
Potential benefits of delta encoding and data compression for HTTP 

Jeffrey C. Mogul (Digital Equipment Corporation Western Research Laboratory) 
250 University Avenue, Palo Alto, CA 94301; mogul@wrl.dec.com 

Fred Douglii, Anja Feldman, Balachander Krishnamurthy (AT&T Labs - Research) 
180 Park Avenue, Florham Park, NJ 07932-0971; {douglis,anja,bala} @research.att.com 

Abstract 

Caching in the World Wide Web currently follows a 
naive model, which assumes that resources are referenced 
many times between changes. The model also provides no 
way to update a cache entry if a resource does change, 
except by transferring the resource’s entire new value. 
Several previous papers have proposed updating cache 
entries by transferring only the differences, or “delta,” 
between the cached entry and the current value. 

In this paper, we make use of dynamic traces of the full 
contents of HTTP messages to quantify the potential 
bcncfits of delta-encoded responses. We show that delta 
encoding can provide remarkable improvements in 
response size and response delay for an important subset 
of HTTP content types. We also show the added benefit of 
data compression, and that the combination of delta en- 
coding and data compression yields the best results. 

We propose specific extensions to the HTTP protocol for 
delta encoding and data compression. These extensions 
are compatible with existing implementations and 
specifications, yet allow efficient use of a variety of encod- 
ing techniques. 

1. Introduction 
The World Wide Web is a distributed system, and so often 

benefits from caching to reduce retrieval delays. Retrieval of 
a Web resource (such as document, image, icon, or applet) 
over the Internet or other wide-area network usually takes 
enough time that the delay is over the human threshold of 
perception. Often, that delay is measured in seconds. Caching 
can often eliminate or significantly reduce retrieval delays. 

Many Web resources change over time, so a practical cach- 
ing approach must include a coherency mechanism, to avoid 
presenting stale information to the user. Originally, the Hy- 
pertext Transfer Protocol (H’ITP) provided little support for 
caching, but under operational pressures, it quickly evolved to 
support a simple mechanism for maintaining cache coherency. 

In HTTP/LO [3], the server may supply a “last-modified” 
timestamp with a response, If a client stores this response in a 
cache entry, and then later wishes to re-use the response, it 
may transmit a request message with an “if-modified-since” 
tield containing that timestamp; this is known as a cendirio~l 
Permisalon to make digital/hard copy ot part or all tms worK tar 
personal or classroom use is granted without fee provided that 
copleo ore not mode or distributed for profit or commercial advan- 
tage, the copyright notice, the title of the publication and its date 
appear, nnd notice is given that copying is by permission of ACM, 
Inc. To copy otherwise, to republish, to post on servers, or to 
redistribute to lists, requires prior specific permission and/or a fee. 
SIGCOMM ‘97 Cannes, France 

’ 0 1997 ACM 0-89791-905-X197/0009...$3.50 

retrieval. Upon receiving a conditional request, the server 
may either reply with a full response, or, if the resource has 
not changed, it may send an abbreviated reply, indicating that 
the client’s cache entry is still valid. HIl”P/l.O also includes a 
means for the server to indicate, via an “expires” timestamp, 
that a response will be valid until that time; if so, a client may 
use a cached copy of the response until that time, without first 
validating it using a conditional retrieval. 

The proposed HTTP/l.1 specification [6] adds many new 
features to improve cache coherency and performance. 
However, it preserves the all-or-none model for responses to 
conditional retrievals: either the server indicates that the 
resource value has not changed at all, or it must transmit the 
entire current value. 

Common sense suggests (and traces confirm), however, that 
even when a Web resource does change, the new instance is 
often substantially similar to the old one. If the difference (or 
delta) between the two instances could be sent to the client 
instead of the entire new instance, a client holding a cached 
copy of the old instance could apply the delta to construct the 
new version. In a world of finite bandwidth, the reduction in 
response size and delay could be significant. 

One can think of deltas as a way to squeeze as much benefit 
as possible from client and proxy caches. Rather than treating 
an entire response as the “cache line,” with deltas we can 
treat arbitrary pieces of a cached response as the replaceable 
unit, and avoid transferring pieces that have not changed. 

In this paper, we make use of dynamic traces of the full 
contents of HTTP messages to quantify the potential benefits 
of delta-encoded responses. Although previous 
papers [2,8,18] have proposed the use of delta encoding, ours 
is the first to use realistic traces to quantify the benefits. Our 
use of traces from two different sites increases our confidence 
in the results. 

We show that delta encoding can provide remarkable im- 
provements in response-size and response-delay for an impor- 
tant subset of HTTP content types. We also show the added 
benefit of data compression, and that the combination of delta 
encoding and data compression yields the best results. 

We propose specific extensions to the HTTP protocol for 
delta encoding and data compression. These extensions are 
compatible with existing implementations and specifications, 
yet allow efficient use of a variety of encoding techniques. 

