
Megaprogramming Education

I

1 . !

I

Hisham Haddad and Herbert Tesser
Marshall University

Computer Science Department
Huntington, WV 25755

haddad@acm.org
tesser@marshall.edu

Abstract

In the computer science field, educators face several
obstacles when attempting to introduce rigorous software
engineering concepts and practices into the curriculum.
This paper addresses the issue of software engineering
education and the role of megaprogramming in introductory
courses for high school and college students. We highlight
the need for, and the initial effort in megaprogramming
education. We provide a brief description of developed
materials and a proposed approach to integrate megaprogra-
mming into high school computer science curriculum.

1. Introduction

Since ita inception, traditional computer science education
has placed heavy emphasis on teaching language syntax and
semantics rather than the software engineering process,
which is the basis for code development. Educators face
several obstacles when attempting to introduce rigorous
software engineering concepts and practices into the
curriculum. Among them are:

1. the lack of direct experience of the faculty. Too few
computer science faculty have had major responsibility of
large software system construction, and too few faculty are
well versed in software engineering techniques; and

2. many faculty who teach introductory courses are
application oriented, rather than tool builders. We suspect
that the focus on near term results leaves faculty uncon-
vinced - or even cynical - of the importance of software
engineering concepts.

As software development advances, the industrial communi-
ty has expressed concerns about the quality and readiness
of computer science graduates. Their concerns indicate the
following weaknesses. Students:
Permission to make digit&hard copy of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the
title of the publication and its date appear, and notice is given that
copying is by permission of ACM, Inc. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.

SIGCSE ‘97 CA, USA
0 1997 ACM 0-89791~889~4/97/0002...$3.50

Steven Wartik
Software Productivity Consortium

2214 Rock Hill Road
Herndon, VA 22070

wartik@software.org

1. lack the knowledge of systematic approach to problems
solving; they learn how to write code but not a process by
which the code is developed;

2. are not learning the use of latest software engineering
techniques and development tools;

3. are not trained to implement solutions for developing
large software systems; most classes lack team-oriented
projects, and they use simple exercises that do not illustrate
modularization, information hiding, and code reuse; and

4. receive software engineering education late in the
curriculum, leaving students with the impression that code
generation is of paramount importance.

These concerns necessitate changes in computer science
education to provide students with the knowledge and skills
to effectively and efficiently function in the work place, In
addition, there is growing need to accommodate the
teaching of software engineering concepts in computer
science programs [1,2,3].

The development of large software systems requires the
integration of existing systems as components. Megaprogra-
mming is a component-oriented software development appr-
oach for building large software systems by integrating
existing systems [4,5]. This approach facilitates software
engineering environments, software engineering practices,
and software reuse technologies and processes [6]. In this
paper we address the role of megaprogramming education
in preparing future software engineers.

2. The Need for Megaprogramming in High Schools
and Colleges

Traditional high school and college introductory computer
science courses emphasize a set of topics including:

1. Programming Language notation to help students
master the syntax and feel comfortable expressing algo-
rithms using that syntax;

http://crossmark.crossref.org/dialog/?doi=10.1145%2F268085.268194&domain=pdf&date_stamp=1997-03-01

2. Algorithms to help students formulate a sequence of steps
representing the sequence of activities embodied in the
solution of the problem, and use specific algorithms in
conjunction with language features and constructs, such as
sequencing, conditional execution, and iterations;

3. Data Structures to help students learn data structures
(such as lists, stacks, queues, and trees) and their possible
implementations using records, arrays, and pointers; and

4. Programming Methodology to help students learn brief
background about specifications, analysis, and design
issues, Usually, they learn how to build an algorithm, how
to apply top-down decomposition design using abstraction
nnd information hiding, and how to test the program. This
practice does not teach students software engineering
concepts and practices.

These topics form the basis for introductory courses. They
are sound topics. However, the weakness of this traditional
nppronch is that students coming out of the introductory
courses have the following perspectives. Students:

1. place great emphasis on the programming language they
have learned. As they struggle to learn the syntax, they
attach more importance to the syntax than the semantics.
By contrast, skilled software developers learn the syntax of
a new language in few days;

2. think of a program as algorithm rather than a set of
modules;

3. think of software development as coding and testing
since less emphasis is placed on other steps of the develop-
ment cycle; and

4. lnck a scientific basis to analyze and design the software
they produce. High school and college introductory courses
teach little or no science at all. Students may learn how to
assess the quality of a program based on some factors, such
RS execution speed, memory use, user interface friendli-
ness, and reusability. Students learn how to test their
progmms, but not in a systematic way.

