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Abstract. Data mining applications place special requirements on clustering algorithms including: the ability
to find clusters embedded in subspaces of high dimensional data, scalability, end-user comprehensibility of the
results, non-presumption of any canonical data distribution, and insensitivity to the order of input records. We
present CLIQUE, a clustering algorithm that satisfies each of these requirements. CLIQUE identifies dense clusters
in subspaces of maximum dimensionality. It generates cluster descriptions in the form of DNF expressions that are
minimized for ease of comprehension. It produces identical results irrespective of the order in which input records
are presented and does not presume any specific mathematical form for data distribution. Through experiments,
we show that CLIQUE efficiently finds accurate clusters in large high dimensional datasets.
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1. Introduction

Clustering is a descriptive task that seeks to identify homogeneous groups of objects
based on the values of their attributes (dimensions) (Jain and Dubes, 1988; Kaufman
and Rousseeuw, 1990). Clustering techniques have been studied extensively in statistics
(Arabie and Hubert, 1996), pattern recognition (Duda and Hart, 1973; Fukunaga, 1990), and
machine learning (Cheeseman and Stutz, 1996; Michalski and Stepp, 1983). Recent work
in the database community includes CLARANS (Ng and Han, 1994), Focused CLARANS
(Ester et al., 1995), BIRCH (Zhang et al., 1996), DBSCAN (Ester et al., 1996) and CURE
(Guha et al., 1998).

∗Work done while the author was at IBM Almaden.
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Current clustering techniques can be broadly classified into two categories (Jain and
Dubes, 1988; Kaufman and Rousseeuw, 1990): partitional and hierarchical. Given a set of
objects and a clustering criterion (Sneath and Sokal, 1973), partitional clustering obtains
a partition of the objects into clusters such that the objects in a cluster are more similar
to each other than to objects in different clusters. The popular K -means and K -medoid
methods determine K cluster representatives and assign each object to the cluster with its
representative closest to the object such that the sum of the distances squared between the
objects and their representatives is minimized. CLARANS (Ng and Han, 1994), Focused
CLARANS (Ester et al., 1995), and BIRCH (Zhang et al., 1996) can be viewed as extensions
of this approach to work against large databases. Mode-seeking clustering methods identify
clusters by searching for regions in the data space in which the object density is large.
DBSCAN (Ester et al., 1996) finds dense regions that are separated by low density regions
and clusters together the objects in the same dense region.

A hierarchical clustering is a nested sequence of partitions. An agglomerative, hierarchi-
cal clustering starts by placing each object in its own cluster and then merges these atomic
clusters into larger and larger clusters until all objects are in a single cluster. Divisive, hierar-
chical clustering reverses the process by starting with all objects in cluster and subdividing
into smaller pieces (Jain and Dubes, 1988). CURE (Guha et al., 1998) is an extension of
this approach that scales well with the size of the dataset.

1.1. Desiderata from the data mining perspective

Emerging data mining applications place the following special requirements on clustering
techniques, motivating the need for developing new algorithms.

Effective treatment of high dimensionality. An object (data record) typically has dozens
of attributes and the domain for each attribute can be large. It is not meaningful to look
for clusters in such a high dimensional space as the average density of points anywhere
in the data space is likely to be quite low (Berchtold et al., 1997). Compounding this
problem, many dimensions or combinations of dimensions can have noise or values that are
uniformly distributed. Therefore, distance functions that use all the dimensions of the data
may be ineffective. Moreover, several clusters may exist in different subspaces comprised
of different combinations of attributes.

Interpretability of results. Data mining applications typically require cluster descriptions
that can be easily assimilated by an end-user as insight and explanations are of critical
importance (Fayyad et al., 1996). It is particularly important to have simple representations
because most visualization techniques do not work well in high dimensional spaces. How-
ever, the description of the clusters should be accurate enough that detail is not lost. This is
a common failing of K-means type techniques: since the distance metric used is typically
the Manhattan or the Euclidian distance, the clusters found can only have near spherical
shape (Guha et al., 1998).
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Scalability and usability. The clustering technique should be fast and scale with the num-
ber of dimensions and the size of input. It should be insensitive to the order in which
the data records are presented. It should not presume some canonical form for the data
distribution.

Current clustering techniques do not address all these points adequately, although con-
siderable work has been done in addressing each point separately.

The problem of high dimensionality is often tackled by requiring the user to specify the
subspace (a subset of the dimensions) for cluster analysis (e.g. (Internationl Business Ma-
chines, 1996)). However, user-identification of subspaces is quite error-prone. Another way
to address high dimensionality is to apply a dimensionality reduction method to the dataset.
Methods such as principal component analysis or Karhunen-Loève transformation (Duda
and Hart, 1973; Fukunaga, 1990) optimally transform the original data space into a lower
dimensional space by forming dimensions that are linear combinations of given attributes.
The new space has the property that distances between points remain approximately the
same as before. While these techniques may succeed in reducing the dimensionality, they
have two shortcomings. First, the new dimensions can be difficult to interpret, making it
hard to understand clusters in relation to the original data space. Second, these techniques
are not effective in identifying clusters that may exist in different subspaces of the original
data space.

Figure 1 gives a 2-dimensional analogue that shows why in general a K -means algorithm
or its variants may fail to find meaningful clusters in high dimensionality spaces. These
algorithms use distance metrics that take all dimensions into account. When the data include
sets of dimensions with uniform distributions or noise, this results in clusters that include
points that are not close to each other, or clusters that are too small. In the figure, the points
are uniformly distributed in the x dimension, but are well clustered on the y dimension. As
a result, they form elongated clusters (2 clusters in the example). If we choose K to be to

Figure 1. K -means minimizes the within-cluster variation:
∑K

i=1
∑mi

j=1 dist2(x (i)
j , mean(i)) where x (i)

j is the j-th
record in the i-th cluster. In this case, because of the uniform distribution in dimension age the clusters found
include points that are far apart (clustering for K = 2 and 4 is shown).
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small (2 in the example) a K -means clustering algorithm combines points from different
clusters into each of the clusters it produces ; if K is too large (4 in the example), a K-means
clustering algorithm partitions each of the data clusters into many small ones. We further
discuss these points in the Appendix and Section 4.

Clustering algorithms developed in the database community like BIRCH, CLARANS,
and DBSCAN are designed to be scalable, an emphasis not present in the earlier work in the
statistics and machine learning literature (Ng and Han, 1994; Zhang et al., 1996). However,
these techniques were developed to discover clusters in the full dimensional space. It is not
surprising therefore that they are not effective in identifying clusters that exist in subspaces
of the original data space. In Section 4, we provide experimental results with BIRCH and
DBSCAN in support of this observation.