2. ReIated work 
The idea of delta-encoding to reduce communication or 

storage costs is not new. For example, the MPEG-1 video 
compression standard transmits occasional still-image frames, 
but most of the frames sent are encoded (to oversimplify) as 
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changes from an adjacent frame. The SCCS and RCS [16] 
systems for software version control represent intermediate 
versions as deltas; SCCS starts with an original version and 
encodes subsequent ones with forward deltas, whereas RCS 
encodes previous versions as reverse deltas from their succes- 
sors, Jacobson’s technique for compressing IP and TCP 
headers over slow links [IO] uses a clever, highly specialized 
form of delta encoding. 

In spite of this history, it appears to have taken several years 
before anyone thought of applying delta encoding to HTTP, 
perhaps because the development of HTTP caching has been 
somewhat haphazard. The first published suggestion for delta 
encoding appears to have been by Williams et al. in a paper 
about HTTP cache remova policies [IS], but these authors did 
not elaborate on their design until later [17]. 

The possibility of compressing HTTP messages seems to 
have an longer history, going back at least to the early drafts 
of the HTTP/1.0 specification. However, until recently, it 
appears that nobody had attempted to quantify the potential 
benefits of loss-free compression, although the GloMop 
project [7] did explore the use of lossy compression. A study 
done at the World Wide Web Consortium reports on the 
benefits of compression in HTTP, but for only one example 
document 1151. Also, our traces suggest that few existing 
client implementations offer to accept compressed encodings 
of arbitrary responses (apparently, Lynx is the one exception). 
(Before the Web was an issue, Douglis [4] wrote generally 
about compression in distributed systems.) 

The WebExpress project [8] appears to be the first 
published description of an implementation of delta encoding 
for HlTP (which they call “differencing”). WebExpress is 
aimed specifically at wireless environments, and includes a 
number of orthogonal optimizations. Also, the WebExpress 
design does not propose changing the HTTP protocol itself, 
but rather uses a pair of interposed proxies to convert the 
HTTP message stream into an optimized form. The results 
reported for WebExpress differencing are impressive, but are 
limited to a few selected benchmarks. 

Banga et al. [2] describe the use of optimistic deltas, in 
which a layer of interposed proxies on either end of a slow 
link collaborate to reduce latency. If the client-side proxy has 
a cached copy of a resource, the server-side proxy can simply 
send a delta. If only the server-side proxy has a cached copy, 
it may optimistically send its (possibly stale) copy to the 
client-side proxy, followed (if necessary) by a delta once the 
server-side proxy has validated its own cache entry with the 
origin server. The use of optimistic deltas, unlike delta encod- 
ing, actually increases the number of bytes sent over the net- 
work, in an attempt to improve latency by anticipating a “Not 
Modified” response from the origin server. The optimistic 
delta paper, like the WebExpress paper, did not propose a 
change to the HTTP protocol itself, and reported results only 
for a small set of selected URLs. 

We are also analyzing the same traces to study the rate of 
change of Web resources [5]. 

3. Motivation and methodology 
Although two previous papers [2,8] have shown that com- 

pression and delta encoding could improve HTTP perfor- 
mance for selected sets of resources, these did not analyze 
traces from “live” users to see if the benefits would apply in 
practice. Also, these two projects both assumed that the H’ITP 
protocol could not be modified, and so relied on interposing 
proxy systems at either end of tbe slowest link. This approach 
adds extra store-and-forward latency, and may not always be 
feasible, so we wanted to examine the benefits of end-to-end 
delta encoding and compression, as an extension to the HTTP 
protocol. 

Although we propose such an extension in section 7, we 
have not yet finished an implementation. In this paper, we use 
a trace-based analysis to quantify the potential benefits from 
both proxy-based and end-to-end applications of compression 
and delta encoding. Both of these applications are supported 
by our proposed changes to HTTP. We also analyze the utility 
of these techniques for various different HTTP content-types 
(such as HTML, plain text, and image formats), and for 
several ways of grouping responses to HTIP queries. We 
look at several different algorithms for both delta encoding 
and data compression, and we examine the relative perfor- 
mance of high-level compression and modem-based compres- 
sion algorithms. 

We used two different traces in our study, made at busy 
Internet connection points for two large corporations. One of 
the traces was obtained by instrumenting a proxy; the other 
was made by capturing raw nehvork packets and reconstruct- 
ing the data stream. Both traces captured only references to 
Internet servers outside these corporations, and did not include 
any “inbound” requests. Because the two traces represent 
different protocol levels, time scales, user communities, and 
criteria for pre-filtering the trace, they give us several views of 
“real life” reference streams, although certainly not of all 
possible environments. 

Since the raw traces include a lot of sensitive information, 
for reasons of privacy and security the authors of this paper 
were not able to share the traces with each other. That, and 
the use of different trace-collection methods, led us to do 
somewhat different analyses on the two trace sets. 