These points should not down play the importance of topics
covered in current computer science introductory courses.
With these perspectives, students grasp only a small part of
whnt software development is all about, and they require
extensive retraining to be successful in the work place.
Students who intend to become professional software
developers would greatly benefit from a curriculum that
tenches more about the industry’s software development
process. In addition, high school students would also
benefit from such curriculum and have better performance
when they take college courses. Megaprogmmming educa-

--

283

tion is meant to fulfill the need and teach more practical
and disciplined approach to sofiware development.

We propose to introduce megaprogramming education to
stress and further the teaching of sofisvare engineering
concepts in introductory computer science courses for both
high school and college students. The proposal is motivated
by students’ need of the knowledge of industrial sofhvare
development practices and how professional software
systems are developed.

3. Objectives of Megaprogramming Education

A frequently heard complaint about computer science
education is “We are not preparing students who can
recognize and address the software engineering issues
facing industry“. One reason is that most problems given
in introductory courses are toy-like in scope and size. Small
projects do not provide adequate preparation simply
because large software projects do not scale linearly (either
in time or cost) from small projects.

A second, well known, difficulty lies in the fact that most
students’ software is made for short use - in effect, the only
time that the software is executed is when the student
conducts testing and when the instructor grades it.

There are several objectives which must be achieved if we
are to introduce beginning students to software engineering
and reuse concepts:

I. Motivate students to become sofiware engineers who have
a better understanding of real issues facing large scale
soj?ware development.

Software engineers need to understand why megaprogram-
ming concepts have been adopted by major corporations.
The importance of these concepts is derived from the
requirements of modem software engineering practices.
Some laboratory work should focus on software reuse. In
addition, students should understand the nature of domain-
oriented architectures.

By motivating students to focus on software engineering
issues, two important results are achieved: First, we
redirect attention from concentrating on language syntax,
and second, we prepare students for the work environment
of the future where building from reuse will supersede in
importance creating new code.

II. Demonstrate that of-the-shelfsojiware can be used to
educate students in reuse technology and it ne& not be
tedious.

Software created with reuse as a design objective will make

use of generic interfaces. The-se interfaces can be used to
automate the process of “connecting” components. Building
with software which is capable of adapting to a problem is
fun (remember building with Legos).

III. Develop practical curriculum for teaching sofhare
processes which reflects the success of existing ham&-on
high school curricula.

The foundation of a process approach lies in examining
how the process spans the business product line. The
objective is to teach students that requirements for reuse are
not based upon a specific application but must address the
central ideas which are the common basis for the product
line. In the future, software engineers will design systems
much the same way corporations build product lines. We
see the introduction of domain engineering as central to the
software product line approach (megaprogramming).

4. Megaprogramming Education: The Approach to
Software Development

Megaprogramming is a component-oriented approach for
developing large software systems. It is built on the process
of integrating individual systems (components) that define
the functionalities of the overall system. This approach
utilizes technologies and processes including software
engineering, software reuse, sofhvare architectures,
domains, and interfacing. With megaprogramming, soft-
ware engineers build an infrastructure that can be used to
plan for, design, develop, manage, and maintain a family
of software systems. As a conceptual structure for compo-
nent integration, megaprogramming can be scaled up to
produce complex systems or scaled down to produce simple
systems with few components. The overall motivation to
megaprogramming is to reduce the cost and time of
software development and increase software quality [7,8].

In the megaprogmmming approach, reuse plays a central
role. That role is the development of software components
that are sufficiently general for reuse in a wide range of
systems, sharing similar fimctionalities and architectures.
Such components allow a wide range of information, not
just source code, to be reused in developing new systems
[9]. With this practice, a collection (library) of reusable
components based on architectural standards of domain-
specific systems may result. Such components increase
reusability, improves the quality of developed systems, and
the productivity of the development process.

While megaprogramming is the process of building soft-
ware systems by selecting and adapting reusable compo-
nents, software engineering is the management, engineer-
ing, and communication activities required to develop a
software system [lo]. Megaprogramming requires studying

existing systems that have common features (usually cnlled
domain of applications) to identify reusable characteristics,
develop reusable software components, and provide guide
lines to incorporate reusable components into newly
developed systems in the domain.

