xor %r9, %r9) ; // reset b to 0
emit(alignment to 16 bytes) ; // for better cache line utilization
P ← current position in the object code buffer;
emit(xor %xmm0, %xmm0) ; // reset xmm0 to 0
for i ← 0 to L do

// Emit code to calculate vals[b+i]*v[cols[b+i]] and accumulate in %xmm0
emit(mov i × 4(%rcx,%r9,4), %rax) ; // rax ← cols[b+i]
emit(mov i × 8(%r8,%r9,8), %xmm1) ; // xmm1 ← vals[b+i]
emit(mul (%rdi,%rax,8), %xmm1) ; // xmm1 ← xmm1 * v[rax]
emit(add %xmm1, %xmm0) ; // xmm0 ← xmm0 + xmm1

end
emit(mov (%rdx,%rbx,4), %rax) ; // rax ← rows[a]
emit(add L, %r9) ; // b ← b + L
emit(add 1, %rbx) ; // a ← a + 1
emit(add (%rsi,%rax,8), %xmm0) ; // xmm0 ← xmm0 + w[rax]
emit(cmp M, %rbx) ; // compare M and loop counter a
emit(mov %xmm0, (%rsi,%rax,8)) ; // w[rax] ← xmm0
emit(jne P) ; // Jump to loop header if limit not reached
emit(add M × 4, %rdx) ; // rows ← rows + M
emit(add M × L × 4, %rcx) ; // cols ← cols + M × L
emit(add M × L × 8, %r8) ; // vals ← vals + M × L

end

rows to the first partition until the number of elements contained by the partition is at
least nz/t. When the first partition has been given at least nz/t elements, we continue
the same process for the next partition using the subsequent rows. This 1D partition is a
common approach [Williams et al. 2009; Belgin et al. 2011; Byun et al. 2012; Liu et al.
2013]. For each partition, a function is generated using the specified specialization
method. The generated functions are executed concurrently using OpenMP [2009].
Because partitioning is row oriented, no two threads share a common row. Hence, a
locking mechanism or a final reduce-add operation is not needed.

When developing our purpose-built compiler, we naturally faced the problem of which
machine instructions to use; that is, how to derive the assembly code. For this, we first
generated code at source level and manually examined the assembly code produced by
icc and clang (using the -O3 flag) to learn what instruction choices the compilers make.
We focused on how the compilers compiled the loops similar to those we provided
in Section 2. Although long, our code consists of replicating a straightforward loop
structure over and over. We then wrote the code generator to match the output of
compilers as closely as we could.

The way we generate assembly code is mostly straightforward. Algorithm 1 provides
the CSRbyNZ code generator in pseudocode. This generator produces X86_64 machine
code corresponding to the sample source code given for CSRbyNZ in Section 2. We
wrote emit functions to write specific bits into the in-memory object code buffer for the
given opcode and arguments. The X86_64 code generated by this CSRbyNZ generator
for the t2em matrix is shown in Figure 1.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 1, Article 5, Publication date: March 2016.

Autotuning Runtime Specialization for Sparse Matrix-Vector Multiplication 5:9

Fig. 1. The CSRbyNZ code generated for t2em, a 921,632×921,632 matrix with 4,590,832 nonzeros. t2em
has 917,300 rows whose length is 5 and 4,332 rows whose length is 1.

Fig. 2. The performance ratio of our compiler’s output to icc’s output for the matrices used in Kamin et al.
[2014]. A value greater than 1 means we generated more efficient code than icc.

Our focus in this work is not generating the best SpMV code per se. We have not
aggressively optimized the code we are generating; we are not doing optimizations such
as vectorization, common subexpression elimination (CSE), or explicit prefetching.

Directly generating object code instead of going through the usual compiler passes
makes the quality of our generated code questionable. To make sure that we generate
efficient enough code, we compared our compiler’s output with icc’s. For this, we gen-
erated source code for all the 23 matrices that were used in Kamin et al. [2014]. We
compiled these codes using icc with flags -O3 -no-vec (vectorization disabled, because
our generator does not do vectorization). We measured the performance of the compiled
code and compared against our code generator.

In Figure 2, we see the ratio of our code’s performance to the performance of the code
generated by icc. A value greater than 1 means our code performed better and smaller
than 1 means icc’s output performed better. The test was done on our Intel testbed ma-
chine using single-threaded execution. For CSRbyNZ, GenOSKI44, and GenOSKI55,
the performances are consistently close, with our code performing slightly better: On
average (last column in Figure 2), the ratios are 1.01, 1.04, and 1.06, respectively. For
RowPattern, our code performs better than icc for 21 cases of 23. On the average, the

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 1, Article 5, Publication date: March 2016.

5:10 B. Yılmaz et al.

Table II. Performance of the Code Compiled by icc vs. Our Code Generator

Best performing method when using
Matrix our generator icc our code / icc

soc-sign-Slashdot081106 Unfolding Unfolding 0.99
webbase-1M CSRByNZ Unfolding 0.77
mc2depi RowPattern Unfolding 0.94
engine Unfolding Unfolding 0.38
fidapm37 GenOSKI55 GenOSKI44 1.07
18 other matrices Same for both 1.04 (avg.)

ratio is 1.17, with a maximum of 1.61. Unlike other methods, Unfolding’s performance
varies with the input matrix greatly. The performance ratio for Unfolding ranges be-
tween 0.32 and 1.54 and is 1.08 on average.

Table II shows the best of the five specialization methods for the code generated by icc
and our compiler. The last column gives the performance ratio between our compiler’s
winner and icc’s winner. Again, a value larger than 1 means our code performs better.
For 18 matrices of 23, the winning method for icc-compiled code and our compiler is
the same. These codes perform similarly, with our compiler’s output giving 1.04× the
performance of icc. For fidapm37, the winning method when using our generator is
GenOSKI55, while it is GenOSKI44 with icc. The performances are close. There are
four matrices that are worth more discussion: soc-sign-Slashdot081106, webbase-1M,
mc2depi, and engine. In all of these, Unfolding is the winner among icc-compiled code.
Our Unfolding performed very close to icc for soc-sign-Slashdot081106. This is a matrix
that has only 1 and −1 as its nonzero values; we applied the arithmetic optimizations
and so were able to match icc’s performance. For engine, although Unfolding performs
the best among the code generated by our compiler, it is significantly slower than icc-
compiled Unfolding. Our compiler’s Unfolding also could not meet the performance of
icc’s Unfolding for mc2depi and webbase-1M; other methods, RowPattern and CSR-
byNZ, respectively, were the best. The performance of RowPattern for mc2depi was
close to icc’s Unfolding, but for webbase-1M there is a large gap. When we examined
icc’s Unfolding output for the matrices where icc outperforms our generator, we saw
that icc applies optimizations that we do not do, such as common subexpression elimi-
nation (CSE) and instruction reordering.

In summary, the code that we generate, except for Unfolding, is either competitive
with or better than icc’s output. We were able to achieve this performance by generating
code in a straightforward manner and without having to go through compiler phases,
which are expensive at runtime. To give a measure, compiling the C source codes for
23 matrices took about 2 days on our testbed machine. Code generation has to be very
rapid for runtime specialization to pay off. That is why we wrote our purpose-built
compiler.