3.1. Obtaining proxy traces 
Some large user communities often gain access to the Web 

via a proxy server. Proxies are typically installed to provide 
shared caches, and to allow controlled Web access across a 
security firewall. A proxy is a convenient place to obtain a 
realistic trace of Web activity, especially if it has a large user 
community, because (unlike a passive monitor) it guarantees 
that all interesting activity can be traced without loss, regard- 
less of the offered load. Using a proxy server, instead of a 
passive monitor, to gather traces also simplifies the task, since 
it eliminates the need to reconstruct data streams from TCP 
packets. 

3.1.1. Tracing environment 
We were able to collect traces at a proxy site that serves a 

large fraction of the clients on the internal network of Digital 
Equipment Corporation. Digital’s network is isolated from the 

182 



Internet by firewalls, and so all Internet access is mediated by 
proxy relays. This site, located in Palo Alto, California, and 
operated by Digital’s Network Systems Laboratory, relayed 
more than a million HTTP requests each weekday. The proxy 
load was spread, more or less equally, across two Alpha- 
Station 250 4/266 systems running Digital UNIX V3.2C. 

To collect these traces, we modified version 3.0 of the 
CERN httpd code, which may be used as either a proxy or a 
server, We made minimal modifications, to reduce the risk of 
introducing bugs or significant performance effects. The 
modified proxy code traces a selected subset of the requests it 
receives: 

0 Only requests going to HTTP servers (i.e., not FlYP or 
Gopher). 

l Only those requests whose URL does not end in one of 
a set of suffixes, such as “.gif’, “jpeg”, “.au”, 
“.mpeg”, etc. These URLs were omitted in order to 
reduce the size of the trace logs. 

This pre-filtering considered only the URL in the request, not 
the HTTP Content-type in the response; therefore, many 
responses with unwanted content-types leaked through. 

For each request that is traced, the proxy records in a disk 
iile the client and server IP addresses, timestamps for various 
events in processing the request, and the complete HTTP 
header and body of both the request and the response, 

This particular proxy installation was configured not to 
cache HTTP responses, for a variety of logistical reasons. 
This means that a number of the responses in the trace con- 
tained a full body (i.e., HTTP status code = 200) when, if the 
proxy had been operating as a cache, they might have instead 
been “Not Modified” responses with no body (i.e., HTTP 
status code = 304). The precise number of such responses 
would depend on the size of the proxy cache and its replace- 
ment policy. We still received many “Not Modified” respon- 
ses, because most of the client hosts employ caches. 

3.1.2. Trace duration 
We collected traces for almost 45 hours, starting in the 

afternoon of Wednesday, December 4, 1996, and ending in the 
morning of December 6. During this period, the proxy site 
handled about 2771975 requests, 504736 of which resulted in 
complete trace records, and generated almost 9 GBytes of 
trace file data. (Many requests were omitted by the pre- 
filtering step, or because they were terminated by the request- 
ing client.) While tracing was in progress, approximately 
8078 distinct client hosts used the proxy site, which (including 
the untraced requests) forwarded almost 21 GBytes of 
response bodies, in addition to HTI’P message headers (whose 
length is not shown in the standard proxy log format). 

3.2. Obtaining packet-level traces 
When a large user community is not constrained to use a 

proxy to reach the Internet, the option of instrumenting a 
proxy is not available, Instead, one can passively monitor the 
network segment connecting this community to the Internet, 
and reconstruct the data stream from the packets captured. 

We collected a packet-level trace at the connection between 
the Internet and the network of AT&T Labs -- Research, in 
Murray Hill, New Jersey. This trace represents a much 
smaller client population than the proxy trace. All packets 

between internal users and TCP port SO (the default HlTP 
server port, used for more than 99.4% of the HTTP references 
seen at this site) on external servers were captured using 
tcpdump [13]. A negligible number of packets were lost due 
to buffer overruns. The raw packet traces were later reas- 
sembled into individual TCP streams. (This is a complex 
process, described in more detail in [14].) These streams were 
then split into files representing the body of each successful 
request and a log containing information about URLs, time- 
stamps, and request and response headers. 

Between Friday, November 8 and Monday, November 25, 
1996, (17 days) we collected a total of 51,100,000 packets, 
corresponding to roughly 19 Gbytes of raw data. Unlike the 
proxy-based trace, tbis one was not pre-filtered to eliminate 
requests based on their content-type or URL extension. 

4. Trace analysis software 
Because the two traces were obtained using different tech- 

niques, we had to write two different systems to analyze them. 

4.1. Proxy trace analysis software 
We wrote software to parse the trace files and extract 

relevant HTTP header fields. The analysis software then 
groups the references by unique resource (URL), and to 
instances of a resource. We use the term instance to describe 
a snapshot in the lifetime of a resource. In our analyses, we 
group responses for a given URL into a single instance if the 
responses have identical last-modified timestamps and 
response body lengths. There may be one or more instances 
per resource, and one or more references per instance. 