1.2. Contributions and layout of the paper

We present an algorithm, henceforth referred to as CLIQUE,1 that satisfies the above desider-
ata. CLIQUE automatically finds subspaces with high-density clusters. It produces identical
results irrespective of the order in which the input records are presented, and it does not
presume any canonical distribution for the input data. It generates cluster descriptions in
the form of DNF expressions and strives to generate minimal descriptions for ease of com-
prehension. Empirical evaluation shows that CLIQUE scales linearly with the number of
input records, and has good scalability as the number of dimensions (attributes) in the data
or the highest dimension in which clusters are embedded is increased.

We begin by formally defining the problem of subspace clustering in Section 2. Section 3,
is the heart of the paper where we present CLIQUE. In Section 4, we present a thorough
performance evaluation of CLIQUE and conclude with a summary in Section 5.

2. Subspace clustering

Before giving a formal description of the problem of subspace clustering, we first give an
intuitive explanation of our clustering model.

We are interested in automatically identifying (in general several) subspaces of a high
dimensional data space that allow “better” clustering of the data points than the original
space. Restricting our search to only subspaces of the original space, instead of using
new dimensions (for example linear combinations of the original dimensions), is important
because this restriction allows a much simpler, comprehensible presentation of the results.
Each of the original dimensions typically has a real meaning to the user, while even a simple
linear combination of many dimensions may be hard to interpret (Fayyad et al., 1996).

We use a density based approach to clustering: a cluster is a region that has a higher
density of points than its surrounding region. The problem is to automatically identify
projections of the input data into a subset of the attributes with the property that these
projections include regions of high density.

To approximate the density of the data points, we partition the data space and find the
number of points that lie inside each cell (unit) of the partitioning. This is accomplished
by partitioning each dimension into the same number of equal length intervals. This means
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that each unit has the same volume, and therefore the number of points inside it can be used
to approximate the density of the unit.

Once the appropriate subspaces are found, the task is to find clusters in the corresponding
projections. The data points are separated according to the valleys of the density function.
The clusters are unions of connected high density units within a subspace. To simplify their
descriptions, we constrain the clusters to be axis-parallel hyper-rectangles.

Each unit in a k-dimensional subspace can be described as a conjunction of inequalities
because it is the intersection of 2k axis-parallel halfspaces defined by k 1-dimensional
intervals. Since each cluster is a union of such cells, it can be described with a DNF
expression. A compact description is obtained by covering a cluster with a minimal number
of maximal, possibly overlapping rectangles and describing the cluster as a union of these
rectangles.

Our notion of subspace clustering is tolerant of missing values in input data. A data point
is considered to belong to a particular subspace if the attribute values in this subspace are
not missing, irrespective of the values of the rest of the attributes. This allows records with
missing values to be used for clustering with more accurate results than replacing missing
values with values taken from a distribution.

2.1. Problem statement

Let A= {A1, A2, . . . , Ad} be a set of bounded, totally ordered domains and S = A1 × A2 ×
· · · × Ad a d-dimensional numerical space. We will refer to A1, . . . , Ad as the dimensions
(attributes) of S.

The input consists of a set of d-dimensional points V = {v1, v2, . . . , vm} where vi =
〈vi1, vi2, . . . , vid〉. The j th component of vi is drawn from domain A j .

We partition the data space S into non-overlapping rectangular units. The units are
obtained by partitioning every dimension into ξ intervals of equal length; ξ is an input
parameter.

Each unit u is the intersection of one interval from each attribute. A unit u has the form
{u1, . . . , ud} where ui = [li , hi ) is a right-open interval in the partitioning of Ai .

We say that a pointv = 〈v1, . . . , vd〉 is contained in a unit u = {u1, . . . , ud} if li ≤ vi < hi

for all ui . The selectivity of a unit is defined to be the fraction of total data points contained
in the unit. We call a unit u dense if selectivity(u) is greater than τ , where the density
threshold τ is another input parameter.

We similarly define units in all subspaces of the original d-dimensional space. Consider
a projection of the data set V into At1 × At2 × · · · × Atk , where k < d and ti < t j if i < j .
A unit in the subspace is the intersection of an interval from each of the k attributes.

A cluster is a maximal set of connected dense units in k-dimensions. Two k-dimensional
units u1, u2 are connected if they have a common face or if there exists another k-dimensional
unit u3 such that u1 is connected to u3 and u2 is connected to u3. Units u1 = {rt1 , . . . , rtk } and
u2 = {r ′

t1 , . . . , r ′
tk } have a common face if there are k − 1 dimensions, assume dimensions

At1 , . . . , Atk−1 , such that rt j = r ′
t j

and either htk = l ′tk or h′
tk = ltk , for j ∈ {1, . . . , k − 1}.

A region in k dimensions is an axis-parallel rectangular k-dimensional set. We are only
interested in those regions that can be expressed as unions of units; henceforth all references
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Figure 2. Illustration of definitions.

to a region mean such unions. A region can be expressed as a DNF expression on intervals
of the domains Ai .

We say that a region R is contained in a cluster C if R ∩ C = R. A region R contained
in a cluster C is said to be maximal if no proper superset of R is contained in C .

A minimal description of a cluster is a non-redundant covering of the cluster with maximal
regions. That is, a minimal description of a cluster C is a set R of maximal regions such
that their union equals C but the union of any proper subset of R does not equal C .

We can now formally define the problem of subspace clustering:

Subspace clustering. Given a set of data points and the input parameters, ξ and τ , find
clusters in all subspaces of the original data space and present a minimal description of each
cluster in the form of a DNF expression.

Examples. In figure 2, the two dimensional space (age, salary) has been partitioned by a
10 × 10 grid. A unit is the intersection of intervals; an example is the unit u = (30 ≤ age <

35) ∧ (1 ≤ salary < 2). A region is a rectangular union of units. A and B are both regions:
A = (30 ≤ age < 50) ∧ (4 ≤ salary < 8) and B = (40 ≤ age < 60) ∧ (2 ≤ salary < 6).
Assuming that the dense units have been shaded, A∪ B is a cluster. Note that A is a maximal
region contained in this cluster, whereas A ∩ B is not a maximal region. The minimal
description for this cluster is the DNF expression: ((30 ≤ age < 50) ∧ (4 ≤ salary < 8))
∨ ((40 ≤ age < 60) ∧ (2 ≤ salary < 6)).

In figure 3, assuming τ = 20%, no 2-dimensional unit is dense and there are no clusters
in the original data space. If the points are projected on the salary dimension however, there
are three 1-dimensional dense units. Two of these are connected, so there are two clusters
in the 1-dimensional salary subspace: C ′ = (5 ≤ salary < 7) and D′ = (2 ≤ salary < 3).
There is no cluster in the age subspace because there is no dense unit in that subspace.

Remarks. Our model can be generalized to allow different values of ξ for different di-
mensions. This will require τ to be scaled to account for the difference in relative volumes
when checking for the density of units in different subspaces.
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Figure 3. Identification of clusters in subspaces (projections) of the original data space.

Our model can also be adapted to handle categorical data. An arbitrary order is introduced
in the categorical domain. The partitioning scheme admits one categorical value in each
interval and also places an empty interval between two different values. Consequently, if this
dimension is chosen for clustering, the clusters will have the same value in this dimension.

