N
N

N

HAL

open science

OpenAlea: Scientific Workflows Combining Data
Analysis and Simulation
Christophe Pradal, Christian Fournier, Patrick Valduriez, Sarah
Cohen-Boulakia

» To cite this version:

Christophe Pradal, Christian Fournier, Patrick Valduriez, Sarah Cohen-Boulakia. OpenAlea: Scien-
tific Workflows Combining Data Analysis and Simulation. SSDBM: Scientific and Statistical Database

Management, Jun 2015, San Diego, United States. 10.1145/2791347.2791365 . hal-01166298

HAL Id: hal-01166298
https://hal.science/hal-01166298

Submitted on 1 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01166298
https://hal.archives-ouvertes.fr

OpenAlea: Scientific Workflows Combining Data Analysis
and Simulation

Christophe Pradal

UMR AGAP, CIRAD and Inria

Montpellier, France

Christian Fournier
INRA
Montpellier, France

christophe.pradal@cirad.fr christian.fournier@inra.fr

Patrick Valduriez

Inria and LIRMM, Montpellier,

France

Patrick.Valduriez@inria.fr

ABSTRACT

Analyzing biological data (e.g., annotating genomes, assem-
bling NGS data...) may involve very complex and inter-
linked steps where several tools are combined together. Sci-
entific workflow systems have reached a level of maturity
that makes them able to support the design and execution
of such in-silico experiments, and thus making them increas-
ingly popular in the bioinformatics community.

However, in some emerging application domains such as
system biology, developmental biology or ecology, the need
for data analysis is combined with the need to model com-
plex multi-scale biological systems, possibly involving mul-
tiple simulation steps. This requires the scientific work-
flow to deal with retro-action to understand and predict
the relationships between structure and function of these
complex systems. OpenAlea (openalea.gforge.inria.fr) is the
only scientific workflow system able to uniformly address the
problem, which made it successful in the scientific commu-
nity. One of its main originality is to introduce higher-order
dataflows as a means to uniformly combine classical data
analysis with modeling and simulation.

In this demonstration paper, we provide for the first time
the description of the OpenAlea system involving an original
combination of features. We illustrate the demonstration
on a high-throughput workflow in phenotyping, phenomics,
and environmental control designed to study the interplay
between plant architecture and climatic change.

1. INTRODUCTION

Classical bioinformatics analysis (e.g. annotating genomes,
building phylogenetic trees, assembling NGS data) involves
the management and processing of huge data sets together

Sarah Cohen-Boulakia
Inria, Montpellier, France

LRI CNRS 8623, U.Paris Sud

cohen@lri.fr

with the chaining of numerous complex and interlinked tools.
Scientific workflow systems aim at facilitating and rational-
izing the design and management of such tasks. They clearly
separate the workflow specification from its execution and
offer useful capabilities on both aspects. Among others, they
may provide a user interface to design workflows by compos-
ing tools [15], a scheduler to optimize the processing of huge
amounts of data [6], a provenance module [4] to keep track of
the data used and generated during an execution and ensure
the reproducibility of the experiments [18].

However, the complexity of biological analysis increases
in emergent interdisciplinary domains. This is especially
the case in domains addressing the study of complex multi-
scale systems that require numerical simulations. In system
biology for instance, analyzing the emergent behavior of a
large number of interactions within a biological system re-
quires simulating the interplay between the topological and
geometrical development of the structure and its biologi-
cal functioning. This involves coupling models from differ-
ent disciplines, integrating experimental data from various
sources at different scales (gene, cell, tissue, organism and
population), and analyzing the reconstructed system with
numerical experiments.

While scientific workflow systems have mainly been de-
signed to support data analysis and visualization [15, 8, 9,
1], only a few systems have attempted to support iteration
or simulation [1, 15]. Most of the systems use either con-
trol flow edges or define loops in the workflow specification
with specific routing nodes (e.g. switch [7]). Kepler [1] uses
black box actors with different models of computation to
provide iteration processes. These solutions can lead de-
signing overly complex workflows that are difficult to un-
derstand, reuse, and maintain [1]. Expressing control flow
(iteration) in scientific workflows is actually a difficult prob-
lem due to the absence of state variable and side-effect.

