
COMMUNICATIONS OF THE ACM April 1998/Vol. 41, No. 4 99

STRONG
Vs. Weak

Iris Vessey and Robert Glass

S
ystems development is, fundamentally, a prob-
lem-solving activity. A problem in an applica-
tion domain is transformed by the systems
development process into a solution in the
computer’s implementation domain.

What can systems development specialists borrow
from the traditional literature on problem solving? Are
there ideas in this older discipline that can be reused?

There is one particularly vital notion that has impor-
tant implications for both the theory and practice of sys-
tems development. The problem-solving literature
distinguishes between “strong” and “weak” problem-
solving approaches. Strong methods are those designed
to address a specific type of problem, while weak meth-
ods are general approaches that may be applied to many
types of problems [7].

The words “strong” and “weak” are deliberately cho-
sen. A strong method, like a specific size of wrench, is
designed to fit and do an optimal job on one kind of
problem; a weak method, like a monkey wrench, is
designed to adjust to a multiplicity of problems, but
solve none of them optimally.

It is the purpose of this article to pursue this notion
of “strong” and “weak” problem-solving approaches
more thoroughly from a systems development point of
view. Are we making use of this notion in today’s theory
and in today’s practice? If not, how can we change what
we are doing to make use of strong problem-solving
approaches?

The Nature of Systems Development
Systems development is generally acknowledged to be
an intellectually complex activity. This complexity is
magnified by the need for expertise in two disciplinary
areas—the area of the problem being solved (the appli-
cation domain), and the area of constructing a software
solution (the systems and software discipline).

The application knowledge component of this dual
disciplinary problem is significant. Blum [1] states “…
much of what we consider to be software development is
actually application domain problem solving …” A suc-
cessful systems developer is one who masters the large
amounts of knowledge present in both disciplinary areas.

This complexity inherent in systems development

There are many different roads to follow
when it comes to problem solving.

Approaches to
Systems Development

http://crossmark.crossref.org/dialog/?doi=10.1145%2F273035.273070&domain=pdf&date_stamp=1998-04-01

typically is addressed by employing standardized meth-
ods to develop systems.

Method-Based Approaches to
Systems Development
Two method-based paradigms for systems develop-
ment can be identified. The first approach is based on
methodology; the second on technique.

Unified methodology approach. Methodologies are a
formal attempt to address complexity through the use of
standard, predictable approaches to systems develop-
ment.

Current methodologies tend to focus on principally
one unit of decomposition, but they differ on what that
unit of decomposition is. Most common methodologies
base decomposition on either process or data, or some
mixture of the two.

The process approach to handling complexity is seen,
for example, in the structured techniques—structured
analysis, design, and programming. It is, perhaps, the
oldest and most widely used methodology, and in addi-
tion is the one most frequently referenced in the infor-
mation systems literature. The structured techniques all
primarily use process decomposition, although the sem-
inal works on structured analysis also included normal-
ization of data as a secondary focus of the methodology.

The data approach to handling complexity is seen in
information engineering. It has its origins in the entity-
relationship approach to modeling data. Information
engineering initially employs data decomposition at the
enterprise or organization level to handle problem com-
plexity, the reason being that an enterprise’s data is, in
general, more stable than the processes used to act on
that data. After the initial data analysis, systems projects
are developed using process decomposition, which is,
therefore, a secondary emphasis.

Thus we see that the difference between process- and
data-oriented methodologies is one of initial emphasis.
In the end, both orientations must be considered.

The object-oriented approach to handling complex-
ity considers both data and process as a package. An
object is a component of the problem’s world, a cohesive
collection of data coupled with the processes (methods
or operations) acting on that data. The act of systems
development using the object-oriented approach inter-
leaves analysis and design of objects with analysis and
design of the processes relating to those objects. The
rationale for the object-oriented approach is that appli-
cation problems often evolve around real-world objects
and the ways in which they interact.