There are three dimensions of concern in runtime code generation in a setting like
ours: (1) quality of the generated code, (2) speed of code generation, and (3) adaptability
of the generator to new architectures. Achieving high levels in all three dimensions
does not seem possible with the current state of the art. For instance, we could have
followed a template-based approach (e.g., Consel et al. [2004]) to satisfy dimensions (2)
and (3) but not dimension (1); compiling templates separately misses intertemplate
optimization opportunities. We could have generated code at an AST or intermediate
representation level (e.g., with Jumbo [Kamin et al. 2003] or LMS [Rompf and Odersky
2010]) and use an existing compiler back-end to optimize the generated program, but
this would fail to satisfy dimension (2). We opted for dimensions (1) and (2) at the price
of dimension (3): Our generator does not easily adapt to changes in the architecture.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 1, Article 5, Publication date: March 2016.

Autotuning Runtime Specialization for Sparse Matrix-Vector Multiplication 5:11

To handle updates made to the target instruction set architecture, first, we would have
to write new emit functions to support the new instructions. This is straightforward
to do. Second, the code generator for each specialization method would have to be
updated to use the new instruction emitting functions. This would have to be done
by a programmer who knows where and under which conditions to use these new
instructions. Because we do not outsource code generation to an external compiler,
this step does not happen automatically and would be the most expensive part of the
adaptation in terms of developer effort. This is a price we pay in exchange for quickly
generating fast code.

4. AUTOTUNING RUNTIME SPECIALIZATION

Performance portability is a well-known challenge brought by the complexity of modern
computer architecture. Autotuning has been successfully applied to solve this problem
for HPC kernels including SpMV, dense linear algebra, and discrete Fourier trans-
form [Frigo 1999; Whaley et al. 2001; Püschel et al. 2005; Vuduc et al. 2004, 2005;
Muralidharan et al. 2014]. The same problem occurs in specialized SpMV code; the
best-performing SpMV specialization method depends on both the matrix and the ma-
chine [Kamin et al. 2014]. In this section we discuss the use of autotuning to predict
which method will perform the best for a given matrix. Prediction is important to avoid
having to generate all the code variants and try them out, because runtime specializa-
tion has nontrivial cost (we discuss code generation costs in Section 7).

The autotuning process is as follows:

(1) At install time, code is generated for a set of training matrices using all the spe-
cialization methods. The generated programs as well as a nongenerative one (i.e.,
Intel MKL as the baseline) are executed and their performances are recorded.

(2) The collected data are used to train a multiclass classifier where several matrix
properties are used as features (detailed below, in Section 4.2) and the names of
the best performing methods are used as classes.

(3) At runtime, the user calls the library with a new matrix. Features are extracted
from the matrix and are fed into the previously trained multiclass classifier. The
classifier outputs a class, which denotes the method that is predicted to perform
the best for the given matrix.

(4) SpMV code is generated using the predicted method if it involves specialization
(the baseline method may have been predicted as well).

(5) A function pointer is returned to the user to be used for the subsequent SpMV
operations for the given matrix.

In this work we evaluate how one can accurately predict the best SpMV method for
a particular matrix. Our experimental results will show the prediction accuracy and
the cost of runtime prediction and code generation; that is, when would specialization
compensate its runtime overheads. We first discuss the impact of memory bandwidth
and how this shapes the matrix features we chose for autotuning.

4.1. Memory Bandwidth

The performance of SpMV is highly affected by the amount of data transferred between
CPU and memory [Gropp et al. 1999]. Nonspecialized methods usually have small
codes; there the concern is the size of the matrix data. On one hand, specialization may
reduce matrix data significantly. On the other hand, code may become very long. Both
the matrix data size and the code size should be counted when talking about memory
bandwidth, because code is also brought into the CPU from the memory. In Section 2
we commented on the code and data sizes implied by each method. In a previous work
we used formulas to compute code and data size for the different methods [Kamin et al.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 1, Article 5, Publication date: March 2016.

5:12 B. Yılmaz et al.

Table III. Number of Times a Method Yields the Smallest Size

Smallest (code + data) CSRbyNZ RowPattern GenOSKI44 GenOSKI55 Unfolding
size occurrence 63 117 193 229 8

2014]. To measure the role of memory bandwidth, we calculated the code and data size
for all the 610 matrices we use in this study. We then asked the question, “How would
an autotuner perform if it always picked the method with the smallest data?” When
compared to the speedup that could be achieved by a (hypothetical) perfect predictor
that always picks the best performer, this smallest-size strategy yielded 86–91% of the
achievable speedup. However, an SVM-based approach using the features we list in
the next section obtains 97–99% of the achievable speedup (Section 6). In Table III, we
show the number of times each method has the smallest size. CSRbyNZ is the smallest
only 63 times, but it performs the best for many more matrices (see Figure 4 in Section
6). The opposite situation holds for GenOSKI methods. They yield the smallest size for
many matrices but do not perform the best for that many cases.

This shows that even though memory is a dominant factor in SpMV performance,
relying on only the size falls short of the achievable speedup. Table I also provides
concrete examples of this argument. Another problem with the pick-the-smallest-size
approach is that the total size of CSRbyNZ is most of the time slightly larger than the
baseline. Hence, making a choice between CSRbyNZ and the baseline method solely
based on size is insufficient. Other decision factors, such as the average length of rows
or the number of distinct row lengths, are needed. At this point, one starts to feel the
need of a model, and that is what the machine-learning based autotuning approach
builds for us, based on the matrix features we provide and also the actual performance
on machines. Hence, it also provides adaptation for a specific computer.

4.2. Features

We selected matrix features that indicate both the data and code size. We also picked
features that hint at the number of iterations the generated loops execute. Table IV
shows the feature set we are using. The features are classified based on the method
that will have the highest impact from this feature. A total of 29 features are col-
lected for each matrix (4 general structure, 4 CSRbyNZ, 8 RowPattern, 1 Unfolding,
6 GenOSKI44, and 6 GenOSKI55). We collect the number of rows (N), number of
nonzeros (NZ), and nonzeros per row to represent the general structure of a matrix. We
also include the number of nonempty rows (NE) because no code is generated for empty
rows by RowPattern, CSRbyNZ, and Unfolding methods and some matrices have many
empty rows. For instance, in our set of 610 matrices, 52 matrices have 10% or more
empty rows; among these, 28 have more than 20% of their rows empty. From our point
of view, Intel MKL is a black box, and we cannot have features specifically designed for
it. This is yet another challenge for making successful predictions.

For CSRbyNZ, we collect the number of distinct row lengths, which indicates how
many loops will be generated, and the sum of row lengths, which indicates how long the
generated loop bodies will be. So, the first two features represent the code length for
CSRbyNZ. The next two features are selected to indicate runtime. The average number
of rows per each row length denotes how many times, on the average, each loop will
iterate. The average of distinct row lengths indicates how long, on the average, a loop
body will be; hence, it is an approximation of the runtime of one loop iteration.

There are corresponding features for RowPattern and GenOSKI. The number of
patterns and the sum of pattern lengths indicate the code size. The average number
of rows (respectively, blocks) per pattern, and the average length of patterns indi-
cate the average runtimes of generated loops. RowPattern generates a loop for each

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 1, Article 5, Publication date: March 2016.