Finally, our model for clustering points in a given subspace can be considered nonpara-
metric. The parameters we use, the number of intervals per dimension ξ and the density
threshold τ , are only used to approximate the density of the space. We do not presume spe-
cific mathematical forms for data distribution; instead, data points are separated according
to the valleys of the density function.

Related work. A similar approach to clustering high dimensional data has been proposed
by Shoshani (1997). The technique computes an approximation of the density function in a
user-specified subspace using a grid and then uses this function to cluster the data. On the
other hand, we automatically discover the interesting subspaces, and also generate minimal
descriptions for the clusters.

A different technique to find rectangular clusters of high density in a projection of the
data space has been proposed by Friedman (1997). This algorithm works in a top down
fashion. Starting from the full space, it greedily chooses which projection should be taken
and reevaluates the solution after each step in order to get closer to an optimal solution.

The subspace identification problem is related to the problem of finding quantitative asso-
ciation rules that also identify interesting regions of various attributes (Srikant and Agrawal,
1996; Miller and Yang, 1997). However, the techniques proposed are quite different. One
can also imagine adapting a tree-classifier designed for data mining (e.g. (Mehta et al.,
1996; Shafer et al., 1996)) for subspace clustering. In the tree-growth phase, the splitting
criterion will have to be changed so that some clustering criterion (e.g., average cluster
diameter) is optimized. In the tree-pruning phase, we now minimize the total description
length of the clusters obtained and the data description using these clusters.

Recently, Aggarwal and Yu (1999, 2000) have proposed a different technique for iden-
tifying clusters in subspaces, PROCLUS. Their technique is similar to iterative clustering



12 AGRAWAL ET AL.

techniques (such as the K -means or K -medoids algorithms described above). The technique
iteratively groups the objects into clusters, and eliminates the least relevant dimensions from
each of the clusters. Thus their clustering model is not density based as is the one proposed
here, and the clustering results can differ. We note that since PROCLUS optimises a cri-
terion similar to the K -means algorithm, it can find only more-or-less spherically shaped
clusters. Both the number of clusters and the average number of dimensions per cluster
are user-defined parameters. ORCLUS (Aggarwal and Yu, 2000) modifies the PROCLUS
algorithm by adding a merging process of clusters, and selecting for each cluster principal
components instead of attributes.

LAC (Domeniconi et al., 2004) is a recently proposed algorithm that discovers clusters in
subspaces spanned by different combinations of dimensions via local weightings of features.
This approach mitigates the risk of loss of information encountered in feature selection or
global dimensionality reduction techniques.

Recently (Procopiuc et al., 2002), another density-based projective clustering algorithm
(DOC/FastDOC) has been proposed. This approach requires the maximum distance between
attribute values (i.e. maximum width of the bounding hypercubes) as parameter in input, and
pursues an optimality criterion defined in terms of density of each cluster in its corresponding
subspace. A Monte Carlo procedure is then developed to approximate with high probability
an optimal projective cluster. In practice it may be difficult to set the parameters of DOC,
as each relevant attribute can have a different local variance.

3. Algorithms

Our clustering technique, CLIQUE, consists of the following steps:

1. Identification of subspaces that contain clusters.
2. Identification of clusters.
3. Generation of minimal description for the clusters.

We discuss algorithms for each of these steps in this section.

3.1. Identification of subspaces that contain clusters

The difficulty in identifying subspaces that contain clusters lies in finding dense units in
different subspaces.

3.1.1. A bottom-up algorithm for finding dense units. The simplest way to identify dense
units would be to create a histogram in all subspaces and count the points contained in each
unit. This approach is infeasible for high dimensional data. We use a bottom-up algorithm
that exploits the monotonicity of the clustering criterion with respect to dimensionality
to prune the search space. This algorithm is similar to the Apriori algorithm for mining
Association rules (Aggarwal et al., 1996). A somewhat similar bottom-up scheme was
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also used in Chhikara and Register (1979) for determining modes in high dimensional
histograms.

Lemma 1 (Monotonicity). If a collection of points S is a cluster in a k-dimensional space,
then S is also part of a cluster in any (k−1)-dimensional projections of this space.

Proof: A k-dimensional cluster C includes the points that fall inside a union of k-
dimensional dense units. Since the units are dense, the selectivity of each one is at least τ .
All the projections of any unit u in C have at least as large selectivity, because they include
all points inside u, and therefore are also dense. Since the units of the cluster are connected,
their projections are also connected. It follows that the projections of the points in C lie in
the same cluster in any (k−1)-dimensional projection.

Algorithm The algorithm proceeds level-by-level. It first determines 1-dimensional dense
units by making a pass over the data. Having determined (k−1)-dimensional dense units,
the candidate k-dimensional units are determined using the candidate generation procedure
given below. A pass over the data is made to find those candidate units that are dense. The
algorithm terminates when no more candidates are generated.

The candidate generation procedure takes as an argument Dk−1, the set of all (k −1)-
dimensional dense units. It returns a superset of the set of all k-dimensional dense units.
Assume that the relation < represents lexicographic ordering on attributes. First, we self-join
Dk−1, the join condition being that units share the first k−2 dimensions. In the pseudo-code
given below for this join operation, u.ai represents the i th dimension of unit u and u.[li , hi )
represents its interval in the i th dimension.

insert into Ck

select u1.[l1, h1), u1.[l2, h2), . . . ,
u1.[lk−1, hk−1), u2.[lk−1, hk−1)

from Dk−1 u1, Dk−1 u2

where u1.a1 = u2.a1, u1.l1 = u2.l1, u1.h1 = u2.h1,
u1.a2 = u2.a2, u1.l2 = u2.l2, u1.h2 = u2.h2, . . . ,

u1.ak−2 = u2.ak−2, u1.lk−2 = u2.lk−2, u1.hk−2 = u2.hk−2,
u1.ak−1 < u2.ak−1

We then discard those dense units from Ck which have a projection in (k−1)-dimensions
that is not included in Ck−1 (Figure 4). The correctness of this procedure follows from the
property that for any k-dimensional dense unit, its projections in any of k−1 dimensions
must also be dense (Lemma 1).

Scalability. The only phase of CLIQUE in which database records are accessed is the
dense unit generation. During the generation of Ck , we need storage for dense units Dk−1

and the candidate units Ck . While making a pass over the data, we need storage for Ck

and at least one page to buffer the database records. Thus, the algorithm can work with
databases of any size. However, memory needs to be managed carefully as the candidates
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Figure 4. The candidate 2-dimensional dense units are computed from the 1-dimensional dense units. The
selectivity of each candidate is computed in one database pass (the dense ones are shown filled in the figure).

may swamp the available buffer. This situation is handled by employing a scheme used by
Aggarwal et al. (1996). As many candidate units of Ck are generated as will fit in the buffer,
and the database is scanned to determine the selectivity of these candidates. Dense units
resulting from these candidates are written to disk, while non-dense candidates are deleted.
This procedure is repeated until all of Ck has been examined.