The interesting references, for the purpose of this paper, 
were those for which the response carried a full message body 
(i.e., HTI’P status code = 200), since it is only meaningful to 
compute the difference between response bodies for just these 
references. Once the analysis program has grouped the 
references into instances, it then iterates through the referen- 
ces, looking for any full-body reference which follows a pre- 
vious full-body reference to a different instance of the same 
resource. (If two references involve the same instance, then 
presumably the server should have sent a “Not Modified” 
response, with status = 304 and no response body, rather than 
two identical responses.) 

For each such pair of full-body responses for different in- 
stances of a resource, the analysis program computes a delta 
encoding for the second response, based on the first response. 
This is done using several different delta-encoding algorithms; 
the program then reports the size of the resulting response 
bodies for each of these algorithms. 

The delta computation is done by extracting the relevant 
response bodies from the trace log files into temporary files, 
then invoking one of the delta-encoding algorithms on these 
files, and measuring the size of the output. 

The delta-encoding algorithms that we applied include: 
l diff -e: a fairly compact format generated by the UNIX 

“diff” command, for use as input to the “ed” text 
editor (rather than for direct use by humans).’ 

*Because HTML files include lines of arbitrary length,. and 
because the standard ed editor cannot handle long lines, actual 
application of this technique would require use of an improved 
version of ed [I 11. 
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l compressed diff -e: the output of dl#-e, but compressed 
using the gzip program. 

l vdelta: this program inherently compresses its 
output [93. 

We used diff to show how well a fairly naive, but easily 
available algorithm would perform. We also used vdefta, a 
more elaborate algorithm, because it was identified by Hunt et 
al, as the best overall delta algorithm, based on both output 
size and running time [9]. 

The UNIX dif program does not work on binary-format 
input files, so we restricted its application to responses whose 
Content-type field indicated a non-binary format; these in- 
cluded “text/html”, “applicationlpostscript”, “text/plain”, 
“application/x-javascript”, and several other formats. Vdeltu 
was used on all formats. 

4.2. Packet-level trace analysis software 
We processed the individual response body files derived 

from the packet trace (see section 3.2) using a Per1 script to 
compute the size of the deltas between pairs of sequentially 
adjacent full-body responses for the same URL, and the size of 
a compressed version of each full-body response. 

While the proxy-based trace, by constmction, omitted many 
of the binary-format responses in the reference stream, the 
packet-based trace included all content types. We classified 
these into “textual” and “non-textual” responses, using the 
URL extension, the Content-type HTTP response-header, or 
(as a last resort) by scanning the file using a variant of the 
UNIXfile command. 

In our traces we saw 1,366,401 requests, of which 26,501 
(1.9%) had gaps, due to packet losses and artifacts of the 
techniques required to process 19 Gbytes of trace data (see 
[14] for more details on trace-processing). Another 38,589 
(2.8%) of the requests were detected as duplicates created by 
artifacts of the processing techniques. Both these sets were 
excluded from further analysis. To further restrict our analysis 
only to those references where the client received the complete 
HTTP response body, we included only those TCP streams for 
which we collected SYN and FIN packets from both client and 
server, or for which the size of the reassembled response body 
equaled the size specified in the Content-length field of the 
HTTP response. This left us with 1,080,143 usable responses 
(79% of the total). 

5. Results of trace analysis 
This section describes the results of our analysis of the 

proxy and packet-level traces. 

5.1. Overall response statistics for the proxy trace 
The 504736 complete records in the proxy trace represent 

the activity of 7411 distinct client hosts, accessing 22034 dis- 
tinct servers, referencing 238663 distinct resources (URLs). 
Of these URLs, 100780 contained “?” and are classified as 
query URLs; these had 12004 unique prefixes (up to the first 
“1” character). The requests totalled 149 MBytes (mean = 
311 bytes/message). The request headers totalled 146 MBytes 
(mean = 306 bytes), and the response headers totalled 81 
MBytes (mean = 161 bytes). 377962 of the responses carried 
a full body, for a total of 2450 MB (mean = 6798 bytes); most 
of the other types of responses do not carry much (or any) 

information in their bodies. 17211 (3.4%) of the responses 
carried a status code of 304 (Not Modified). 

Note that the mean response body size for all of the referen- 
ces handled by the proxy site (7773 bytes) is somewhat larger 
than the mean size of the response bodies captured in the 
traces. This is probably because the data types, especially 
images, that were filtered out of the trace based on URL exten- 
sion tend to be somewhat larger than average. 

5.2. Overall response statistics for the packet-level trace 
The 1090025 usable records in the packet-level trace 

represent the activity of 465 clients, accessing 20956 servers, 
referencing 625657 distinct URLs. Of these URLs, 105010 
contained “?” and are classified as query URLs; these had 
15438 unique prefixes (up to the first “?” character). 26216 
of the URLs contained “cgi”, and so are probably references 
to CGI scripts. 