Autotuning Runtime Specialization for Sparse Matrix-Vector Multiplication 5:13

Table IV. Matrix Features Grouped under the Method They Impact the Most

General structure
Number of rows (N)
Number of nonzero elements (NZ)
Number of nonempty rows (NE)
Avg. number of nonzero elements per row (i.e. NZ / N)
CSRbyNZ
Number of distinct row lengths (RL)
Sum of distinct row lengths (SR)
Avg. number of rows for each row length (i.e. NE / RL)
Avg. of distinct row lengths (i.e. SR / RL)
RowPattern
Number of row patterns that apply to only a single row (R 1)
Number of row patterns that apply to multiple rows (R 2)
Sum of lengths of row patterns that apply to a single row (R 3)
Sum of lengths of row patterns that apply to multiple rows (R 4)
Avg. number of rows per row pattern that apply to multiple rows (R 5)
Avg. length of row patterns that apply to a single row (R 6)
Avg. length of row patterns that apply to multiple rows (R 7)
Ratio of NZ elements covered by effective row patterns (R 8)
Unfolding
Number of unique NZ values (capped at 5000) (U)
GenOSKI (for 4×4 and 5×5)
Number of block patterns (G 1)
Sum of lengths of block patterns (G 2)
Number of nonempty blocks (G 3)
Avg. number of blocks per block pattern (G 4)
Avg. length of block patterns (G 5)
Ratio of NZ elements covered by effective block patterns (G 6)

pattern; however, if a pattern is unique to only one row, completely unfolded code is
generated. Therefore, we distinguish these cases when collecting RowPattern features.
RowPattern and GenOSKI features also include the ratio of NZ elements covered by ef-
fective row patterns and block patterns, inspired from Belgin et al. [2011]. We say a row
pattern is effective if its length is more than 3 and it covers at least 1000 NZ elements; a
block pattern is effective if its length is more than 3 and it applies to at least 1000 blocks.

For GenOSKI, we collect the number of nonempty blocks. This denotes the total num-
ber of iterations generated loops will execute. The corresponding feature for CSRbyNZ
and RowPattern is the number of nonempty rows, which is already in our list.

Unfolding’s performance is highly sensitive to the number of distinct NZ values as
discussed in Section 2. Hence, we have this value as a feature.

Before using for autotuning, we transformed the raw feature values as follows: (1) We
took the log the values, because they show a skewed distribution. The effective block
coverage (i.e., G 6) is the only exception to this. (2) We normalized the features to the
[−1, 1] interval. This transformation is common in machine learning.

To the best of our knowledge, the features that we pick to indicate the code size are
unique to our work. In existing work, features are usually determined according to the
matrix storage formats, not code size. N and NZ are almost always collected as features
(e.g., El Zein and Rendell [2012], Armstrong and Rendell [2008, 2010], Li et al. [2013],
and Neelima et al. [2014]). NZ/N is also common [El Zein and Rendell 2012; Su and
Keutzer 2012; Li et al. 2013]. Some other features used in the literature are

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 1, Article 5, Publication date: March 2016.

5:14 B. Yılmaz et al.

—zero-fill ratios for formats like DIA, ELL, and BELLPACK [Choi et al. 2010; Abu-
Sufah and Abdel Karim 2013; Li et al. 2013],

—variation of row lengths [Abu-Sufah and Abdel Karim 2013; Armstrong and Rendell
2008, 2010; Li et al. 2013],

—mean neighbor count of nonzero elements [Armstrong and Rendell 2008, 2010],
—number of blocks and dense blocks per super row [Su and Keutzer 2012],
—number of diagonals, number of nonzero elements per diagonal [Su and Keutzer

2012; Li et al. 2013],
—max number of nonzeros per row [Li et al. 2013; Neelima et al. 2014], and
—memory traffic (number of bytes fetched, number of writes to w) [Belgin et al. 2011].

In an attempt to give more information to the learner, we experimented with other
features. For instance, we decomposed the properties in the form of histograms to
carry more fine-tuned information. For example, the number of row patterns whose
length is less than 3, between 3 and 10, and more than 10, and so on (and similarly for
CSRbyNZ and GenOSKI). We also used mean and standard deviation values. However,
those attempts did not improve the prediction success and often decreased the quality,
probably because of overfitting (also known as the curse of high dimensionality).

Full vs. Capped Feature Set

We call the features listed in Table IV the full feature set. In Section 6, we will see
that the full feature set gives us good prediction success, but it is expensive to compute.
As an alternative, we stop collecting some of the features when a certain cap is reached.
We set this cap for RowPattern-related features at 2000 row patterns and for GenOSKI-
related features at 5000 block patterns. We call this the capped feature set. The only
difference between the full and the capped feature set is that when the cap value is
reached, associated feature values are frozen and the matrix is no longer analyzed for
those features. Analysis continues normally for other features. The number of distinct
values is always capped at 5000.

The intuition behind the capped approach is that many matrices have too many row
or block patterns. When this is the case, full analysis is expensive, because the set/map
structures used for keeping track of the patterns become large. However, we observed
that in general it is unlikely for RowPattern and GenOSKI to be the best method
when there are too many patterns. So there is no need to do a complete analysis in
this case. With the capped approach, many matrices will be only partially analyzed for
RowPattern and GenOSKI. The features related to these methods will not always be
the exact values. However, we saw that this inaccuracy causes only a slight decrease in
the prediction success. In return, the feature extraction costs are reduced. We did not
put a cap on CSRbyNZ features because the number of distinct row lengths is usually
low and CSRbyNZ analysis is not expensive. Details are in Section 6.

We performed a correlation analysis between the features, shown in Figure 3. The
correlations show that, in general, we have low redundancy among features. There is
high correlation between N and NE (nonempty rows). This is because most of the matri-
ces have elements on every row. However, there are some that have empty rows, and we
want to distinguish them. (In our set of 610 matrices, 52 matrices have 10% or more and
28 have 20% or more of their rows empty.) So we kept NE in the features. We also see
high correlation between the corresponding features of GenOSKI44 and GenOSKI55.
This is not surprising since the two are instances of the same method. Finally, there is
correlation between the number of patterns (respectively, distinct row lengths) and the
sum of pattern lengths (respectively, sum of row lengths) in the RowPattern, GenOSKI,
and CSRbyNZ methods. This is also normal; the sum of pattern lengths increases as the

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 1, Article 5, Publication date: March 2016.

Autotuning Runtime Specialization for Sparse Matrix-Vector Multiplication 5:15

Fig. 3. Correlations between features of the full feature set.

number of patterns increases. We nevertheless kept these features in our set because
they indicate important and separate properties about the generated code size.

We determined the set of features according to the specialization methods and the
code generation approach. If a new method is added to the system, related features
would have to be included. Similarly, changes in the architecture may trigger an update
to the list. For instance, the ratio of consecutive column indices is potentially a useful
matrix feature in case of vectorization.

4.3. Classifier

There are several multiclass classifiers to use as the learning model. We experimented
with many, including Random Forest and Decision Tree Classifier. We found that C-
Support Vector Classification (SVC) with an RBF (Gaussian) kernel gives the best
results. We tried a variety of C and gamma parameters for RBF; we used the results
for the parameter values that yielded the best prediction rates.