Time complexity. If a dense unit exists in k dimensions, then all of its projections in a subset
of the k dimensions that is, O(2k) different combinations, are also dense. The running time
of our algorithm is therefore exponential in the highest dimensionality of any dense unit. As
in Aggarwal et al. (1996), and Gunopulos et al. (1997), it can be shown that the candidate
generation procedure produces the minimal number of candidates that can guarantee that
all dense units will be found.

Let k be the highest dimensionality of any dense unit and m the number of the input
points. The algorithm makes k passes over the database. It follows that the running time of
our algorithm is O(ck + m k) for a constant c.

The number of database passes can be reduced by adapting ideas from Toivonen (1996)
or Brin et al. (1997).

3.1.2. Making the bottom-up algorithm faster. While the procedure just described dra-
matically reduces the number of units that are tested for being dense, we still may have a
computationally infeasible task at hand for high dimensional data. As the dimensionality
of the subspaces considered increases, there is an explosion in the number of dense units,
and so we need to prune the pool of candidates. The pruned set of dense units is then used
to form the candidate units in the next level of the dense unit generation algorithm. The
objective is to use only the dense units that lie in “interesting” subspaces.
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MDL-based pruning. To decide which subspaces (and the corresponding dense units) are
interesting, we apply the MDL (Minimal Description Length) principle. The basic idea
underlying the MDL principle is to encode the input data under a given model and select
the encoding that minimizes the code length (Rissanen, 1989).

Assume we have the subspaces S1, S2, . . . , Sn . Our pruning technique first groups to-
gether the dense units that lie in the same subspace. Then, for each subspace, it computes
the fraction of the database that is covered by the dense units in it: xSj = ∑

ui ∈Sj
count(ui )

where count(ui ) is the number of points that fall inside ui . The number xSj will be referred
to as the coverage of subspace Sj .

Subspaces with large coverage are selected and the rest are pruned. The rationale is that
if a cluster exists in k dimensions, then for every subspace of these k dimensions there exist
dense units in this subspace (the projections of the dense units that cover the cluster in the
original k dimensions) that cover at least the points in the cluster.

We sort the subspaces in the descending order of their coverage. We want to divide
the sorted list of subspaces into two sets: the selected set I and the pruned set P . The
following model is used to arrive at the cut point (see figure 5 for an illustration). For
each set, we compute the mean of the cover fractions, and for each subspace in that set we
compute the difference from the mean. The code length is the sum of the bit lengths of the
numbers we have to store. If we decide to prune subspaces Si+1, . . . Sn , the two averages are
µI (i) = �(

∑
1≤ j≤i xS j )/ i� and µP (i) = �(

∑
i+1≤ j≤n xSj )/(n − i)�. Since both µI (i) and

µP (i) are integers, the number of bits required to store them is log2(µI (i)), and log2(µP (i))
respectively. For each subspace we have to store its difference from µI (i) or µP (i), which
is another integer. The total length of the encoding is:

C L(i) = log2(µI (i)) +
∑

1≤ j≤i

log2(|xSj − µI (i)|)

+ log2(µP (i)) +
∑

i+1≤ j≤n

log2(|xSj − µP (i)|)

This code length is minimized to determine the optimal cut point i .

Figure 5. Partitioning of the subspaces into selected and prune sets.
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Time complexity. The optimal cut will be one of the n − 1 positions along the sorted
sequence, so there are only n − 1 sets of pruned subspaces to consider. After sorting,
the optimal cut can be computed in two passes of the sorted sequence: In the first pass, we
compute µI (i), µP (i) for 1 < i < n. These averages are used in the second pass to compute
C L(i) for 1 < i < n.

Remark. The pruning of dense units in the subspaces with low coverage makes our algo-
rithm faster, but there is a tradeoff because we may now miss some clusters. If a cluster
exists in k dimensions, then all of its projections in a subset of the k dimensions are also
clusters. In our bottom-up approach, all of them have to considered if we want to find the
cluster in k dimensions, but some of them may be in one of the pruned subspaces.

3.2. Finding clusters

The input to the next step of CLIQUE is a set of dense units D, all in the same k-dimensional
subspace S. The output will be a partition of D into D1, . . . , Dq , such that all units in Di

are connected and no two units ui ∈ Di , u j ∈ D j with i 
= j are connected. Each such
partition is a cluster according to our definition.

The problem is equivalent to finding connected components in a graph defined as follows:
Graph vertices correspond to dense units, and there is an edge between two vertices if and
only if the corresponding dense units have a common face.

Units corresponding to vertices in the same connected component of the graph are con-
nected because there is a path of units that have a common face between them, therefore
they are in the same cluster. On the other hand, units corresponding to vertices in different
components cannot be connected, and therefore cannot be in the same cluster.

We use a depth-first search algorithm (Aho et al., 1974) to find the connected components
of the graph. We start with some unit u in D, assign it the first cluster number, and find all
the units it is connected to. Then, if there still are units in D that have not yet been visited,
we find one and repeat the procedure. The algorithm is given below:

input: starting unit u = {[l1, h1), . . . , [lk, hk)}
clusternumber n

dfs(u, n)
u.num = n
for ( j = 1; j < k; j++) do begin

// examine the left neighbor of u in dimension a j

ul = {[l1, h1), . . . , [(ll
j ), (hl

j )), . . . , [lk, hk)}
if (ul is dense) and (ul .num is undefined)

dfs(ul , n)
// examine the right neighbor of u in dimension a j

ur = {[l1, h1), . . . , [(lr
j ), (hr

j )), . . . , [lk, hk)}
if (ur is dense) and (ur .num is undefined)

dfs(ur , n)
end
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Time complexity. The number of dense units for a given subspace cannot be very large,
because each dense unit must have selectivity at least τ . We assume therefore that the dense
units in this and subsequent steps of CLIQUE can be stored in memory.

We give asymptotic running times in terms of dense unit accesses; the dense units are
stored in a main memory data structure (hash tree (Aggarwal et al., 1996)) that allows
efficient querying.

For each dense unit visited, the algorithm checks its 2k neighbors to find connected units.
If the total number of dense units in the subspace is n, the total number of data structure
accesses is 2kn.

3.3. Generating minimal cluster descriptions

The input to this step consists of disjoint sets of connected k-dimensional units in the same
subspace. Each such set is a cluster and the goal is to generate a concise description for
it. To generate a minimal description of each cluster, we would want to cover all the units
comprising the cluster with the minimum number of regions such that all regions contain
only connected units. For a cluster C in a k-dimensional subspace S, a set R of regions in
the same subspace S is a cover of C if every region R ∈ R is contained in C , and each unit
in C is contained in at least one of the regions in R. The optimal cover is the cover with the
minimal number of rectangles.