Traditionally, students think of each program as a self-
contained independent program. With megaprogmmming
education, students learn to think of each program they
produce as a component of a bigger system thnt does not
necessarily exist, but may evolve in the future. Thus,
giving students a broad view of the practical aspects of the
industry’s software development process, and establishing
team-oriented based thinking and experience.

With megaprogramming education, students also learn thnt
software reuse is not limited to code reuse. It is the process
of re-applying the knowledge and experience gained during
the development of a system to the development of a new
system. Reused knowledge and experience may include
domain knowledge, design knowledge, requirement specifi-
cation, procedures, code, documentation, domains, imple-
mentation issues, and maintenance issues.

5. Initial Effort in Megaprogramming Education

In 1993, DOD’S Defense Advanced Research Projects
Agency @ARPA) became interested in understanding the
effects of introducing reuse topics as early as possible in
the computing curriculum. DARPA tasked the Sofhllnre
Productivity Consortium (SPC) to develop curricula and
supporting materials that introduce megaprogmmming in
high schools and introductory college computer science
courses. SPC developed several courses and a curriculum
that form the background for much of the material in this
paper. A brief description of the developed products is as
follows:

1. A one-to-two week “Overview of Megaprogramming”
course [2,11]. This course, targeted to high school stu-
dents, presents broad concepts of megaprogramming. It
challenges students to forget their traditional notions of
programming and instead concentrate on:

a) Requirements Elicitation. High school students
(and many college students) often naively assume
there will always be a teacher to precisely state the
problem they are to solve. For many, this course
was their first realization that one day they must
formulate problems themselves, Rnd it comes as
quite a shock;

b) Software Process. Many instructors that teach
design principles are frustrated by students who
can parrot the concepts but jump immediately to

coding during their assignments. The laboratory in
this course forces students to follow a well-defined
process by requiring them to provide requirements
and design information (and in fact, they perform
no coding -- it all happens through reuse); and

c) Quantitative Analysis. The laboratory requires
students to evaluate the quality of their work using
analytical models. These models are applied
during requirements and design as well as during
verification.

2, A one-week “Software Engineering Using Ada” course
[12]. Whereas the overview course is a broad overview of
megaprogramming topics, this course explores in more
depth notions of design styles that lead to reuse. The goal
in creating the course was to evaluate whether students first
encountering software could grasp the importance of such
topics as modularization and abstraction, and how they
promote reuse.

3. A megaprogmmming-based undergraduate curriculum
that shows how megaprogmmming topics can be integrated
into a computing curriculum starting in the very first course
u31.

4. A one-semester course introducing software development
to non-majors. The course teaches traditional programming
topics, but also emphasizes teamwork, project planning,
and other important aspects of software development.

The first hvo courses have been taught at ten high schools
and have received favomble reactions from both teachers
and students. The one-semester course has become part of
James Madison University’s Integrated College of Science
and Technology curriculum. A key to the success of the
course and curriculum development was SPC’s involvement
with high school and university instructors, who established
the constraints and provided expert guidance.

6. Integration of Megaprogramming into High
School Computer Science Curriculum

One problem facing undergraduate computer science
education is the insufficient preparedness of incoming high
school students, and the lack of computer science back-
ground. A major contributing factor to this phenomenon is
that advances in computer science technology are adding
more teaching materials and topics to the field; while high
school computer science education has not been advanced
accordingly. Thus, creating a gap between current high
school educational offerings and the proper preparation for
college education.

Withmegaprogramming education, we propose an approach
to advance high school computer science education by
propagating introductory college-level computer science
topics to the high school level. The theme of this approach
is to introduce high school students to the software engi-
neering technology and its practices (including software
reuse), and the role of software engineering in todays
software development industry.

Prooosed auuroach:

Teach high school students and lower level undergraduates
concepts and technologies which address the key issues of
modern sojiware engineering. The following course se-
quence is intended to introduce the concepts of large scale
sofnare development into introductory courses, and estab-
lish a broad background of what sofiaye development is
all about.

Proposed Course:

In addition to existing high school computer science
courses, we propose the following courses be integrated
into the high school computer science curriculum:

Megaprogramming I: First Semester
covers:

1. an overview of the software engineering process
and how it is applied to the development of indi-
vidual systems;

2. an overview of the software development life cycle
used in software industry and how professional
software systems are developed; and

3. an overview of software reuse and its role in
to&y’s software development process.