4.4. Classes

In the learning phase, the classifier is fed with the features and the classes of the
matrices. The classifier uses these data to create a model that associates matrix features
with the corresponding classes. We tried different approaches to specify the class:

Naive Approach: We used the best performing method for a matrix as its class.
In this approach, there are as many classes as SpMV methods (six in our case). This
naive definition of classes has a potential problem, though: It ignores the fact that
methods may perform very close to each other. For example, suppose CSRbyNZ is the
best method for a matrix, but RowPattern is also very good—good enough that, from
the point of view of the user, picking RowPattern as the SpMV method instead of
CSRbyNZ would also be acceptable. However, from the point of view of the classifier,
picking RowPattern instead of CSRbyNZ is simply incorrect, because that is not the
class that the matrix belongs to. In other words, defining the class of a matrix as its
best method loses information about what other methods are also good choices. We
observed that the average performance ratio of the best and the second-best methods

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 1, Article 5, Publication date: March 2016.

5:16 B. Yılmaz et al.

is 1.13–1.16× in our test setup. The ratio is less than 1.01× in 6–8% of the matrices,
less than 1.02× in 12–16%, and less than 1.05× in 24–36%. We try to remedy this
potential problem with the next approach.

Pair of Methods: We used the top two performing methods for a matrix as its class.
So a class label is a pair of method names. In this approach, the prediction output
of the classifier also contains two methods: a method predicted to be the winner and
another that is predicted to be the runner-up. To decide which method to use for code
generation, we ignore the runner-up and take the first method. To illustrate, let us take
the previous example. There the matrix’s actual class would be CSRbyNZ-RowPattern
instead of just CSRbyNZ. If the classifier makes the prediction, say, CSRbyNZ-Baseline,
then we generate code for CSRbyNZ. This is the best case for prediction. If the prediction
is RowPattern-Unfolding or RowPattern-CSRbyNZ, then we generate code using the
RowPattern method, which is not the best one but still a good choice.

Using the paired approach, more information is fed into the learner; however, a
potential problem is that the number of possible classes increases significantly as
compared to the naive approach. If M SpMV methods exist, then there are a maximum
of M × (M − 1) classes. Having more classes may negatively impact the prediction’s
success because there will be fewer samples per class during the training phase, and
there are more classes to distinguish from each other.

Another potential problem with the paired approach is that if the best method is
substantially better than the second one, this information is not disseminated to the
learner. To address this issue, we tried a variation of the paired labeling approach where
we set a threshold value: If the best method is better than the second-best method
by more than the threshold, then we repeated the best method also as the second
method in the class name. For instance, suppose for some matrix CSRbyNZ is the best
method, Unfolding is the second best, CSRbyNZ performs 1.30× of Unfolding, and
the threshold value is 1.05×. We labeled the matrix to be in the CSRbyNZ-CSRbyNZ
class. This way we emphasized to the learner that for this matrix CSRbyNZ is really
the best method. This approach introduces as many new classes as the number of
methods.

Labeling happens automatically, with no human effort. For each matrix, the auto-
tuner looks at the performance measurements of the SpMV methods and determines
the class using the chosen approach. The results of the naive and paired labeling ap-
proaches are presented in Section 6. Thresholding did not sufficiently improve the
prediction results; we give a brief discussion about this in Section 6.

5. EXPERIMENTAL SETUP

In our experimental evaluation, we use a set of 610 matrices obtained from the Matrix
Market [1997] and the University of Florida collection [Davis and Hu 2011]. All our
matrices are square and sparse. Their number of nonzero elements range from 100K to
15M, and dimensions range from 2K to 2.4M. Of the matrices, 129 are pattern matrices.
In this case, the matrix data downloaded from the collection do not provide any nonzero
values; only the positions of elements are stated. We populate such matrices with
distinct values. Some matrices are symmetric, but we ignore this property.

Several of the matrices in our set are compiled from previously published papers
[Buluç et al. 2009; Kourtis et al. 2011; Williams et al. 2009]. Others are arbitrarily
chosen from the matrix collections without any specific criteria except that we preferred
the matrices not to have more than 15M nonzeros to make the experiments runnable in
a reasonable amount of time. The matrices come from a variety of domains, including
circuit simulation, duplicate model reduction, electromagnetics, quantum chemistry,
power network, computer graphics, and so on.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 1, Article 5, Publication date: March 2016.

Autotuning Runtime Specialization for Sparse Matrix-Vector Multiplication 5:17

Table V. Target Platforms

Processor @ Freq (GHz) Cache Sizes (Bytes) Mem
Name (Microarchitecture) Cores L1 (I/D) L2 L3 (GB) Linux OS compiler

turing Intel R© Xeon R© E5-2620 @ 2.00 6 32K 256K 15M 16 Ubuntu 12.04 icc 14.0
(SandyBridge)

milner AMD FX-8350 @ 4.00 8 64K/16K 2M 8M 8 ArchLinux 3.14.4 gcc 4.8.2
(Piledriver)

We executed code on two unloaded X86_64 machines, one with an Intel and the
other with an AMD processor. The properties of our testbed computers are in Table V.
On both machines we generated code using five specialization methods (CSRbyNZ,
RowPattern, GenOSKI44, GenOSKI55, Unfolding). We also collected the runtime of
Intel MKL’s SpMV function, and we use Intel MKL as the baseline when we calculate
speedups. So, in total, six SpMV methods are used on the machines. We have also run
the benchmarks on a third computer with an Intel Xeon E3-1220 CPU and found the
results to be similar to turing; we do not include that machine’s timings here.

We collected the running times as follows: For each matrix and SpMV code, we
measured the time it takes to run the code for a few hundreds or thousands of times.
The number of iterations is determined according to the matrix size, but we made sure
that the measured time is long enough (e.g., at least 2s) to avoid fluctuation. We then
divided the measured time by the number of iterations to find the running time of
one SpMV operation. We repeated this test 3 times and took the lowest time (i.e., the
fastest execution time) with the intuition that it reflects the execution with the least
interference from external events. We measured feature collection, matrix conversion,
and code generation times again by running them 3 times and taking the smallest
measurement. We executed SpMV code both sequentially and in parallel. For parallel
executions, we set the number of threads to be equal to the number of CPU cores (six on
turing and eight on milner). We refer to the sequential runs as turing-1 and milner-1
and parallel runs as turing-6 and milner-8.

For prediction experiments, we used the scikit-learn module of Python (version 2.7.9)
[Pedregosa et al. 2011]. We applied 10-fold cross validation for training and testing.
This is a standard approach in machine learning. We first shuffled the data and then
split into 10 groups, each comprising of 61 matrices. For each group, training is done
using the other 9 groups (549 matrices). The chosen group is used for testing whether
the predictions made by the trained classifier is correct.

We used Principal Component Analysis (PCA), a technique in machine learning,
to reduce the number of features in order to assist the classifier by supplying more
correlated data, but we did not observe any improvement in the quality of predictions.
Thus, the results we report do not include any application of PCA.