The mean request and response header sizes were 281 bytes 
and 173 bytes, respectively. 828837 of the responses carried a 
full body, for a total of 6239 MB of response bodies (mean = 
7882 bytes for full-body responses). 145273 (13.4%) of the 
responses carried a status code of 304 (Not Modified). We 
omitted from our subsequent analyses 8839 full-body respon- 
ses for which we did not have trustworthy timing data, leaving 
a total of 819998 fully-analyzed responses. 

The mean response size for the packet-level trace is higher 
than that for the proxy trace, perhaps because the latter ex- 
cludes binary-format responses, some of which tend to be 
large. The difference may also simply reflect the different 
user communities. 

5.3. Characteristics of responses 
Figure 5-l shows cumulative distributions for total response 

sizes, and for the response-body size for full-body responses, 
for the proxy trace. The distributions for the packet-level trace 
are similar, and omitted for reasons of space. The median 
full-response body size was 3976 bytes for the proxy trace, 
and 3210 bytes for the packet-level traces, which implies that 
the packet-level trace showed larger variance in response size. 
Note that over 99% of the bytes carried in response bodies, in 
this trace, were carried in the status-200 responses; this is 
normal, since HTTP responses with other status codes either 
carry no body, or a very small one. 
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m-m All responses, total size 
8 0.8 - 

- - % 
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Size in bytes 

Figure 5-1: Cumulative distributions of response sizes 
(proxy trace) 

Delta encoding and/or caching are only useful when the 
reference stream includes at least hvo references to the same 
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URL (for delta encoding), or two references to the same (URL, 
last-modified-date) instance (for caching). Figure 5-2 shows 
the cumulative distributions in the proxy trace of the number 
of references per URL, and per instance. Curves are shown 
both for all traced references, and for those references that 
resulted in a full-body response. We logged at least two 
full-body responses for more than half (57%) of the URLS in 
the trace, but only did so for 18% of the instances. In other 
words, resource values seem to change often enough that rela- 
tively few such values are seen twice, even for URLs that are 
referenced more than once. (An alternative explanation is that 
the values do not change, but the origin servers provide 
responses that do not allow caching.) 

100 1000 IORRO 
Number of references 

Figure 5-2: Cumulative distributions of reference counts 
(proxy trace) 

5.4. Calculation of savings 
We define a response as delta-eligible if the trace included 

at least one previous status-200 response for a different in- 
stance of the same resource. (We did not include any response 
that conveyed an instance identical to the previous response 
for the same URL, which probably would not have been 
received by a caching proxy.) In the proxy trace, 142913 of 
the 377962 status-200 responses (37.8%) were delta-eligible. 
In the packet-level trace, 83991 of the 819998 status-200 
responses (10.2%) were delta-eligible. In the proxy trace, only 
18% of the status-200 responses were excluded from con- 
sideration for being identical, compared to 32% for the packet- 
level trace, 

We attribute much of the difference in the number of delta- 
eligible responses to the slower rate of change of image 
responses, which were mostly pre-filtered out of the proxy 
trace, In the packet-level trace, 66% of the status-200 respon- 
ses were GIF or JPEG images, but only 3.5% of those respon- 
ses were delta-eligible; in contrast, 25% of the status-200 
HTML responses were delta-eligible. Some additional part of 
the discrepancy may be the result of the smaller client popula- 
tion in the packet-level traces, which might lead to fewer 
opportunities for sharing. 

Our first analysis is based on the assumption that the deltas 
would be requested by the proxy, and applied at the proxy to 
responses in its cache; if this were only done at the individual 
clients, far fewer of the responses would be delta-eligible. In 
section 5.5.1, we analyze the per-client reference streams 
separately, as if the deltas were applied at the clients. 

For each of the delta-eligible responses, we computed a 
delta using the vdeftu program, based on the previous 
status-200 instance in the trace, and two compressed versions 

of the response, using gzip and vdelta. For those responses 
whose HTTP Content-type field indicated an ASCII text for- 
mat (“textihtml”, “text/plain”, “application/postscript”, and 
a few others), we also computed a delta using the UNIX diff -e 
command, and a compressed version of this delta, using gzip. 
71446 (50%) of the delta-eligible responses in the proxy trace 
were text-format responses, as were 54856 (65%) of the delta- 
eligible responses in the packet-level trace. 

For each response, and for each of the four computations, 
we measured the number of response-body bytes saved (if 
any). We also estimated the amount of retrieval time that 
would have been saved for that response, had the delta or 
compression technique been used. (We did not include the 
computational costs of encoding or decoding; see section 6 for 
those costs.) 

Our estimate of the improvement in retrieval time is 
simplistic, but probably conservative. We estimated the trans- 
fer time for the response from the timestamps in our traces, 
and then multiplied that estimate by the fraction of bytes saved 
to obtain a prediction for the improved response transfer time. 
However, in the proxy traces it is not possible to separate the 
time to transmit the request from the time to receive the first 
part of the response, so our estimate of the original transfer 
time is high. We compensated for that by computing two 
estimates for the transfer time, one which is high (because it 
includes the request time) and one which is low (because it 
does not include either the request time, or the time for receiv- 
ing the first bytes of the response). We multiplied the fraction 
of bytes saved by the latter (low) estimate, and then divided 
the result by the former (high) estimate, to arrive at our es- 
timate of the fraction of time saved. 