To address this problem, we have introduced the concept
of A-dataflow, which is inspired from the A-calculus used in
Functional Programming.

A-dataflow makes use of higher-order constructs in the
context of dataflows theory and thus allows to represent
control flow using algebraic operators [6] (e.g., condition-
als, map/reduce...). A-dataflow allows to model retro-action.
The OpenAlea system [17] that we introduce in this paper is

a workflow system based on A-dataflow which is able to uni-
formly deal with classical data analysis, visualization, mod-
eling and simulation tasks.

In this paper, we show how the notion of A-dataflow al-
lows OpenAlea to uniformly deal with workflows involving
data analysis and simulation steps. Our demonstration in-
troduces the capabilities of OpenAlea on a workflow involv-
ing high-throughput phenotyping, phenomics, and environ-
mental control, to study the interplay between plant archi-
tecture and climatic change. OpenAlea is a Python open
source project (openalea.gforge.inria.fr) that provides sup-
port to a large community of users and developers.

2. USE CASE

Genotypic data
e

Phenotypic data

Stable Heritable Traits

/;ant models

Crop simulation models

arowth rate (mm)

Genetic mod;N

R
Soil et ot 1P

Virtual Crop Performance

i

Figure 1: Use case

We consider a use case in the context of crop plant breed-
ing [16], where high throughput data analysis needs to deal
with simulation models at different scales (genes, organism
and population). The objective of a breeding program is to
produce plants that perform better than others (higher or
more stable yields) in a given environment. This is challeng-
ing as environmental conditions vary a lot among cropping
areas, and are subjected to rapid change in a global warming
context.

Model-assisted breeding [10, 14] aims at tackling this is-
sue. It combines plant models, which reduce phenotypic
plasticity (that is, the response to external environmental
changes), to a set of environment-independent plant param-
eters (stable traits), genetic models that link genetic profile
(allele set) to stable traits, and simulation models that run
virtual experiments to predict crop performance in a large
set of environmental conditions (e.g., different light expo-
sure, hydric conditions, nutriments...). Traits and plant pa-
rameters (such as the size of the plant, the length of its
leaves, the number of tillers, ...) depend both on the plant
genetic profile and on the response of the plant to environ-
mental conditions, expressed as its phenotypic plasticity.

Model-assisted breeding recently gained interest thanks to
the development of automated phenotyping platforms that
allow the measurement of plant traits for a large number
of accessions in controlled conditions. For example, the
M3P-PhenoArch facility® allows to characterize daily plant
growth and transpiration for 1,600 individuals at a time, to-
gether with precise control of water availability to the plants.

"http:/ /www6.montpellier.inra.fr /lepse/ M3P

It respectively generates 52 GB of data per day, 2.75 TB per
essay (for a typical 50 days experiment) and 11 TB per year.
Managing such experiments is particularly challenging due
to the volume of data involved, and the multi-disciplinary
nature of the tasks, as it requires biological data produc-
tion, data analysis, mathematical and biological modeling,
and computer simulation. From a scientific workflow per-
spective, the main issue remains to combine (model-assisted)
data analysis and model simulation with retro-action. In the
use case, the simulated model is the growth of a set of plants,
driven by environmental conditions (i.e. light and temper-
ature). The growth of each plant depends on its param-
eters (plant traits), the environmental conditions modified
by the other plants that compete for resource acquisition.
The retro-action is due to the relationship between structure
and function: the plant growth is impacted by the amount of
light intercepted by the plant while the light intercepted by
the plant, to its turn, depends on the plant growth. As a con-
sequence, analyzing plant response to light first requires to
estimate light amounts intercepted by each individual plant
during their growth, using light simulation models and 3D
plant reconstruction. Then, a light-driven growth model is
to be inferred by fitting it to the observations. Finally, sim-
ulations allow to study how the light-growth feedback loop
operates in a larger range of environmental conditions.

3. OPENALEA

This section introduces the OpenAlea system, with its
programming and execution models.

4. Loop h(x4)

1. Plant Generation: f(x1)

w1 S DD
L exprimental design | metec01.csv

Plant Traits

[Plantarchitecture| [internal variability F".“]

2. Union of plants: g(x2, x3)
[xa] [x3])

union

reduce
°

Figure 2: (a) OpenAlea workflow for simulating
Maize and Wheat crop performance based on pheno-
typic and environment data, and two image outputs
(b and c). Colors represent the organ’s type in (b)
and the amount of intercepted light in (c).