6. EXPERIMENTAL RESULTS

In this section we discuss the prediction results of the classifier. Figure 4 shows the
distribution of best methods. Figure 5 shows the distribution of class labels when using
the paired approach. In Figure 6 we show the prediction results for turing-1, turing-6,
milner-1, and milner-8. For each, we show the number of correct, semicorrect, incorrect,
and bad predictions (definitions given below), as well as the average speedup achieved
when using the predicted methods (on top of each bar). We tried all four combinations
of naive/paired labeling and full/capped feature sets.

In the naive class labeling approach, a single method name is used as the class of
a matrix. Hence, if the autotuner’s classification for a given matrix is the same as

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 1, Article 5, Publication date: March 2016.

5:18 B. Yılmaz et al.

Fig. 4. Left: Number of times each method is the best (610 matrices in total). Right: Average speedup w.r.t.
the baseline performance when using the best method for each matrix.

Fig. 5. Class labels and corresponding counts for 610 matrices using the paired approach.

the actual best method, then it is a correct prediction. Otherwise it is an incorrect
prediction.

In the paired class labeling approach, two method names are used as the class of
a matrix. The autotuner’s classification output is hence a pair of method names. As
previously explained, we take the first method as the predicted one and ignore the
second. If this first method is the same as the actual best method, then we categorize
this prediction as correct; if it is the same as the actual second best method, then
we categorize this prediction as semicorrect. Otherwise, the prediction is considered
incorrect. In both naive and paired labeling approach, an incorrect or semicorrect
prediction may have worse performance than the baseline. We call this a bad prediction.

We achieve average speedups of 1.31, 1.41, 1.37, and 1.77 when using paired labeling
and the capped feature set (P-C bars in Figure 6). The speedups are slightly better
when using the naive approach or the full set. Recall from Figure 4 that if always

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 1, Article 5, Publication date: March 2016.

Autotuning Runtime Specialization for Sparse Matrix-Vector Multiplication 5:19

Fig. 6. Prediction results.

the best methods are used, the speedups are 1.33, 1.45, 1.39, and 1.83, respectively. So
predictions obtain 97–99% of the maximum speedups. The best method can be predicted
in 71–86% of the matrices, and the second-best method can be predicted in 11–20% of
the matrices. Only 5–8% of the predictions choose a method worse than the baseline.

Full vs. Capped Feature Set
The full feature set gives only slightly better predictions than the capped feature set.
The average speedups are either the same or only differ by 0.01. Taking into account
that the capped feature set can be extracted faster than the full set (detailed in the
next section), we favor the capped set and consider the marginal loss in the quality of
predictions an acceptable tradeoff.

Naive vs. Paired Labeling
The naive and paired approaches yield similar speedups and prediction accuracy. The
advantage of the paired approach to the naive approach is the confidence it provides
from the machine learning (ML) point of view. Even though good speedup is achieved
with naive labeling, about 14–29% of the predictions are “incorrect.” This would make
a machine-learning-savvy person feel uncomfortable; a success rate of about 70% is not
considered the best in the ML community. By using the paired approach, we relax the
definition of class labels and feed more information into the learner. This gives more
confidence that the achieved speedups are good not just by luck.

Thresholding
We also experimented with the thresholding approach presented in Section 4. We
used 1.01, 1.02, 1.03, 1.05, 1.10, and 1.15 as the threshold values. Usually, using the
threshold yielded slight improvement in terms of correct predictions (approximately
five more) and bad predictions (approximately four fewer). The achieved speedups did
not change. However, the number of semicorrect and incorrect predictions were altered
significantly. For instance, for turing-1, we obtained 69 semicorrect and 23 incorrect
predictions when a threshold is not used but 19 semicorrect and 67 incorrect when a
threshold value of 1.02 is used. This is because some classes contain repeated method
names (e.g., CSRbyNZ-CSRbyNZ) when a threshold is used. For those classes, there
is no chance for a semicorrect prediction; a prediction is either correct or incorrect,

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 1, Article 5, Publication date: March 2016.

5:20 B. Yılmaz et al.

according to our definition. For this reason, we decided not to use the thresholding
approach.

7. LATENCY

SpMV specialization is likely to occur at runtime, unless the matrix (or at least its
pattern) is available offline. If the matrix data are available only at runtime, the SpMV
library has to be quick in producing the specialized function in order for specialization
to bring profit. In this section, we discuss the issue of latency: How much time needs
to be spent for prediction and code generation? How many SpMV iterations should be
taken so specialization compensates its costs and starts to bring benefits? We show
that, on average, the total cost of specialization is equivalent to 58 and 53 calls to the
baseline SpMV operations, respectively, on two machines where we ran our experi-
ments. For the matrices for which the predicted method brings 1.1× or better speedup,
we obtained average break-even points of 272 and 237 baseline SpMV operations on
our testbed computers. These costs and break-even points are low enough that run-
time specialization of SpMV for many real-world matrices in practical applications of
iterative solvers is feasible.

In our SpMV library, we assume we are given a matrix defined in the standard Com-
pressed Sparse Row (CSR) format. SpMV specialization for a matrix and a particular
specialization method involves the following steps:

—Matrix analysis: Before generating code, the matrix is analyzed to collect method-
related information, for example, what block patterns exist and which blocks have
which patterns in GenOSKI. The result of matrix analysis is used for matrix con-
version (next step), and when emitting instructions (the step after), for example, for
each block pattern in GenOSKI, a loop is generated.

—Matrix conversion: The matrix data are converted from CSR format to the format
needed by the particular specialization method. This usually involves reordering the
matrix data.

—Instruction emission: X86_64 instructions are emitted in accordance with the spe-
cialization method, using the code generation approach explained in Section 3.

—Boiler-plate: A number of low-level tasks need to be carried out to execute the emitted
code at runtime. These tasks include creating a target-specific (e.g., Mach-O or Elf)
in-memory buffer to emit the instructions and dynamically loading this buffer for
runtime execution. For these tasks, we use LLVM’s machine-code layer.

Average costs of the code generation steps in terms of one baseline SpMV operation
are given in Table VI. We provide two costs, “if best” and “overall,” for each method.
The “Overall” column gives the cost averaged over the whole set of matrices; “if best”
gives the cost averaged over the matrices for which the particular method is the best
performer. We see that, in general, costs are lower when the method happens to be the
best. This is because shorter codes are often better than long codes, and the short code is
generated quicker. For instance, if there is a large number of row patterns in a matrix,
then both the analysis, instruction emission, and boiler-plate steps take a significantly
longer time. A similar observation can be made for GenOSKI and Unfolding as well.
Compared to the other methods, CSRbyNZ is usually very fast to analyze and generate.

Table VI also provides the costs for extraction of full and capped feature sets, as well
as end-to-end specialization. The full feature extraction cost of a matrix is less than
the sum of CSRbyNZ, RowPattern, Unfolding, GenOSKI44, and GenOSKI55 matrix
analysis costs, because feature extraction tracks less data than matrix analysis. For
instance, while the feature extraction step collects only the counts of patterns and
blocks for GenOSKI, matrix analysis also needs to collect which patterns apply to
which blocks. End-to-end specialization is calculated as

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 1, Article 5, Publication date: March 2016.