Megaprogramming II: Second Semester
covers:

1. an introduction to the product-line approach to
software development;

2. an overview of the domain concept, domains of
applications, and the effect of domains on software
development;

3. an overview of domain engineering (domain
analysis and domain design) and how it is applied
tc the entire group of systems in the domain; and

4. an overview of building reusable software compo-
nents using domain engineering and reuse.

Advantaaes:

With this approach, high school students will be exposed to
details of large scale programming, reuse, and domain
engineering along with other appropriate topics.

285

In general, knowledge of these topics will help improve
students’ background, provide a smooth transition from
high school to college, and better prepare high school
graduates to the college environment. However, we
envision the following specific advantages. Students:

1. learn to see software development as an exercise in
science and engineering, and be able to write better
software systems;

2. get the opportunity to work on more complex systems
and gain team-oriented experience. With the knowledge of
reuse, students can reuse existing software systems that
perform complex functions in building more complex
systems;

3. learn more about the industry’s professional software
development process and current technologies and practices
used in the industry. Thus, students become better prepared
for their careers;

4. will change their perspective toward software develop-
ment since megaprogramming encompasses all aspects of
software development. In general, current teaching methods
are lacking a complete approach to provide students full
understanding of the importance of covered topics; and

5. will speed up their academic performance and progress
during college years.

7. Conclusion

Current computer science education methods place more
emphasis on teaching language syntax and semantics rather
than software engineering concepts. As software develop-
ment advances, the academic community is obligated to
provide computer science students the proper knowledge of
industrial software development methods and practices.
Megaprogramming education is design to further the
teaching of software engineering concepts and reuse
practices, and to provide practical and disciplined approach
to software development.

In this paper we highlighted an effort in megaprogramming
education, initiated by DARPA and carried out by SPC
which developed several courses and a curriculum. The
courses were taught in several high schools. The paper also
highlighted the importance of teaching software engineering
and reuse concepts to beginning students, and proposed an
approach to build on and expand DARPA and SPC’s effort.
We outlined two courses to help eliminate the gap between
current high school educational offerings and the proper
preparation for college education. The proposed course,
Megaprogramming I and II, cover the basic issues of
modem software engineering technologies and practices

used in todays software development industry. An initial
attempt to introduce megaprogramming education in high
schools has been conducted by SPC [ll].

8. References

1. J. Cohoon and et al. “Software Engineering Beginning
in the First Computer Science Course”, Proceedings of
the So&are Engineering Institute 7th Co?tference on
So&are Engineering Education, NY, (1994).

2. Mary Eward and Steven Wartik, “Introducing Megnpro
gramming at High School ‘and Undergraduate Levels”,
Proceedings of the Sofnvare Engineering Institute 7th
Conference on Software Engineering Education, NY,
(1994).

3. R. M. Snyder, .“Teaching Software Engineering
Principals in an Introductory Programming Course”,
Journal of Computing in Small Colleges, lO(3) (Jan.
1995).

4. Barry Boehm and William Scherlis, “Megaprogra-
mming”, Proceedings o$ the DARPA Software
Technology Conference, Las Angeles, CA, (1992).

5. “On the Way to Megaprogramming”, Technical Report,
STARTS Technology Center, Arlington, Virginia, 1992.

6. Gio Wiederhold, Peter Wegner, and Stefano Ceri.
“Toward Megaprogramming”, Communications of the
ACM, 35(11), (November 1992).

7. Dave Ceely, Impact of Megaprogramming, Position
Paper for TRIAda’93.

8. Teri Payton, Megaprogramming - Facilitates a
Transition Toward Product-Line Somare, Position
Paper for TRTAda’93.

9. Ted Biggerstaff and Alan Perlis, Somare Reusability:
Concepts and Models, ACM Press, Frontier Series,
Vol.1, Addison-Wesley, Reading, MA, 1989.

10. Bill Hodges, Impact of Megaprogramming, Position
Paper for TRIAda’93.

11. “Teacher Notes for Overview of Megaprogrnmming
Course”, SPC-94044~CMC, Version 01.00, Software
Productivity Consortium, (September 1994).

12. “Software Engineering Using Ada Course”, SPC
-94094~CMC, Version 01.00, Sofnvare Productivity
Consortium, (April 1995).

13. Steven Wartik and et al., “Megaprogmmming in the
Software Engineering Curriculum”, Proceedings of the
4th Annual Work-shop on SofRvare Reuse Education and
Training, Morgantown, WV, (August 1995).