Computing the optimal cover is known to be NP-hard, even in the 2-dimensional case
(Masek, 1978; Reckhow and Culberson, 1987). The best approximate algorithm known for
the special case of finding a cover of a 2-dimensional rectilinear polygon with no holes
produces a cover of size bounded by a factor of 2 times the optimal (Franzblau, 1989).
Since this algorithm only works for the 2-dimensional case, it cannot be used in our setting.
For the general set cover problem, the best known algorithm for approximating the smallest
set cover gives an approximation factor of ln n where n is the size of the universe being
covered (Feige, 1996; Lund and Yannakakis, 1993).

This problem is similar to the problem of constructive solid geometry formulae in solid-
modeling (Zhang and Bowyer, 1986). It is also related to the problem of covering marked
boxes in a grid with rectangles in logic minimization (e.g. (Hong, 1987)). Some clustering
algorithms in image analysis (e.g. (Berger and Regoutsos, 1991; Schroeter and Bigun,
1995; Wharton, 1983)) also find rectangular dense regions. In these domains, datasets are
in low dimensional spaces, and the techniques used are computationally too expensive for
large datasets of high dimensionality.

Our solution to the problem consists of two steps. We first greedily cover the cluster
by a number of maximal rectangles (regions), and then discard the redundant rectangles
to generate a minimal cover. We only have to consider maximal regions for the cover of
a cluster; for any cover R with c regions, we can find another cover R′ with c maximal
regions, simply by extending each of the non-maximal regions in C .

3.3.1. Covering with maximal regions. The input to this step is a set C of connected dense
units in the same k-dimensional space S. The output will be a set R of maximal regions
such that R is a cover of C . We present a greedy growth algorithm for this task.
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Figure 6. Illustration of the greedy growth algorithm.

Greedy growth. We begin with an arbitrary dense unit u1 ∈ C and greedily grow (as
described below) a maximal region R1 that covers u1. We add R1 to R. Then we find
another unit u2 ∈ C that is not yet covered by any of the maximal regions in R. We greedily
grow a maximal region R2 that covers u2. We repeat this procedure until all units in C are
covered by some maximal region in R.

To obtain a maximal region covering a dense unit u, we start with u and grow it along
dimension a1, both to the left and to the right of the unit. We grow u as much as possible
in both directions, using connected dense units contained in C . The result is a rectangular
region. We now grow this region along dimension a2, both to the left and to the right of
the region. We again use only connected dense units from C , obtaining a possibly bigger
rectangular region. This procedure is repeated for all the dimensions, yielding a maximal
region covering u. The order in which dimensions are considered for growing a dense unit
is randomly determined.

Figure 6 illustrates how the algorithm works. Here the dense units appear shaded. Starting
from the dense unit u, first we grow along the horizontal dimension, finding rectangle A
consisting of four dense units. Then A is extended in the vertical dimension. When it cannot
be extended further, a maximal rectangle is obtained, in this case B. The next step is to find
another maximal region starting from a dense unit not covered by B, for example w.

Time complexity. First we show that for each maximal region R, the greedy growth al-
gorithm must perform O(|R|) dense unit accesses, where |R| is the number of dense units
contained in R.

Let S be the subspace that R lies in, k the number of dimensions of S, and n the number of
dense units in S. The greedy growth algorithm must access each unit that a region R covers
to ascertain that R is indeed part of a cluster. In addition, it must access every neighbor
unit of R to ascertain that R is also maximal. The number of neighbor units is bounded by
2k|R|, where |R| is the number of dense units contained in R.

Since every new maximal region covers at least one thus far uncovered dense unit, the
greedy growth algorithm will find at most O(n) new regions. Every new region requires
O(|R|) = O(n) dense unit accesses, so the greedy growth algorithm performs a total of
O(n2) dense unit accesses.
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Figure 7. The worst case for the greedy growth algorithm (2-dimensional case): Assume n dense units and n1/2

upper corners. A minimal cover must include at least one rectangle per upper corner. Since each rectangle is
maximal, it must reach the lower staircase as well. This means that the circumference of the rectangle is 2n1/2 +2,
and therefore its area is at least n1/2. The sum of the sizes of the rectangles is then O(n2(2−1)/2).

This bound is almost tight. Let S contain only one cluster (with n dense units), which is
bounded by two parallel hyperplanes and a cylinder which is parallel to only one dimension.
Since the hyperplanes are not parallel to any of the k dimensions, the boundary of the cluster
that touches the hyperplanes consists of O(n(k−1)/k) convex vertices, each of which must be
covered by a maximal region. The size of each region is also O(n(k−1)/k) since each region
has to reach the other hyperplane. In this case the greedy growth algorithm must perform
O(n2(k−1)/k) dense unit accesses. Figure 7 shows the 2-dimensional analog for this case.

Similarly we show that there can be up to O(n2(k−1)/k) maximal regions: we can pair
every corner on one hyperplane with every corner on the other, and produce a new maximal
region for each pair. The greedy growth algorithm will find O(n) of these.

3.3.2. Minimal cover. The last step of CLIQUE takes as input a cover for each cluster and
finds a minimal cover. Minimality is defined in terms of the number of maximal regions
(rectangles) required to cover the cluster.

Computing the optimal cover in this case is known to be NP-hard, even in the 2-
dimensional case (Masek, 1978; Reckhow and Culberson, 1987). The best approximation
algorithm known, gives a factor of 2 for the special case of finding a cover of a 2-dimensional
rectilinear polygon with no holes (Franzblau, 1989). If however the polygon has holes, this
algorithm only approximates the cover by a factor of log θ (where θ is the size of the optimal
cover (Franzblau, 1989)). A similar bound can be derived for the approximation algorithm
given by Bronniman and Goodrich (1994). This algorithm assumes that the space we are
covering has finite VC-dimension, as is the case here. Note that asymptotically this bound
can be as bad as the bound given for the general set cover problem. Computational geometry
literature also contains algorithms for covering points with minimum number of rectangles
(Franzblau and Kleitman, 1984; Reckhow and Culberson, 1987; Soltan and Gorpinevich,
1992), but they only work for two or three-dimensional datasets. We propose the following
greedy heuristic:

Removal heuristic. Remove from the cover the smallest (in number of units) maximal
region which is redundant (i.e., every unit is also contained in some other maximal region).
Break ties arbitrarily. Repeat the procedure until no maximal region can be removed.2
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Figure 8. An optimal covering consists of 3 regions, each of size 2 × 1 × 1.

Time complexity. The removal heuristic is easy to implement and efficient in execution. It
needs a simple scan of the sorted list of regions. The cost of sorting the regions is O(n log n)
because the number of dense units n is an upper bound on the number of regions. The scan
requires |Ri | dense unit accesses for each region Ri . The total number of accesses for all
regions is then

∑ |Ri | = O(n2).
Unfortunately, we can prove the following lemma for the worst-case behavior of the

removal heuristic:

Lemma 2. In d dimensions, the removal heuristic may construct a cover that is bigger
than the minimum by a factor of d − 1.