Whether the systems developer employs a process,
data, or object-oriented approach, the methodology
underlying the approach will be standardized and cohe-
sive. Such a methodology is referred to here as “unified.”

Technique approach. Methodologies are, of course,
collections of related techniques. Disaggregating most
methodologies results in identifying techniques of vary-
ing utility—some techniques are exceedingly valuable,
some are relatively valuable, and some have only mar-
ginal value. For example, an earlier component of the
structured techniques was the notion of a “Chief Pro-
grammer Team.” Over the years, as it became apparent
that this was not a successful part of the structured tech-
niques, that notion was eliminated.

Because of this variability in the utility of constituent
techniques, there are those who use collections of appro-
priate techniques rather than unified methodologies.
With this approach, systems developers are trained in
the use of “best of practice” techniques known to have
been successful in solving an enterprise’s problems.

Combining Method and Application in
Systems Development
In the following, we suggest some ways of identifying
and moving toward stronger problem-solving
approaches (and away from weaker ones), by using meth-
ods that are specifically suited to the needs of the appli-
cation. But first, to construct a theoretical foundation for
this approach, we examine the theory of cognitive fit.

Theory. Cognitive fit is the notion that problem-
solving elements such as problem representation, meth-
ods, and/or tools should support the strategies (or
processes) required to perform the task [10]. If we apply
that notion to systems development, we see that the
methods used should be chosen to best support the var-
ious tasks of systems development.

When the types of information in the method and
the application match, the problem solver can use
processes that emphasize this type of information,
facilitating the construction of a mental representa-
tion of a solution. Hence, cognitive fit leads to an
effective and efficient problem solution. If cognitive
fit is lacking, it does not mean that the problem can-
not or will not be solved; it simply means that the
solution will be less effective and/or less efficient.
Cognitive fit, then, embodies Newell’s notion of a
strong approach to problem solving, because it is
based on matching solution approaches to the prob-
lem at hand.

Matching methodology to application. Traditionally
there has been tacit acknowledgment in the literature that
we need to consider the application when choosing a sys-
tems development method. For example:

Jeffries et al. [6] state “ … the formal literature on
software design lacks a mapping between the types of
problems and the appropriate design methodology.”

Jackson [5] writes: “Again and again writers on

100 April 1998/Vol. 41, No. 4 COMMUNICATIONS OF THE ACM

development methods claim to offer an analysis of a
problem when in fact they offer only an outline of a solu-
tion, leaving the problem unexplored and unexplained.”

Potts [8] says: “… we may have made as much
progress as we can reasonably expect in domain-inde-
pendent languages, methods, and tools. Nobody talks
about domain independence in hardware engineering
because its disciplines differ so greatly in their underly-
ing principles and skills. The same is true of many appli-
cation domains that are suited to software
implementations.”

In general, however, only lip-service has been paid to
the issue of which problem representations, methods,
tools, techniques, or methodologies are best used for a
given set of circumstances.

To use the theory of cognitive fit to select an existing
methodology for developing a given application, we
would prefer first to develop classes of applications, and
then consider which methodology is best suited to each
class. But little research has been conducted on the
nature of applications [3], whereas there has been at least
some attempt to classify methodologies. Therefore, in
what follows we classify methodologies into process,
data, and object-oriented approaches, and consider
which applications might be best handled by each
methodological approach.

What applications might lend themselves to starting
with an analysis of processes? Application problems that
are more about functionality (processes or algorithms)
than the data manipulated by the processes. Most scien-
tific-engineering applications, for example, are of this
kind. In the information systems area, payroll, inventory,
accounts receivable, and accounts payable are often char-
acterized in this way.

What applications might lend themselves to starting
with an analysis of data? Those where the data itself is
more complicated than the processes to be performed on
it. Applications that deal with record keeping, such as
medical records systems, are frequently of this type. The
processes for these types of applications may be relatively
simple, but the organization and access of the system
data may be quite complex.