Actors and workflows.

An actor in OpenAlea is an elementary brick (a.k.a. com-
ponent or activity) that has a name, a function object (a
functor, a program, a web service or a composite actor),
and explicitly defined input and output ports. A seman-
tic type [1] is associated to each port (with a corresponding
color).

A workflow is represented as a directed multi-graph where
nodes are actors, and directed edges are data links between
output and input ports (see Figure 2(a)). A workflow can
become a (composite) actor in another workflow to allow
composition.

Dataflow variable.

One of the major originality of OpenAlea lies in the way
iteration is handled by introducing a specific kind of actor,
called dataflow variable X. It allows to specify that, at a
given port, an actor receives an unbound variable rather
than a value. Connecting an X to an actor transforms
a workflow into a lambda function, and allows to express
higher-order programming providing control flow behavior
using a set of algebraic operators. The three iteration types
can be expressed as [7, 5]: (1) counting loops without de-
pendencies (map operator), (2) counting loops with depen-
dencies (reduce and for operators) and (3) conditional loops
(while operator). In Figure 2(a), the dataflow variables and
the algebraic operators are represented using yellow and
white nodes, respectively.

Execution (model-driven).

Dataflow execution in OpenAlea is orchestrated in a model-
driven manner (rather than input-driven): the execution of a
given workflow is launched in response to requests for data of
one of its actors. Such an actor can satisfy the request when
the upstream subworkflow has been executed, that is, when
all the relevant actors connected to its input ports have been
executed. When such an actor has received its data on its
input ports, it executes and places data on its output ports.
OpenAlea is able to deal with extremely large datasets to
perform big data analysis in parallel environments.

Additionally, it allows actors to be lazy and blocked. When
an actor is blocked, the execution is not propagated to the
upstream subworkflow and when the actor is lazy, the execu-
tion is performed only if the actor’s inputs have not changed
compared to its previous execution. This type of orchestra-
tion performs only the operations needed to produce the
required result, executing the subset of the graph relevant
to the output [3].

Algebraic operators and \-dataflow evaluation.

An algebraic operator is an actor that iterates over first-
order function calls, and thus takes one or more functions
as inputs. Ports that require a function have an associated
semantic type Function (colored in white). For instance, the
first input port of the map and reduce operators requires a
function as input (see Figure 2.(a)).

A-dataflow evaluation differs from the classical evaluation
when the workflow contains at least one dataflow variable X.
The execution is then decomposed into two stages. First, for
each port of type Function, a subworkflow is computed if the
upstream subworkflow contains at least one dataflow vari-
able. This subworkflow is defined by all the actors needed
to produce the data on this port, i.e. the upstream sub-

workflow and the connected output port. This subworkflow
is dynamically transformed into a function (i.e. an actor) of
one or several variables corresponding to its dataflow vari-
ables. Second, the evaluation of this function by algebraic
operators consists in replacing the variables by real data
and evaluating the subworkflow using the model-driven al-
gorithm.

Reproducibility.
OpenAlea allows to make experiments reproducible by
providing two capabilities. First, it is able to capture both

prospective and retrospective provenance (following the PROV-

DM model2), that is, it is equipped of a provenance module
that keeps track of the complete description of the work-
flows as well as the full history of the data produced and
consumed during each execution.

Second, and very originally, OpenAlea’s architecture is
based on IPython and makes use of IPython notebooks [19]
to generate executable papers (see Figure 4). More precisely,
OpenAlea workflows can be executed within IPython note-
books, through a web interface. Workflow results (including
2D plots, 3D scene graph, mathematical equations...) can
be displayed within the notebook document and be shared
with other users.

4. DEMONSTRATION

This section describes the main points of our demonstra-
tion.