Autotuning Runtime Specialization for Sparse Matrix-Vector Multiplication 5:21

Table VI. Costs of Code Generation Steps and Feature Extraction
in Terms of One Baseline SpMV Operation

turing-1 milner-1
if best overall if best overall

CSRbyNZ
Analysis 1.7 1.3 1.0 0.8

Conversion 3.6 4.6 3.4 4.2
Emission 0.8 2.0 0.7 1.5

Boiler-plate 1.1 2.3 1.0 1.8

RowPattern
Analysis 19.4 27.9 16.2 20.5

Conversion 3.9 5.6 3.0 4.4
Emission 1.5 31.4 1.0 21.4

Boiler-plate 2.1 25.1 1.5 18.8

GenOSKI44
Analysis 34.3 40.9 29.0 30.5

Conversion 3.2 3.2 3.4 3.2
Emission 1.5 2.3 0.9 1.7

Boiler-plate 1.3 1.6 1.0 1.1

GenOSKI55
Analysis 38.0 42.7 27.3 32.2

Conversion 3.5 3.3 3.0 3.2
Emission 2.0 6.6 0.8 4.9

Boiler-plate 1.6 3.0 0.9 2.1

Unfolding
Analysis 3.0 4.0 2.3 3.3

Conversion 0.0 0.0 0.0 0.0
Emission 60.6 108.6 44.0 77.0

Boiler-plate 13.1 38.4 10.6 28.5

Full feature set
Extraction 71.2 57.0

End-to-end specialization 90.3 75.8

Capped feature set
Extraction 39.0 34.6

End-to-end specialization 58.0 52.9

Feature extraction + Predicted method’s (Analysis + Conversion + Emission +
Boiler-plate).

When calculating end-to-end specialization, we take the analysis cost as zero if
the predicted method is CSRbyNZ or Unfolding, because the needed information is
already computed during feature extraction. The feature extraction and end-to-end
specialization costs we report are averaged over all matrices.

The cost of end-to-end specialization is equivalent to 58.0 baseline SpMV calls on
turing and 52.9 on milner when using the capped feature set. This means, even when
the baseline method or a method whose performance is very close to the baseline
is predicted, the amount of work that is spent due to specialization is about 50–60
iterations of SpMV. Considering that several hundreds of iterations in iterative solvers
is typical, this may be an acceptable tradeoff.

Table VI shows values for only single-threaded execution, because we did not paral-
lelize code generation phases yet. The boiler-plate step is delegated to LLVM, and we

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 1, Article 5, Publication date: March 2016.

5:22 B. Yılmaz et al.

Fig. 7. Distribution of break-even points of the predicted methods.

Table VII. Count and Break-Even Points of Predictions that Yield 1.1x or Better Speedup

Full feature set Capped feature set
turing-1 milner-1 turing-1 milner-1

No. of predictions with ≥1.1×
speedup

417 435 414 432

Avg. break-even point of pre-
dictions with ≥1.1× speedup

406 314 272 237

are not sure if it can be parallelized, but it is possible for all the other steps to run
concurrently by splitting the matrix and the analysis data into partitions.

Considering the end-to-end specialization costs, we calculate the break-even point
for each matrix: How many times should we have to iterate SpMV so specialization
compensates its cost and starts to bring advantage over the baseline implementation?
Figure 7 shows the distribution of break-even points. The values in this figure have
been prepared according to the predictions made using the paired labeling approach.
The number of iterations used in iterative solvers depends on the desired accuracy of
the solution, but several hundred or a few thousand is common in practice. Considering
this fact, the break-even points shown in Figure 7, in particular those when the capped
feature set is used, are practically useful, as for many matrices speedup would be
gained. Note that for some matrices, the baseline method is predicted. For those
matrices, no break-even point exists and no cost other than the feature extraction has
to be paid. The bad predictions are the cases for when the predicted method performs
worse than the baseline. For these cases, the library may simply default back to using
the baseline implementation after detecting that the generated code performs poorly.

Belgin et al. report average break-even points from 500 to 700 excluding code gener-
ation cost in their work where they introduce the pattern-based representation (PBR)
for SpMV [2011]. They report these break-even points for matrices for which at least
1.1× speedup was observed (39 of 53 matrices). Because we use different methods and
our matrix set is not the same (we have 610), our numbers are not directly compara-
ble to theirs. However, to give a similar evaluation, our average break-even point for
predictions that yield at least 1.1× speedup (when the capped feature set is used and
code generation cost is included) is 272 on turing (414 cases of 610) and 237 on milner
(432 cases of 610), also shown in Table VII. Belgin et al. generate code by writing C
files on the disk and invoking a compiler. Therefore, when runtime code generation
is included, their break-even points increase to several thousands. Our code emission
costs are much smaller, due to our purpose-built code generator.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 1, Article 5, Publication date: March 2016.

Autotuning Runtime Specialization for Sparse Matrix-Vector Multiplication 5:23

8. RELATED WORK

Previous autotuning approaches for SpMV focus on choosing an optimal storage for-
mat, because even the basic sparsity regime of a matrix can have a profound effect on
the performance [Bell and Garland 2009]. To this end, there exist work using decision
trees [Li et al. 2013], dynamic-programming [Guo et al. 2014], reinforcement learn-
ing [Armstrong and Rendell 2008], heuristic-based autotuning [Abu-Sufah and Abdel
Karim 2013], and model-driven approaches [Neelima et al. 2014; Choi et al. 2010]. To
the best of our knowledge, ours is the first study on applying autotuning to pick among
several specialization methods. This is challenging as the generated code structure
also needs to be considered in addition to the data format. We used a SVM-based ap-
proach for autotuning. SVM is used in many autotuning systems including the Nitro
framework [Muralidharan et al. 2014]. Recently, a two-level approach to autotuning
was shown to be effective in addressing the complexities of mapping features to algo-
rithmic configurations [Ding et al. 2015]. We leave it for future work to see whether
this approach improves the prediction accuracy for our experiments. Most of the other
autotuning work have smaller matrix sets than ours, for example, ∼14–150 [Grewe
and Lokhmotov 2011; Muralidharan et al. 2014; Neelima et al. 2014; Guo et al. 2014].
There also are studies with bigger matrix sets, for example, ∼2000 in Li et al. [2013]
and 1000 (synthetic) in Armstrong and Rendell [2008].

There exist several works that employ runtime specialization for SpMV. Willcock
and Lumsdaine [2006] generate matrix-specific compression/decompression functions.
Kourtis et al. [2011] also study data compression; they generate specialized SpMV
routines for their CSX format in the LLVM intermediate representation. We, too, use
LLVM, but only for boiler-plate tasks regarding object file management. They employ
matrix sampling to reduce analysis costs by allowing minor loss in speedups; we use
capped analysis for the same purpose. Sun et al. [2011] introduce a runtime code
generator for OpenCL that produces code variants for diagonal patterns for their CRSD
format. Belgin et al. [2011] propose a new format PBR which identifies recurring block
structures that share the same pattern of nonzeros within a matrix. (The GenOSKI
method we use is a variant of PBR.) A runtime code generator produces optimized
custom kernel for each pattern. They generate source-level code and invoke an external
compiler. They also have a code cache that can be used to dynamically link object files for
already-compiled code. They show that priming this cache with common block pattern
code reduces runtime costs. Mateev et al. [2000] introduce a generic programming
API to generate efficient sparse code using high-level algorithms and sparse matrix
format specifications. A similar work is presented in Grewe and Lokhmotov [2011],
where efficient and system-specific SpMV kernels for GPUs are generated based on
a storage format description. While this line of research generates code according to
storage formats, we specialize code for a specific matrix.