What applications might lend themselves to starting
with an object-oriented view? Here, the answer is less
clear. Advocates of the approach tend to claim it is appli-
cation-independent, that is, suitable for all applications.
However, there is little research to explore either that
thesis or its opposite. One might speculate that applica-
tions for which the processes and data are intimately
related (they occur and are needed together) would be
the most appropriate. For example, such an approach
might be appropriate in a library book check-out sys-
tem, where objects (books, clients) are subject to well-

defined transactions (check-out, return). Some say real-
time systems, characterized by objects such as devices
and the operations they initiate or perform, are also best
approached in this way.

Matching technique to task. Recall that earlier in
this article we proposed the use of disaggregated tech-
niques, rather than unified methodologies, as another
approach to problem solving.

Using this approach, systems developers can, at any
point in the process, use whatever technique is best
suited to the task at hand. Such an approach can lead to
greater flexibility, and therefore to greater power.

For example, Sanden [9] discovered that, for a partic-
ular real-time application, a combination of Jackson
Structured Design and object-oriented analysis could
overcome deficiencies that each of the methodologies
had when used alone: “Rather than arguing about which
one design method is best, we should take an eclectic
view and use any combination of approaches that yields
important results in a given situation.”

Other authors have proposed so-called “multipara-
digm” approaches to systems development. With this
approach, different paradigms (procedural, functional,
object oriented, and so forth) might be used on different
portions of a system. Zave [12] states: “(E)ach paradigm
is too narrowly focused to describe all aspects of a large,
complex system.… The purpose of multiparadigm pro-
gramming is to let us build systems using as many par-
adigms as we need, each paradigm handling only those
aspects of the system for which it is best suited.”

Zave moves very close to the notion of cognitive fit
when she says “…application domains must be studied
in a new, multiparadigm perspective, producing under-
standing that eventually leads to standardized paradigm
interfaces for each application domain.”

Discussion
The pursuit of the notion of using strong rather than
weak problem-solving approaches in systems develop-
ment has led us in several interesting directions. For
instance, greater attention is paid to the application
domain. It is clear that systems development complex-
ity lies in both the application problem domain and in
the software solution domain. But traditional views of
the systems development process have concentrated
almost entirely on the solution domain, and as a result
have produced weak problem-solving approaches that
are too general to be very powerful.

We’ve also reconsidered the notion of a single, stan-
dard methodology. We have seen ample reason why a
single, application-independent methodology may not
be the optimal solution for all systems development pro-
jects. But what are the alternatives? We present several
answers to that question:

COMMUNICATIONS OF THE ACM April 1998/Vol. 41, No. 4 101

• Matching methodology to application. Employ sev-
eral methodologies in an enterprise and base the
choice of which one to use on the application at hand.
Note that this is a single paradigm approach; once
the choice is made, it is used throughout the project.

• Disaggregated methodologies. Identify a selection
of appropriate systems development techniques, and
for a particular project choose those techniques best
suited to the application at hand. Note that this is,
in a sense, a no-paradigm approach, because the
techniques do not necessarily fit into any overall
model of how things should be done, and because
for any one subsystem different collections of tech-
niques may be used.

• Multiparadigm approaches. Employ several para-
digms in an enterprise, and for a particular project
use that mixture of them matching the unique
demands of the application at hand. Note that this
is called a multiparadigm approach because, for any
one large, complex system, different subsystems or
even different life-cycle phases may each use a dif-
ferent paradigm.

The dilemma with any of these approaches, of
course, lies in establishing criteria for choosing among,
and interfacing schemes for meshing, the various con-
stituent methods. To overcome this dilemma, one must
keep in mind that today’s problem-solving approaches,
though general, are weak, and that solving the
dilemma is the price to be paid for moving toward
strong approaches.