For the packet-level traces, we were able to partially 
validate this model. We measured the time it actually took to 
receive the packets including the first N bytes of an M-byte 
transfer, where N is the number of bytes that would have been 
seen if delta encoding or compression had been used. The 
results agree with our simpler model to within about lo%, but 
are still conservative (because we did not model the reduction 
in the size of the last data packet). 

Figure 5-3 shows the distribution of latencies for the impor- 
tant steps in the retrieval of full-body (status-200) responses 
from the proxy trace. The four steps measured are: (1) the 
time for the proxy to read and parse the client’s request, 
(2) the time to connect to the server (including any DNS 
loolo~p cost), (3) the time to forward the request and to receive 
the first bytes of response (i.e., the fust read0 system call), 
and (4) the time to receive the rest of the response, if any. 
(The spikes at 5000 msec may represent a scheduling anomaly 
in the proxy software; the spike at 10000 msec simply 
represents the sum of hvo 5000-msec delays.) We used the 
sum of steps 3 and 4 as the high estimate for transfer time, and 
step 4 by itself as the low estimate. 

Figure 5-4 shows a similar view of the packet-level trace. 
The individual steps are somewhat different (the packet-level 
trace exposes finer detail), and the latencies are all measured 
from the start of the connection (the client’s SYN packet). 
The steps are (1) arrival of the server’s SYN, (2) first packet 
of the HTI’P request, (3) first packet of the response header, 
(4) first packet of the response body, and (5) end of the 
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Figure 5-3: Distribution of latencies for various phases of retrieval (proxy trace) 
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Figure 5-4: Distribution of cumulative latencies to various phases (packet-level trace) 

response, The figure also shows the transfer time for the 
response body, which is similar to (but smaller than) the 
transfer-time estimate used in figure 5-3. 

5.5. Net savings due to deltas and compression 
Table 5-l shows (for the proxy trace) how many of the 

responses were improved, and by how much. The left-hand 
columns show the results relative to just the delta-eligible 
responses; the right-hand columns show the same resuhs, but 
expressed as a fraction of all full-body responses. Because 
these account for more than 99% of the response-body bytes in 
the traces, this is also nearly equivalent to the overall improve- 
ment for all traced responses. 

In table 5-1, the row labeled “unchanged” shows how 
many delta-eligible responses would have resulted in a zero- 
length delta. (These “unchanged” responses are delta-eligible 
because their last-modified time has changed, but their The 
rows Jabelled “diff -e”, “diff -e I gzip”, and “vdelta” show 
the delta-encoding results only for those responses where there 
is at least some difference between a delta-eligible response 
and the previous instance, Two other lines show the results if 
the unchanged responses are included. The rows labelled 
“vdelta compress” and “gzip compress” show the results for 
compressing the responses, without using any delta encoding. 
The final row shows the overall improvement (not including 
unchanged responses), assuming that the server uses 
whichever of these algorithms minimizes each response. 

It is encouraging that, out of all of the Ml-body responses, 
table 5-1 shows over 30% of the response-body bytes could be 
saved by using vdeltu to do delta encoding. This implies that 
the use of delta encoding would provide significant benefits 
for textual content-types. It is remarkable that over 83% of the 
response-body bytes could be saved for delta-eligible respon- 
ses; that is, in those cases where the recipient already has a 
cached copy of a prior instance. And while it appears that the 
potential savings in transmission time is smaller than the 
savings in response bytes, the response-time calculation is 
quite conservative (as noted earlier). 

For the 112354 delta-eligible responses where the delta was 
not zero-length, vdelta gave the best result 94% of the time. 
dig-e without compression and with compression was best for 
about 3% and 2% of the cases, respectively, and simply com- 
pressing the response with gzip worked best in 1% of the 
cases. The vdeltu approach clearly works best, but just using 
di@ -e would save 42% of the response-body bytes for delta- 
eligible responses. That is, almost half of the bytes in “new” 
responses are easily shown to be the same as in their predeces- 
sors. 