Code generation for SpMV or related problems (i.e., matrix multiplication and vector
dot product) is found as a case study in several previous papers. Fabius [Lee and Leone
1996] is a compiler that generates native code at runtime by deriving the generator
from source code that contains binding-time annotations. Carette and Kiselyov [2011]
show how to eliminate abstraction overheads from generic programs using multistage
programming on Gaussian elimination. Rompf et al. [2013] combine various compiler
extension techniques to generate high-performance low-level code. They demonstrate
optimization of operations on sparse matrices, loop unrolling, and loop paralleliza-
tion. SpMV, in the context of Hidden Markov Models, was also proposed as a Shonan
Challenge [Aktemur et al. 2013].

We developed our code generator manually. It would be possible to derive it sys-
tematically from source code using a code generation/staging approach as in Fabius

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 1, Article 5, Publication date: March 2016.

5:24 B. Yılmaz et al.

[Lee and Leone 1996], LMS [Rompf and Odersky 2010], or Tempo [Consel et al. 2004].
However, we would either compromise the efficiency of the generated code or the speed
of generation, as discussed in Section 3.

Earlier examples of using code generation to optimize linear algebra operations in-
clude Gustavson et al. [1970] and Fukui et al. [1989]. They generate machine code
based on the matrix structure. Giorgi and Vialla [2014] generate SpMV kernels based
on characteristics of the input matrix. Venkat et al. [2015] address indirect loop index-
ing and irregular data accesses in SpMV kernels and introduce new compiler trans-
formations and automatically generated runtime inspectors. Our RowPattern method
also eliminates indirect indexing. Neither of these papers do runtime generation.

9. CONCLUSIONS

In this paper we have shown that it is possible to use runtime specialization to form ef-
ficient SpMV when the same matrix is multiplied by many vectors. We have developed
an end-to-end special-purpose compiler that generates efficient SpMV code which is
specialized for a given matrix. Our compiler directly emits machine instructions with-
out going through any intermediate representation to avoid time-consuming compiler
passes. We took this approach to minimize runtime code generation cost.

We experimented with five specialization methods and also Intel MKL. We used
multiclass classification and two class labeling approaches to predict a best method.
Our experiments on two different machines using 610 matrices show that for 91–96% of
the matrices, either the best or the second best method can be predicted. For autotuning,
we used 29 matrix features; several of these are unique to our work. We used a capped
feature extraction approach to reduce matrix preprocessing costs. We show that end-
to-end specialization costs are equivalent to 53–58 baseline SpMV operations on the
average. These costs are low enough that runtime specialization of SpMV for many
real-world matrices in practical applications of iterative solvers is feasible.

ACKNOWLEDGMENTS

We thank Ümit Akgün and Deniz Sökmen for their help in implementing parts of the code generator.

REFERENCES

W. Abu-Sufah and A. Abdel Karim. 2013. Auto-tuning of sparse matrix-vector multiplication on graphics
processors. In Supercomputing. Lecture Notes in Computer Science, Vol. 7905. Springer, Berlin, 151–164.

ACML. 2013. AMD Core Math Library User Guide 6.0.6. Retrieved from http://amd-dev.wpengine.netdna-
cdn.com/wordpress/media/2013/12/acml.pdf.

B. Aktemur, Y. Kameyama, O. Kiselyov, and C. Shan. 2013. Shonan challenge for generative programming.
In Partial Evaluation and Program Manipulation (PEPM’13). 147–154.

W. Armstrong and A. P. Rendell. 2008. Reinforcement learning for automated performance tuning. In Cluster
Computing. 411–420.

W. Armstrong and A. Rendell. 2010. Runtime sparse matrix format selection. Procedia Comput. Sci. 1, 1
(2010), 135–144.

M. Belgin, G. Back, and C. J. Ribbens. 2011. A library for pattern-based sparse matrix vector multiply. Int.
J. Parallel Program. 39, 1 (2011), 62–87.

N. Bell and M. Garland. 2009. Implementing sparse matrix-vector multiplication on throughput-oriented
processors. In High Performance Computing Networking, Storage and Analysis (SC’09). 18:1–18:11.

A. Buluç, J. Fineman, M. Frigo, J. Gilbert, and C. Leiserson. 2009. Parallel sparse matrix-vector and matrix-
transpose-vector multiplication using compressed sparse blocks. In 21st Annual Symp. on Parallelism
in Algorithms and Architectures (SPAA’09). 233–244.

A. Buluç, S. Williams, L. Oliker, and J. Demmel. 2011. Reduced-bandwidth multithreaded algorithms for
sparse matrix-vector multiplication. In IPDPS’11. 721–733.

J. Byun, R. Lin, K. Yelick, and J. Demmel. 2012. Autotuning Sparse Matrix-Vector Multiplication for Multi-
core. Technical Report UCB/EECS-2012-215. EECS Department, U. of California, Berkeley.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 1, Article 5, Publication date: March 2016.

Autotuning Runtime Specialization for Sparse Matrix-Vector Multiplication 5:25

J. Carette and O. Kiselyov. 2011. Multi-stage programming with functors and monads: Eliminating abstrac-
tion overhead from generic code. Sci. Comput. Program. 76, 5 (May 2011), 349–375.

J. Choi, A. Singh, and R. Vuduc. 2010. Model-driven autotuning of sparse matrix-vector multiply on GPUs.
In Principles and Practice of Parallel Programming (PPoPP’10). 115–126.

C. Consel, J. Lawall, and A. Le Meur. 2004. A tour of tempo: A program specializer for the C language. Sci.
Comput. Program. 52, 1–3 (2004), 341–370.

T. Davis and Y. Hu. 2011. The university of Florida sparse matrix collection. ACM Trans. Math. Softw. 38, 1,
Article 1 (Dec. 2011), 25 pages.

E. D’Azevedo, M. Fahey, and R. Mills. 2005. Vectorized sparse matrix multiply for compressed row storage
format. In ICCS’05. 99–106.

Y. Ding, J. Ansel, K. Veeramachaneni, X. Shen, U. O’Reilly, and S. Amarasinghe. 2015. Autotuning algorithmic
choice for input sensitivity. In Prog. Language Design and Implementation (PLDI’15). 379–390.

A. El Zein and A. Rendell. 2012. Generating optimal CUDA sparse matrixvector product implementations
for evolving GPU hardware. Concurr. Comput. Pract. Exper. 24, 1 (2012), 3–13.

M. Frigo. 1999. A fast fourier transform compiler. In Programming Language Design and Implementation
(PLDI’99). 169–180.

Y. Fukui, H. Yoshida, and S. Higono. 1989. Supercomputing of circuits simulation. In Supercomputing
(SC’89). 81–85.

P. Giorgi and B. Vialla. 2014. Generating optimized sparse matrix vector product over finite fields. In
Mathematical Software (ICMS’14). 685–690.

G. Goumas, K. Kourtis, N. Anastopoulos, V. Karakasis, and N. Koziris. 2008. Understanding the performance
of sparse matrix-vector multiplication. In Parallel, Distributed and Network-Based Processing (PDP’08).
283–292.