Consider, for instance, a 2×2×2 cube, in which 2 opposite corner sub-cubes have been
removed. This cluster can be covered by 3 maximal regions (2 solutions), but the removal
heuristic may use 4 regions if, for example, the two vertical 1×1×2 size maximal regions
are removed first (see Figure 8.)

The above lower bound suggests that the approximation ratio can, in the worst case,
deteriorate with the number of dimensions. However, it is also clear from the lower bound
construction that the intricate structure therein is unlikely to arise in practice.

Stochastic analysis. We now present a stochastic analysis suggesting that the removal
heuristic will do well when each unit is independently dense with probability p. This model
is quite general: if the number of data points in each unit is a random variable drawn
independently from the same (but otherwise arbitrary) distribution as all other units, and
we specify any threshold τ from the domain of these random variables, then each unit is
independently dense with some probability p depending on the underlying distribution and
τ .

In our application, since a dense unit has high selectivity, p is likely to be small. We
show now that provided p is small enough, we obtain a good approximation ratio. Before
we prove the theorem, we show the following lemma:

Lemma 3. If p < 1/8d, there is a constant a > 1 (depending only on ε = 1/8d − p)
such that the probability that a cluster has size i is at most a−i .
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Proof: We assume that the dense units in the same subspace are lexicographically ordered.
This can be done by ordering the dimensions and, for each dimension, ordering the intervals
from least to most significant.

A cluster of i consists of i connected dense units. Since the units are independently dense,
the probability of i given units being dense together is pi = (1/8d − ε)i .

We now have to bound the number of different shapes that i connected units can take.
There are O(4i ) different trees on i vertices (up to isomorphism) (Lovász, 1975). Let us

fix such a tree T . We can label the nodes of the tree 1, . . . , i so that each j > 1 is adjacent
to some i < j . Given a unit t as a root, we can grow a set of i connected units from t using
the tree T and the labeling we created. We traverse T according to the labeling. Each of
the units of the connected set corresponds to a node in T . The j-th unit is added to the
connected set when the j-th node is encountered. The j-th unit must be connected to the
unit that corresponds to the parent of the j-th node. Since there are at most 2d different
units that are connected to a given unit, it follows that at each step there are at most 2d
different ways to grow the tree. Consequently we can create O((2d)i ) different sets of size
i that contain a given unit u, given one tree with i nodes. There are O(4i ) such trees, so the
total number of connected sets, and therefore potential clusters, is O((8d)i ).

Let’s assume there is a cluster c with i connected units that includes a unit u. Since c
is connected, there exists a depth-first-search tree that spans c and is rooted at u. By our
assumption that there is a lexicographical ordering of the units, this tree is unique.

So our process counts all potential clusters that have size i and contain unit t . Since the
probability that a given connected set of i units is actually a cluster is (1/8d − ε)i and
since there are O((8d)i ) of them that include a unit u, it follows that the expected number of
clusters of size i that include u is (1/(1−8dε))−i , and the expected number of clusters of size
i is n(1/(1−8dε))−i . The expected number of clusters is then

∑
i n(1/(1−8dε))−i = O(n).

It follows that the probability of a given cluster having size i is O(1/(1−8dε))−i ) < α−i

for some α > 1.

Theorem 1. Let p = 1/8d − ε, for any fixed ε > 0. If each unit is independently dense
with probability at most p, then the expected size of the cover we obtain is within a constant
factor of the optimal cover.

Proof: Let c be the number of units in a cluster; our algorithm will use at most c maximal
rectangles to cover it. To complete the proof, we bound the expected number of maximal
rectangles used to cover a given cluster by

∑
i ia−i , and the total number of maximal

rectangles used to

∑

clusters

∑

i

ia−i

Let n be the number of clusters found. Since there exists a constant θ , depending only on
a, such that

∑
i ia−i ≤ θ , we have that

∑

clusters

∑

i

ia−i ≤ θ n
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It follows that the expected size of the cluster covers we find is within a constant factor of
the total number of clusters, and thus the size of the optimal cover.

4. Performance experiments

We now empirically evaluate CLIQUE using synthetic as well as real datasets. The goals
of the experiments are to assess the efficiency and accuracy of CLIQUE:

• Efficiency: Determine how the running time scales with:

– Dimensionality of the data space.
– Dimensionality of clusters.
– Size of database.

• Accuracy: Test if CLIQUE recovers known clusters in some subspaces of a high dimen-
sional data space.

The experiments were run on a 133-MHz IBM RS/6000 Model 43P workstation. The
data resided in the AIX file system and was stored on a 2GB SCSI drive with sequential
throughput of about 2 MB/second.

4.1. Synthetic data generation

We use the synthetic data generator from Zait and Messatfa (1997) to produce datasets with
clusters of high density in specific subspaces. The data generator allows control over the
structure and the size of datasets through parameters such as the number of records, the
number of attributes, and the range of values for each attribute. We assume a bounded data
space (n-dimensional cube) that data points live in. The range of values was set to [0, 100]
for all attributes. The data space is partitioned into a multidimensional grid generated by
dividing each dimension into 100 partitions of equal length. Each box of this grid forms a
unit.

The clusters are hyper-rectangles in a subset of dimensions such that the average density
of data points inside the hyper-rectangle is much larger than the average density in the
subspace. The faces of such a cluster are parallel to the axis, therefore another way to
describe the cluster is as the intersection of a set of attribute ranges.

The cluster descriptions are provided by the user. A description specifies the subspace of
each hyper-rectangle and the range for each attribute in the subspace. The attribute values
for a data point assigned to a cluster are generated as follows. For those attributes that define
the subspace in which the cluster is embedded, the value is drawn independently at random
from the uniform distribution within the range of the hyper-rectangle. For the remaining
attributes, the value is drawn independently at random from the uniform distribution over
the entire range of the attribute. After distributing the specified number of points equally
among the specified clusters, an additional 10% points are added as random noise. Values
for all the attributes of these points are drawn independently at random from the uniform
distribution over the entire range of the attribute.
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4.2. Synthetic data results

We first present scalability and accuracy results observed using synthetic data. The experi-
ments were run with ξ = 10. All times are in seconds.

Database size. Figure 9 shows the scalability as the size of the database is increased from
100,000 to 500,000 records. The data space had 50 dimensions and there were 5 clusters,
each in a different 5-dimensional subspace, and τ was set to 0.5%. As expected, the running
time scales linearly with the size of the database because the number of passes through the
database does not change.

Dimensionality of the data space. Figure 10 shows the scalability as the dimensionality
of the data space is increased from 10 to 100. The database had 100,000 records and there
where 5 clusters, each in a different 5-dimensional subspace, and τ was set to 0.5%. The
curve exhibits quadratic behavior. We note that the problem of searching for interesting
subspaces inherently does not scale well as the dimensionality of the data space increases.
In this case, we are searching for clusters in 5 dimensions. The number of 5-dimensional

Figure 9. Scalability with the number of data records.

Figure 10. Scalability with the dimensionality of the data space.