We consider the workflows depicted in Figure 2 and 3
which implement the use case introduced in Figure 1. More
precisely, the step Stable Heritable Traits of the use case
is implemented by the module entitled Plant Traits in the
workflow of Figure 2. A virtual crop is then designed (output
of the reduce module). The crop growth is simulated and its
performance assessed using a light interception model (im-
plemented by the module Growth & Light). As for the step
Virtual Crop Performance of the use case, it is evaluated by
the amount of intercepted light at flowering time, still com-
puted by the workflow of Figure 2. This workflow is reused
as a composite module entitled virtual experiment in Figure
3, allowing to explore the genotypic variability by modifying
the Plant Traits. Finally, both Genotypic data and Pheno-
typic data are taken into account to simulate Virtual Crop
Performance for a large range of traits.

In our demonstration, we show how users can create or
interact with highly expressive workflows (able to perform
analysis, modeling and simulation tasks), both using the vi-
sual programming environment (Figure 3) and the IPython
notebooks (Figure 4) of OpenAlea.

Reusing or designing a workflow.

OpenAlea offers a visual programming environment where
users are provided with a set of predefined workflows and
libraries of tools to be combined to form new workflows (see
the left part of Figure 3, "Package Panel”). Users can create
new wrapped tools by implementing them in Python. Each
tool and workflow is associated with some documentation
and saved. Ports of actors are typed and widgets can be
associated with data types to allow users interacting with
the data (see the widgets depicted in Figure 3.

*http:/ /www.w3.org/TR/prov-dm/

File Package Manager _DataPo

@ Package | # Category | Q 5¢|*| Workspace0- % | Workspace 1-demo_WeberPenn % | Workspace 2-6 genotype screen %

)

base_size 030

scale 20,00

Plant‘Traits

| genotypic:variabilit... ‘

order 3

~ twosurfaces (3)
ratio_power 080

virtual ex eeriment
I P I

s000000
exprimental design

. * weberpenn (3)

£/ demo_weberpenn
(¥ demo_weberpenn.
(55 test_quskingaspen
tight
v [openalea (23)

B3 color (12)

» [container (1)

leaves [

leaf scale 0,60

o DataPool | Help

map(func, seq) Python shel | Logging

In [5]:

.o PlamArdmz:lun W'"J“"ﬂb'“fy
XX
unlm

mw«xh &Light

Educe
\.s riduering)

wmle

parallgl map

Out |

Figure 3: OpenAlea visual programming environment

(Re)Running a workflow.

To execute a workflow, users have to click on their output
of interest (as OpenAlea is model-driven). For instance in
Figure 2, by clicking on the plot actor, users trigger the exe-
cution of all the actors of the workflow, from top to bottom.

If users click again on any actor of the same workflow, they
can visualize or access to intermediate results. OpenAlea
determines whether or not any calculation has to be redone
(default Lazy mode). If no input or parameter change has
occurred, data is not recomputed. Otherwise, the subwork-
flow impacted by the change is executed again. In Figure
2(a), the is_flowering actor is a non-lazy or eager actor, col-
ored in green. It is always recomputed, even if its input data
has not changed.

Using algebraic operators for simulation.

Algebraic operators are higher-order actors that take func-
tion as argument. In our demonstration, we use three dif-
ferent operators: map, reduce and while. Other types of
algebraic operators in OpenAlea follow the same principle
while users can define their own operators.

The map operator is a higher-order function map :: (a —
B) — [a] — [B]. Its argument are a function f :: o — 8
(first port) and a set of elements of type « (second input
port). The map operator applies f to each element of the set
and returns the set of resulting elements of type .

Similarly, the reduce operator takes a function g of two
variables and a sequence of elements [z;] and returns one
element. while is an iteration operator that takes three
inputs: an initial element tp, a boolean function cond and
function h. It initializes a variable ¢t with ¢y and iteratively
applies the function h on ¢ while cond(t) is true.

In the workflow in Figure 2, the map actor takes a A-
subworkflow f and a sequence of parameters S. The A-
subworkflow f, composed of two actors (Plant Traits and
PlantArchitecture), takes a parameter set that corresponds
to one plant trait (e.g., leaf growth dynamic) and generates
an object that represents a fully parameterised individual
plant model to be simulated. The sequence S is produced

by the actor internal variability, and represents the intra-
genotype (inter-individual) variability of the trait. During
the execution, the map actor produces a sequence of individ-
ual plant models.