Table 5-2 shows, for the responses in the packet-level trace, 
how much improvement would be available using deltas if one 
introduced a proxy at the point where the trace was made. The 
results in table 5-2 are somewhat different from those in table 
5-1, for several reasons. The packet-level trace included a 
larger set of non-textual content types, which leads to a reduc- 
tion in the effectiveness of delta encoding and compression 
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Computation 

uncltanged 

diff -e 

diff -e (inc. unchanged) 

diff -e I gzip 

vdelta 111096 (77.7%) 587 (64.8%) 53330 (30.8%) 111096 (29.4%) 587 (24.0%) 53330 (9.6%) 

vdelta (inc. unclranged) 141655 (99.1%) 751 (83.0%) 68232 (39.3%) 141655 (37.5%) 751 (30.7%) 68232 (12.2%) 

vdelta compress 

gzip compress 

lie& algorithn above 

Relative to delta-eligible responses Relative to all status-200 responses 
N = 142913,906 MBytes, 173416 seconds N = 377962,2462 MBytes, 557373 seconds 

Improved MB@S Retrieval Improved MBytes Retrieval 
references saved time saved references saved time saved 

30559 1 (21.4%) 164 1 (18.2%) 14902 1 (8.6%) 30559 1 (8.1%) 164 1 (6.7%) 14902 1 (2.7%) 

37637 (26.3%) 214 (23.6%) 22179 (12.8%) 37637 (10.0%) 214 (8.7%) 22179 (4.0%) 

68196 (47.7%) 378 (41.8%) 37082 (21.4%) 68196 (18.0%) 378 (15.5%) 37082 (6.7%) 

39649 (27.7%) 265 (29.3%) 31441 (18.1%) 39649 (10.5%) 265 (10.8%) 31441 (5.6%) 

110872 (77.6%) 319 (35.3%) 461059 (26.6%) 320799 (84.9%) 918 (37.5%) 120999 (21.7%) 

105529 (73.8%) 365 (40.3%) 53294 (30.7%) 284551 (75.3%) 947 (38.7%) 121886 (21.9%) 

141693 1(99.1%) I790 1(83.2%) 1 68435 (39.5%) 352912 (93.4%) 1452 (59.3%) 158712 (28.5%) 

Table 5-1: Improvements assuming deltas are applied at proxy (proxy trace) 

Computation 

unchanged 

Relative to delta-eligible responses 
N = 83991,645 MBytes, 195814 seconds 

Improved MBytes Retrieval 
References saved time saved 

26489 (31.5%) 184 (28.5%) 37028 (18.9%) 

37318 (44.4%) 203 (31.5%) 47063 (24.0%) 

Relative to all status-200 responses 
N = 8l.9998,6216 MBytes, 2053775 seconds 

Improved MBytes Retrieval 
References saved time saved 

I gzip compress 

63807 (76.0%) 387 (60.0%) 84091 (42.9%) 

40063 (47.7%) 246 (38.2%) 62511 (31.9%) 

57151 (68.0%) 362 (56.2%) 81572 (41.7%) 

83640 (99.6%) 546 (84.7%) 118600 (60.6%) 

73414 (87.4%) 270 (41.9%) 66411 (33.9%) 

70859 (84.4%) 307 (47.6%) 75321 (38.5%) 

Table 5-2: Improvements assuming deltas are applie 

(see section 5.7). Because the packet-level trace analysis uses 
a somewhat more accurate (and so less conservative) model 
for the savings in transfer time, similar reductions in the num- 
ber of bytes transferred lead to different reductions in transfer 
time, 

Taken together, the results in tables 5-l and 5-2 imply that 
if delta encoding is possible, then it is usually the best way to 
transmit a changed response. If delta encoding is not possible, 
such as the first retrieval of a resource in a reference stream, 
then data compression is usually valuable. 

5.5.1. Analysis assuming client-applied deltas 
Table 5-3 shows (for the proxy trace) what the results 

would be if the deltas were applied individually by each client 
of the proxy, rather than by the proxy itself. For delta-eligible 
responses, client-applied deltas perform about as well as 
proxy-applied deltas, However, a much smaller fraction of the 
responses are delta-eligible at the individual clients (19% in- 
stead of 37,80/o), and so the overall improvement from delta 
encoding is also much smaller. In other words, the success of 
delta encoding depends somewhat on the large, shared cache 

at a proxy (packet- eve1 trace) 

that a proxy would provide. Alternatively, a reference stream 
longer than our two-day trace might show a larger fraction of 
per-client delta-eligible responses. 

5.6. Distribution of savings 
Tables 5-1, 5-2, and 5-3 report mean values for improve- 

ments in the number of bytes saved, and the amount of time 
saved. One would not expect delta encoding to provide the 
same improvement for every delta-eligible response. In some 
cases, especially for small responses or major changes, delta 
encoding can save only a small fraction of the bytes. In other 
cases, such as a small change in a large response, delta encod- 
ing can save most of the response bytes. Figure 5-5 shows the 
distribution of the fraction of response bytes saved, for all 
delta-eligible responses in the proxy trace. (Note that the 
vertical axis is a log scale.) 