24 AGRAWAL ET AL.

Figure 11. Number of subspaces pruned.

Figure 12. Scalability with the dimensionality of the hidden cluster.

subspaces of a d-dimensional space is O(d5). The algorithm performs better than the worst
case because many of these dimensions are pruned during the dense unit generation phase.

Figure 11 shows the percentage of subspaces pruned by MDL during an algorithm run.
The input was a synthetic dataset with 50 dimensions, with 5 hidden 5-dimensional clusters,
and τ was set to 0.5%. In this case, 86% of the 2-dimensional subspaces and 38% of the
3-dimensional subspaces were pruned. The result of the pruning is a much faster algorithm,
though there is now a risk of missing some clusters.

Dimensionality of hidden clusters. Figure 12 shows the scalability as the highest dimen-
sionality of the hidden clusters is increased from 3 to 10 in a 50-dimensional space. In
each case, one cluster was embedded in the relevant subspace of highest dimensionality.
The database had 100,000 records and τ was set at 1% for 3-dimensional clusters, 0.5% for
4-dimensional to 7-dimensional clusters and and 0.1% for 8-dimensional to 10-dimensional
clusters. We selected a lower τ for the highest dimensional clusters because, as the volume
of the clusters increases, the cluster density decreases. For lower dimensions however we
can increase τ , and since this does not increase the number of dense units the algorithm runs
at least as fast. The increase in running time reflects the time complexity of our algorithm,
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which is O(mk + ck) where m is the number of records, c a constant, and k the maximum
dimensionality of the hidden clusters.

Accuracy. In all the above experiments, the original clusters were recovered by the algo-
rithm. In some cases, a few extra clusters were reported, typically comprising a single dense
unit with very low selectivity. This artifact is a byproduct of the data generation algorithm
and the fact that τ was set low. As a result, some units had enough noise points to become
dense.

4.3. Comparisons with BIRCH, DBSCAN and SVD

We ran CLIQUE, BIRCH, and DBSCAN with the same synthetic datasets.3 The purpose
of these experiments was to assess if algorithms such as BIRCH or DBSCAN designed for
clustering in the full dimensional space can also be used for subspace clustering. For the
task of finding clusters in the full dimensional space, which was the design goal of these
algorithms, CLIQUE has no advantage.

We used clusters embedded in 5-dimensional subspaces while varying the dimensionality
of the space from 5 to 50. For reference, CLIQUE was able to recover all clusters in every
case.

BIRCH. We provided the correct number of clusters (5) as input to the postprocessing
clustering algorithm built on top of BIRCH. The output consists of cluster centers in the
full dimensional space. The input datasets had 100,000 points. The input clusters were
hyper-rectangles in 5-dimensional subspaces, with the values of the remaining attributes
uniformly distributed. This is equivalent to a hyper-rectangle in the full data space where
remaining attributes include the whole range. Therefore BIRCH successfully recovers a
cluster if it reports a center approximately at the center of the equivalent hyper-rectangle
in the full data space, and the number of points in the reported cluster is approximately
correct.

The results summarized in Table 1 show that BIRCH can discover 5-dimensional clusters
embedded in a 10-dimensional data space, but fails to do so when the dimensionality of the

Table 1. BIRCH experimental results.

Dim. of Dim. of No. of Clusters True clusters
data clusters clusters found identified

5 5 5 5 5

10 5 5 5 5

20 5 5 3, 4, 5 0

30 5 5 3, 4 0

40 5 5 3, 4 0

50 5 5 3 0
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Table 2. DBSCAN experimental results.

Dim. of Dim. of No. of Clusters True clusters
data clusters clusters found identified

5 5 5 5 5

7 5 5 5 5

8 5 5 3 1

10 5 5 1 0

data space increases. This is expected because BIRCH uses a distance function that takes
all dimensions into account. When the number of dimensions with uniform distribution
increases, the distance function fails to distinguish the clusters.

As dimensionality of the data space increases, BIRCH does not always return 5 clusters
even though 5 is given as an input parameter. For different randomly generated datasets, it
returns 3, 4 or 5 clusters. The final column gives the number of correct embedded clusters
that BIRCH identified.

DBSCAN. DBSCAN discovers the number of clusters on its own, so we did not have to
give the number of clusters as input. DBSCAN could not be run with data having more than
10 dimensions. The input datasets had 10,000 points. As in the BIRCH experiments, the
clusters were in 5-dimensional subspaces. We ran DBSCAN with different input values of
ε; we report the best results in Table 2.

DBSCAN could not discover 5-dimensional clusters in a 10-dimensional data space; it
could do so when the dimensionality of the space was reduced to 7. Even in a 8-dimensional
data space, it could recover only one of the 5-dimensional embedded clusters. DBSCAN
uses a density based cluster definition, and even a small number of dimensions with uniform
distribution can lower the density in the space enough so that no clusters are found.

SVD. We also did Singular Value Decomposition (SVD) (Duda and Hart, 1973; Fukunaga,
1990) on the synthetic datasets to find if the dimensionality of the space can be reduced or
if the subspaces that contain dense units can be deduced from the projections into the new
space.

In Table 3, rk gives the ratio of the sum of the k largest eigenvalues to the sum of all
eigenvalues. Let λ1, . . . , λd be the eigenvalues found, sorted in decreasing order. Then rk

= ∑k
i=1 λi/

∑d
i=1 λi . The quantity rk indicates how much variance is retained in the new

space that is defined by the k eigenvectors corresponding to the k largest eigenvalues. In
our experiments the variation of the original space is such that the smallest eigenvalue is
almost as large as the largest, and so we cannot achieve any dimensionality reduction. In
addition, the new projections are linear combinations of all the original vectors and cannot
be used to identify the subspaces that contain clusters.
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Table 3. SVD decomposition experimental results.

Dim. of Dim. of No. of
data (d) clusters clusters rd/2 r(d−5) r(d−1)

10 5 5 0.647 0.647 0.937

20 5 5 0.606 0.827 0.969

30 5 5 0.563 0.858 0.972

40 5 5 0.557 0.897 0.981

50 5 5 0.552 0.919 0.984

Table 4. Real data experimental results.

Dim. of Dim. of No. of
Dataset data clusters clusters

Insur1 9 7 2

Insur2 7 4 5

Store 24 10 4

Bank 52 9 1

4.4. Real data results

We ran CLIQUE against two datasets obtained from the insurance industry (Insur1, Insur2),
another from a department store (Store), and the last from a bank (Bank).
Table 4 summarizes the results of this experiment. Each run used a selectivity thresh-
old of 1%, and every dimension was divided into 10 intervals of equal length. We show
in the table the dimensionality of the original data space, the highest dimensionality of the
subspace in which clusters were found, and the number of such clusters for each of the
datasets. In all cases, we discovered meaningful clusters embedded in lower dimensional
subspaces.