D. Grewe and A. Lokhmotov. 2011. Automatically generating and tuning GPU code for sparse matrix-vector
multiplication from a high-level representation. In General Purpose Processing on Graphics Processing
Units (GPGPU-4). 12:1–12:8.

Roger G. Grimes, David R. Kincaid, and David M. Young. 1978. ITPACK 2.0 User’s Guide. Report CNA-150.
Center for Numerical Analysis, University of Texas at Austin, Austin, TX.

W. Gropp, D. Kaushik, D. Keyes, and B. Smith. 1999. Toward realistic performance bounds for implicit CFD
codes. In Parallel CFD’99.

P. Guo, L. Wang, and P. Chen. 2014. A performance modeling and optimization analysis tool for sparse
matrix-vector multiplication on GPUs. IEEE TPDS 25, 5 (May 2014), 1112–1123.

F. Gustavson, W. Liniger, and R. Willoughby. 1970. Symbolic generation of an optimal Crout algorithm for
sparse systems of linear equations. J. ACM 17, 1 (Jan. 1970), 87–109.

E. Im, K. Yelick, and R. Vuduc. 2004. Sparsity: Optimization framework for sparse matrix kernels. Int. J.
High Perform. Comput. Appl. 18, 1 (Feb. 2004), 135–158.

A. Jain. 2008. pOSKI: An Extensible Autotuning Framework to Perform Optimized SpMVs on Multicore
Architectures. Master’s thesis. University of California, Berkeley.

S. Kamin, L. Clausen, and A. Jarvis. 2003. Jumbo: Run-time code generation for java and its applications.
In Code Generation and Optimization (CGO’03). 48–56.

S. Kamin, M. Garzarán, B. Aktemur, D. Xu, B. Yılmaz, and Z. Chen. 2014. Optimization by runtime special-
ization for sparse matrix-vector multiplication. In Generative Programming: Concepts and Experiences
(GPCE’14). 93–102.

K. Kourtis, G. Goumas, and N. Koziris. 2010. Exploiting compression opportunities to improve SpMxV
performance on shared memory systems. ACM Trans. Archit. Code Optim. 7, 3 (Dec. 2010), 16:1–16:31.

K. Kourtis, V. Karakasis, G. Goumas, and N. Koziris. 2011. CSX: An extended compression format for SpMV
on shared memory systems. SIGPLAN Not. 46, 8 (Feb. 2011), 247–256.

C. Lattner and V. Adve. 2004. LLVM: A compilation framework for lifelong program analysis & transforma-
tion. In Code Generation and Optimization (CGO’04). 75–86.

P. Lee and M. Leone. 1996. Optimizing ML with run-time code generation. In Programming Language Design
and Implementation (PLDI’96). 137–148.

J. Li, G. Tan, M. Chen, and N. Sun. 2013. SMAT: An input adaptive auto-tuner for sparse matrix-vector
multiplication. SIGPLAN Not. 48, 6 (June 2013), 117–126.

X. Liu, M. Smelyanskiy, E. Chow, and P. Dubey. 2013. Efficient sparse matrix-vector multiplication on x86-
based many-core processors. In Supercomputing (ICS’13). 273–282.

LLVM. 2013. LLVM Web Site. Retrieved from http://llvm.cs.uiuc.edu.

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 1, Article 5, Publication date: March 2016.

http://llvm.cs.uiuc.edu

5:26 B. Yılmaz et al.

N. Mateev, K. Pingali, P. Stodghill, and V. Kotlyar. 2000. Next-generation generic programming and its
application to sparse matrix computations. In Supercomputing (ICS’00). 88–99.

Matrix Market. 1997. Matrix Market Web Site. Retrieved from http://math.nist.gov/MatrixMarket.
J. Mellor-Crummey and J. Garvin. 2004. Optimizing sparse matrix-vector product computations using unroll

and jam. Int. J. High Perform. Comput. Appl. 18, 2 (May 2004), 225–236.
MKL. 2013. Intel R© Math Kernel Library. Retrieved from http://software.intel.com/en-us/articles/intel-mkl.
S. Muralidharan, M. Shantharam, M. Hall, M. Garland, and B. Catanzaro. 2014. Nitro: A framework for

adaptive code variant tuning. In Parallel and Distributed Processing Symp. (IPDPS’14). 501–512.
B. Neelima, G. Ram, M. Reddy, and Prakash S. Raghavendra. 2014. Predicting an optimal sparse matrix for-

mat for SpMV computation on GPU. In Parallel & Distributed Processing Symp. Workshops (IPDPSW’14).
1427–1436.

OpenMP 2009. OpenMP API for parallel programming, version 3.0. Retrieved from http://openmp.org/wp.
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R.

Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
2011. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 12 (2011), 2825–2830.

M. Püschel, J. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer, J. Xiong, F. Franchetti, A. Gacic, Y.
Voronenko, K. Chen, R. Johnson, and N. Rizzolo. 2005. SPIRAL: Code generation for DSP transforms.
Proc. IEEE 93, 2 (2005), 232–275.

T. Rompf and M. Odersky. 2010. Lightweight modular staging: A pragmatic approach to runtime code
generation and compiled DSLs. In Generative Prog. and Component Engineering (GPCE’10). 127–136.

T. Rompf, A. Sujeeth, N. Amin, K. Brown, V. Jovanovic, H. Lee, M. Jonnalagedda, K. Olukotun, and M.
Odersky. 2013. Optimizing data structures in high-level programs. In Principles of Programming Lan-
guages (POPL’13). 497–510.

Y. Saad. 2003. Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia, PA.
B. Su and K. Keutzer. 2012. clSpMV: A cross-platform OpenCL SpMV framework on GPUs. In Supercom-

puting (ICS’12). 353–364.
X. Sun, Y. Zhang, T. Wang, X. Zhang, L. Yuan, and L. Rao. 2011. Optimizing SpMV for diagonal sparse

matrices on GPU. In Parallel Processing (ICPP’11). 492–501.
A. Venkat, M. Hall, and M. Strout. 2015. Loop and data transformations for sparse matrix code. In Program-

ming Language Design and Implementation (PLDI’15). 521–532.
R. Vuduc, J. Demmel, and J. Bilmes. 2004. Statistical models for empirical search-based performance tuning.

Int. J. High Perform. Comput. Appl. 18, 1 (Feb. 2004), 65–94.
R. Vuduc, J. Demmel, and K. Yelick. 2005. OSKI: A library of automatically tuned sparse matrix kernels. J.

Phys. Conf. Series 16, 1 (2005), 521.
C. Whaley, A. Petitet, and J. Dongarra. 2001. Automated empirical optimizations of software and the ATLAS

project. Parallel Comput. 27, 12 (2001), 3–35.
J. Willcock and A. Lumsdaine. 2006. Accelerating sparse matrix computations via data compression. In

Supercomputing (ICS’06). 307–316.
S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel. 2009. Optimization of sparse matrixvector

multiplication on emerging multicore platforms. Parallel Comput. 35, 3 (2009), 178–194.

Received June 2015; revised November 2015; accepted November 2015

ACM Transactions on Architecture and Code Optimization, Vol. 13, No. 1, Article 5, Publication date: March 2016.

http://math.nist.gov/MatrixMarket
http://software.intel.com/en-us/articles/intel-mkl