The reduce operator concatenates this sequence of plants
into one graph corresponding to the crop canopy. Finally,
the while operator simulates the development of the crop
by iterating a growth function, that takes into account en-
vironmental data (meteo0l.csv), the state and the specific
parameters of each plant and the light intercepted by each
3D organs. The later is computed from the 3D geometry of
the canopy. The simulation stops at the flowering stage.

Last, this workflow is reused as a composite workflow (see
Figure 3) and run on a large set of genotypes to select the
most efficient plant variety in a given environment.

From workflow to executable paper.

Execution of OpenAlea workflows can be embedded into
IPython notebooks (Figure 4), able to produce executable
papers, where users can share, visualize and interact with
input and output produced by each step of an in-silico ex-
periment in a web-based application.

5. CONCLUSION

Faced with the need of coupling data analysis with mod-
eling and simulation, OpenAlea provides a unique solution
able to extend the dataflow model of computation by intro-
ducing higher-order language constructs in a visual program-
ming environment. Introducing first-class functions allows
to design highly expressive workflows in a fully uniform way.
First-class functions are increasingly popular and have also
been introduced in several imperative languages like PHP,
VisualBasic, C# or C++.

As for related work, considering Functional Programming
in the context of scientific workflow systems [2, 20, 11] is not
new and the number of solutions taking this direction has
even increased in the last years. Functional Programming
coupled with workflows is mainly used to reach to kinds of

IP[yl: Notebook

Scientific workflows meet modeling and simulation Last checkpoint: Mar 18 18:39 (autosaved)

File Edit View Insert Cell Kernel Help

B O|x & B 4+ & > B C | coe

j Cell Toolbar: | None j

OpenAlea: Scientific workflows meet modeling and simulation

In [2]: from vpltkdisplay import *
from IPython.display import display
from openalea.plantgl.all import *
from openalea.core import *
import numpy as np

Simulation of the growth of a crop

In [3]: pkname='alinea.adel.tutorials.ssdbm'
node='5- while'
display(Dataflow(pkname, node))

P i
.
3

| 1‘] i
s ﬁ"”f“"‘—/\’l
- R

"
L amu::ﬁﬁ4_§$
e o

I

pris
& “

¥ M8 g8 dBES
8

Figure 4: OpenAlea IPython notebook

goals.

First, Functional Programming is used to represent and
formalize the semantics of workflows and their relationships
with their executions. Interestingly, Kelly et al. [11] have in-
troduced the A-calculus (new) model of computation (MOC).
In this context, authors have actually demonstrated that
side-effect free workflow models can be defined as a sub-
set of Functional Programming. Functional languages have
been used to formalize workflow models in concrete workflow
systems: this is the case in the Ptolemy II [13] system but
also in the Taverna system where the semantics of Taverna’s
workflows have been recently rethought in functional terms
[20].

Another (possibly complementary) aim to achieve when
using Functional Programming is to deal with high-level
data parallel structures. This is the case of the very recent
Cuneiform system [2], which works on the Hi-WAY platform
based on Hadoop YARN.

Like Cuneiform, the aim of the OpenAlea system is to ex-
ploit high-level data parallel structures. However, we want
our system to be directly usable by end-users who are not
computer scientists. Our originality here thus lies in al-
lowing the use of functional programming and higher-order
construct within a visual programming environment, as a
mean to express control-flow constructs.

While OpenAlea is in used since 2007 (160,000 downloads,
1,200 distinct visitors a month, 20 active developers) leading
to several biological findings (e.g., [12]), this paper is the
first to provide an overview of the major capabilities of the
OpenAlea system and the first to introduce the A-dataflow
concept.

This demonstration deals with the study of plant response

to climatic change illustrating the research challenges in ar-
eas of high and increasing interest including big data analysis
and reproducible science.

Acknowledgements

This work has been done in the context of the Computa-
tional Biology Institute (http://www.ibc-montpellier.fr). It
has been partly funded by the ProvRecFlow project.

6. REFERENCES

[1] S. Bowers, B. Ludascher, A. H. Ngu, and T. Critchlow.
Enabling scientific workflow reuse through structured
composition of dataflow and control-flow. In ICDE
Workshops, pages 70-70. IEEE, 2006.

[2] J. Brandt, M. Bux, and U. Leser. A functional
language for large scale scientific data analysis. In
BeyongMR, ICDT/EDBT Workshop, 2015.