5. Conclusions

We introduced the problem of automatic subspace clustering, motivated by the needs of
emerging data mining applications. The solution we propose, CLIQUE, has been designed
to find clusters embedded in subspaces of high dimensional data without requiring the
user to guess subspaces that might have interesting clusters. CLIQUE generates cluster
descriptions in the form of DNF expressions that are minimized for ease of comprehen-
sion. It is insensitive to the order of input records and does not presume some canon-
ical data distribution. In designing CLIQUE, we combined developments from several
fields including data mining, stochastic complexity, pattern recognition, and computational
geometry.
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Empirical evaluation shows that CLIQUE scales linearly with the size of input and
has good scalability as the number of dimensions in the data or the highest dimension
in which clusters are embedded is increased. CLIQUE was able to accurately discover
clusters embedded in lower dimensional subspaces, although there were no clusters in
the original data space. Having demonstrated the computational feasibility of automatic
subspace clustering, we believe it should be considered a basic data mining operation along
with other operations such as associations and sequential-patterns discovery, time-series
clustering, and classification (Internationl Business Machines, 1996).

Automatic subspace clustering can be useful in other applications besides data mining.
To index OLAP data, for instance, the data space is first partitioned into dense and sparse
regions (Earle, 1994). Data in dense regions is stored in an array whereas a tree structure
is used to store sparse regions. Currently, users are required to specify dense and sparse
dimensions (Arbor Software Corporation, ). Similarly, the precomputation techniques for
range queries over OLAP data cubes (Ho et al., 1997) require identification of dense regions
in sparse data cubes. CLIQUE can be used for this purpose.

In future work, we plan to address the problem of evaluating the quality of clusterings in
different subspaces. One approach is to choose clusters that maximize the ratio of cluster
density over expected density for clusterings with the same dimensionality. We also plan to
investigate what system support can be provided to the user for selecting the model parame-
ters, τ and ξ . Another area for future work is to try an alternative approach for finding dense
units. If the user is only interested in clusters in the subspaces of highest dimensionality, we
can use techniques based on recently proposed algorithms for discovering maximal itemsets
(Bayardo, 1998; Lin and Kedem, 1998). These techniques will allow CLIQUE to find dense
units of high dimensionality without having to find all of their projections.

Appendix: Dimensionality reduction

The principal component analysis or Karhunen-Loève (KL) transformation is the optimal
way to project n-dimensional points to k-dimensional points such that the error of the
projections (the sum of the squared distances) is minimal (Duda and Hart, 1973; Fukunaga,
1990). This transformation gives a new set of orthogonal axes, each a linear combination
of the original ones, sorted by the degree by which they preserve the distances of the points
in the original space.

For a given set of m points in d dimensions, finding the set of axes in the KL transformation
is equivalent to solving the Singular Value Decomposition problem in an m × d matrix N ,
each row of which represents a data point. The SVD of the matrix N is the decomposition
into N = U ×�×V t , where U is an m×r matrix, � a diagonal r ×r matrix and V a column
orthonormal d ×r matrix. The matrix V represents the axes of the KL-decomposition (they
are also the eigenvectors of the matrix N ×N t ), ordered by the respective values in the matrix
�. Note that r ≤ d , so the new space has potentially lower dimensionality. In addition, for
each small entry in the matrix �, the corresponding vectors may be eliminated and a lower
dimensionality space obtained.

In our problem, we assume there may not be clearly defined clusters in the original space
and try to find those dimensions that can be used for clustering. Clearly, two points may be



AUTOMATIC SUBSPACE CLUSTERING OF HIGH DIMENSIONAL DATA 29

Figure 13. Examples where KL transformation is helpful.

far apart in a 3-dimensional space but could be quite close when a specific projection into
2 dimensions is used. The effects of such projections are what we are trying to capture. In
addition, in the interest of comprehension, we do not want to use dimensions that are linear
combinations of the original ones.

The following examples illustrate these points. In figure 13, two data distributions are
shown. The original axes are labeled f 1, f 2, f 3. In both cases, the data points are uniformly
distributed inside the shaded area. In the left case there is one cluster, in the right two.
Assuming the number of points to be the same in both cases, the density of the shaded
regions is different for the two sets. The eigenvectors are labeled e1, e2, e3, such that e1
corresponds to the eigenvalue with the largest magnitude and e3 to the eigenvalue with
the smallest magnitude. The first eigenvalue is much larger than the other two, indicating
that there is large variation along axis e1. The eigenvectors are essentially the same in both
cases. Thus, it can be said that the KL transformation is quite successful in these instances.
Although the transformation cannot be used by itself to find the actual clusters because it
cannot distinguish between the two cases, one can argue that the clusters will be discovered
after projecting the points on e1 and examining the distribution of the projections.

In figure 14, the 2-dimensional data is uniformly distributed in dimension f 1, but contains
three clusters along dimension f 2. Despite the clustering on f 2, there is large variation

Figure 14. Examples where KL transformation is not helpful.
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along both axes. The results of the KL transformation are the eigenvectors e1 and e2
as shown. Because of the variation, the eigenvalue corresponding to eigenvector e2 (the
second largest eigenvalue) is quite large. We have thus come up with a space of the same
dimensionality. Furthermore, no projection on the new axes can be used to identify the
clusters.

The right figure illustrates that clusters may exist in different subspaces. The data points
are uniformly distributed inside the three 3-dimensional rectangles. The rectangles are long,
skinny and not very dense. In addition they do not intersect. For reasonable selectivities, the
only clusters are the projections of the rectangles on their small faces; that is, one cluster
in each of the f 1 × f 2, f 1 × f 3 and f 2 × f 3 subspaces. The KL decomposition does
not help here because of large variation along each of the original axes. The resulting axes
are e1, e2, e3 and the three eigenvalues are approximately equal. This means there is no
2-dimensional space which approximates the original space. A 3-dimensional space has to
be used after the KL transformation for the clustering. But the density of the points in the
3-dimensional space is too low to obtain good clustering.
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Notes

1. For CLustering In QUEst, the data mining research project at IBM Almaden. A preliminary version of our
results appeared in Aggarwal et al. (1998).

2. We also considered the following Addition heuristic: View the cluster as empty space. Add to the cover the
maximal region that will cover the maximum number of yet uncovered units in the cluster. Break ties arbitrarily.
Repeat the procedure until the whole cluster is covered.

For general set cover, the addition heuristic is known to give a cover within a factor ln n of the optimum
where n is the number of units to be covered (Lovász, 1975). Thus it would appear that the addition heuristic,
since its quality of approximation matches the negative results of Feige (1996), and Lund and Yannakakis
(1993), would be the obvious choice. However, its implementation in our high dimensional geometric setting
is too inefficient. The implementation requires the rather complex computation of the number of uncovered
units a candidate maximal region will cover. The residual uncovered regions that arise as the cover is formed
can be complicated, and no efficient data structures are known for efficiently maintaining the uncovered units.

3. We could not run experiments with CLARANS because the code required modification to work with points in
high dimensions. We expect CLARANS to show similar behavior as BIRCH in identifying clusters embedded
in subspaces.
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