Implications for Research
The findings of this study suggest significant research
redirection. It has been the goal of most methodologi-
cal studies in the past to define a domain-independent,
general approach to systems development problem
solving. The work presented here suggests that,
although this approach has led to impressive gains in
software productivity through the years, further poten-
tial gains within that framework are limited.

Research, these findings suggest, should focus on sys-
tems development approaches based on cognitive fit, the
matching of methods to tasks. Methods should be stud-
ied from the viewpoint of their benefit to particular
classes of applications, to facilitate matching method to
application task.

Recent research into “method engineering,” the idea
that standardized methodologies must be tailored to
meet specific needs [2], appears particularly promising
in this regard.

Implications for Practice
Most enterprises have, by now, adopted some sort of

standard methodological approach to systems develop-
ment, and provided the necessary training and infra-
structure to implement it. The findings of this article
suggest, however, that these approaches, though use-
ful, are far from optimal.

What is needed are strong problem-solving
approaches, based on matching method to task. But
there remain many unanswered questions. Which
methods or techniques are best for which applications?
How are training and infrastructure to be created for the
more complicated world of application-focused solution
approaches? Where is the research information to help
with the needed practical decisions? There are no good
answers to any of these questions.

Recent findings that practitioners are not using
methodologies as defined by their originators, but rather
are tailoring them (see, for example, [4, 11], provide
interesting evidence that practice may be beginning to
move in application-specific directions, without waiting
for research to show the way.

Is the systems development field ready for the dra-
matic paradigm shift implied in this article? Are
researchers and practitioners alike willing to reach as far
as is apparently necessary to move in this new direction?

The answers are, at best, unclear.

References
1. Blum, B.I. A paradigm for the 1990s validated in the 1980s. In Proceedings

of the AIAA Conference, American Institute for Aeronautics and Astronautics,
1989, pp. 502–511.

2. Brinkkemper, S. and Joosten, S. Special issue on method engineering and
meta-modeling. Info. Softw. Tech. (Apr. 1996).

3. Glass, R. and Vessey, I. Contemporary application-domain taxonomies.
IEEE Software 12, 4 (Jul. 1995), 63–76.

4. Hardy, C.J., Thompson J.B. and Edwards, H.M. The use, limitations, and
customization of structured systems development methods in the United
Kingdom. Info. Softw. Tech. 37, 9 (Sept. 1995), P. #.

5. Jackson. M. Software Requirements and Specifications. Addison-Wesley, Read-
ing, Mass. 1995, p. 1

6. Jeffries, R., Turner, A., Polson, P. and Atwood, M. The processes involved
in designing software, in J. R. Anderson, ed., Cognitive Skills and Their
Acquisition, Erlbaum, Hillsdale NJ, 1981.

7. Newell. A. heuristic programming: Ill-structured problems, in J. Aronofsky,
ed., Progress in Operations Research, John Wiley & Sons, New York, 1969.

8. Potts, C. Software engineering research revisited. IEEE Software 10, 5 (May
1993), 19–28.

9. Sanden, B. The case for eclectic design of real-time software. IEEE Tran.
Softw. Eng. 15, 3 (Mar. 1989), 360–362.

10. Vessey, I. Cognitive fit: A theory-based analysis of the graphs vs. tables lit-
erature. Decison Sci. 22, 2 (Spring 1991),219–240.

11. Vlasbom, G, Rijsenbrij, D. and Glastra. M. Flexibilization of the method-
ology of system development. Info. Software Tech. 37, 11 (Nov. 1995).

12. Zave. P. A compositional approach to multiparadigm programming. IEEE
Software 6, 5 (Sept. 1989), 15–25.

Iris Vessey (ivessey@indiana.edu) is a professor of
Information Systems at Indiana University.
Robert Glass (rglass@indiana.edu) is the publisher of the
Software Practitioner newsletter and editor of Elsevier’s
Journal of Systems and Software.

©ACM 0002-0782/98/0400 $3.50

c

102 April 1998/Vol. 41, No. 4 COMMUNICATIONS OF THE ACM