[3] V. Curcin and M. Ghanem. Scientific workflow
systems-can one size fit all? In Proc. of Biomedical
Engineering Conference, pages 1-9, 2008.

[4] S. B. Davidson, S. C. Boulakia, A. Eyal, B. Ludéscher,
T. M. McPhillips, S. Bowers, M. K. Anand, and
J. Freire. Provenance in scientific workflow systems.
IEEE Data Eng. Bull., 30(4):44-50, 2007.

[5] J. Dias, G. Guerra, F. Rochinha, A. L. Coutinho,

P. Valduriez, and M. Mattoso. Data-centric iteration
in dynamic workflows. Future Generation Computer
Systems, 2014.

[6] J. Dias, E. Ogasawara, D. De Oliveira, F. Porto,

P. Valduriez, and M. Mattoso. Algebraic dataflows for

[10]

[11]

[12]

big data analysis. In Proc. of IEEE Big Data, pages
150-155, 2013.

E. Elmroth, F. Herndndez, and J. Tordsson. Three
fundamental dimensions of scientific workflow
interoperability: Model of computation, language, and
execution environment. Future Generation Computer
Systems, 26(2):245-256, 2010.

J. Freire, C. Silva, S. Callahan, E. Santos,

C. Scheidegger, and H. Vo. Managing rapidly-evolving
scientific workflows. Proc. of IPAW, pages 10—18, 2006.
J. Goecks, A. Nekrutenko, and J. Taylor. Galaxy: a
comprehensive approach for supporting accessible,
reproducible, and transparent computational research
in the life sciences. Genome Biology, 11(8):R86, 2010.
G. Hammer, M. Cooper, F. Tardieu, S. Welch,

B. Walsh, F. van Eeuwijk, S. Chapman, and

D. Podlich. Models for navigating biological
complexity in breeding improved crop plants. Trends
in plant science, 11(12):587-593, 2006.

P. M. Kelly, P. D. Coddington, and A. L. Wendelborn.
Lambda calculus as a workflow model. Concurrency
and Computation: Practice and Ezperience,
21(16):1999-2017, 2009.

M. Lucas, K. Kenobi, D. Von Wangenheim, U. Vog,
K. Swarup, I. De Smet, D. Van Damme, T. Lawrence,
B. Péret, E. Moscardi, et al. Lateral root
morphogenesis is dependent on the mechanical
properties of the overlaying tissues. Proc. of the Nat.
Academy of Sciences, 110(13):5229-5234, 2013.

B. Ludéscher and I. Altintas. On providing declarative
design and programming constructs for scientific
workflows based on process networks. 2003.

C. D. Messina, D. Podlich, Z. Dong, M. Samples, and
M. Cooper. Yield—trait performance landscapes: from
theory to application in breeding maize for drought
tolerance. Journal of Experimental Botany,
62(3):855-868, 2011.

P. Missier, S. Soiland-Reyes, S. Owen, W. Tan,

A. Nenadic, I. Dunlop, A. Williams, T. Oinn, and

C. Goble. Taverna, reloaded. In M. Gertz, T. Hey, and
B. Ludaescher, editors, Proc. of SSDBM, Heidelberg,
Germany, 2010.

B. Parent and F. Tardieu. Can current crop models be
used in the phenotyping era for predicting the genetic
variability of yield of plants subjected to drought or
high temperature? J. of Experimental Botany,
65(11):6179-6189, 2014.

C. Pradal, S. Dufour-Kowalski, F. Boudon,

C. Fournier, and C. Godin. Openalea: a visual
programming and component-based software platform
for plant modelling. Functional plant biology,
35(10):751-760, 2008.

G. Sandve, A. Nekrutenko, J. Taylor, and E. Hovig.
Ten simple rules for reproducible computational
research. PLoS comp. biology, 9(10):€1003285, 2013.
H. Shen. Interactive notebooks: Sharing the code.
Nature, 515(7525):151-152, 2014.

D. Turi, P. Missier, C. Goble, D. De Roure, and

T. Oinn. Taverna workflows: Syntax and semantics. In
e-Science and Grid Computing, IEEE International
Conference on, pages 441-448. IEEE, 2007.