Although delta encoding saves few or no bytes for many of 
the delta-eligible responses, the bimodal distribution in figure 
5-5 suggests that when delta encoding does work at all, it 
saves most of the bytes of a response. In fact, for delta- 
eligible responses in the proxy trace, the median number of 
bytes saved per response by delta encoding using vdeltu is 
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Table 5-3: Improvements assuming deltas are applied at individual clients (proxy trace) 

- Using vdelta 
- - - - - - Using ‘diff-e’ 
--- Using ‘di -e’ + gzip 

0 20 40 60 80 100 
% of response-body bytes saved per response 

Figure 5-5: Distribution of response-body bytes saved for delta-eligible responses (proxy trace) 

3051 bytes (compared to a mean of 5517 bytes). For half of 
the delta-eligible responses, vdelfa saved at least 98.5% of the 
response-body bytes (this includes cases where the size of the 
delta is zero, because the response value was unchanged). 
This is encouraging, since it implies that the small overhead of 
the extra HTTP protocol headers required to support delta 
encoding will not eat up most of the benefit. 

5.7. Influence of content-type on coding effectiveness 
The output size of delta-encoding and data-compression al- 

gorithms depends on the nature of the input [9, 121, and so, in 
the case of HTTP, on the content-type of a response. The 
effectiveness of delta encoding also depends on the amount by 
which the two versions differ, which might also vary with 
content-type. We subdivided the packet-level traces by 
content-type and analyzed each subset independently, to see 
how important these dependencies are in practice. 

Table 5-4 shows, first of all, what fraction of the delta- 
eligible responses had bodies that were entirely unchanged 
from the previous instance. This might happen because the 
two requests came from separate clients, or because the server 
was unable to determine that an “If-Modified-Since” request 
in fact refers to an unmodified resource, or because while the 
resource body was not modified, some important part of the 
response headers did change. The table also shows other 
type-specific differences in the data; for example, “text/html” 
responses change more often than “text/plain” responses, but 
the “text/plain” responses that remain unchanged are smaller 
than the “text/plain” responses that do change. The last 
column shows a conservative estimate for the amount of time 
wasted in the transmission of unchanged responses. 

Table 5-5 show the delta-encoding effectiveness, broken 
down by content-type, for vdelta. This table also shows a 
dependency on content-type; for example, delta encoding of 
changed responses seems to be more effective for 
“application/octet-stream” resources than for “text/htmP’ 
resources. (Most “octet-stream” resources seem to be as- 
sociated with the PointCast application.) Somewhat surpris- 
ingly, the vdeh algorithm improved about half of the 
“image/gif” and “imageljpeg” responses, albeit not reducing 
the byte-counts by very much (both these image formats are 
already compressed). We suspect that the savings may come 
from eliding redundant header information in these formats. 

The apparent scarcity of delta-eligible images greatly 
reduces the utility of delta encoding when it is viewed in the 
context of the entire reference stream. However, we believe 
that in many bandwidth-constrained contexts, many users 
avoid the use of images, which suggests that delta encoding 
would be especially applicable in these contexts. 

Table 5-6 shows the effectiveness of compression, using the 
gzip program, broken down by content-type. Although a 
majority of the responses overall were improved by compres- 
sion, for some content-types compression was much less ef- 
fective. It is not surprising that “image/gif” and 
“imageljpeg” responses could not be compressed much, since 
these formats are already compressed when generated. The 
“application/x-msnwebqt” responses (used in a stock-quote 
application) compressed nicely, but doing so would not save 
much transfer time at all, because the responses are already 
quite short. 
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1 Delta-+;gible 1 MBytes 1 Total 1 Refs I Bytes -1~ Time I 
time unchanged unchanged wasted 

All delta-eligible 83991 645 195814 31.5% 28.5% 18.9% 

text/html 45812 400 130378 32.1% 33.4% 22.3% 

application/octet-stream 17797 124 31767 0.1% 0.1% 0.1% 

image/gif 17024 88 26117 60.5% 42.0% 22.8% 

image/jpeg 2101 25 5397 52.5% 43.1% 32.7% 

text/plain 493 2 459 22.1% 21.1% 13.0% 

application/x-msnwebqt 400 0 93 36.0% 28.3% 0.0% 

applicationlotlzer 107 2 440 43.9% 36.4% 12.2% 

imageloflzer 85 0 117 7.1% 14.5% 0.3% 

other or unknown 170 4 1045 32.9% 30.4% 6.1% 

Table 5-4: Summary of unchanged response bodies by content-type (packet-level trace) 

1 Allstatus-200 1 A! delta-eli jble 1 Not including unchanged 1 All delta-eligible 1 

Content-type 1 Refs 1 MBytes 1 Refs MBytes Fo ( Refs (Bytes 1 Time 1. Refs (Bytes (Time I 
improved saved saved improved saved saved 

All conrent-types 1 819998 1 6216 1 83991 645 195814 1 68.0% 1 56.2% 1 41.7% 1 99.6% 1 84.7% 1 60.6% 1 

text/html 185636 1276 45812 

application/octet-stream 77531 819 17797 

130378 67.9% 61.7% 44.8% 100.0% 95.1% 67.1% 

31767 99.9% 85.7% 63.6% 100.0% 85.8% 63.8% 

400 

124 

image/gif 434476 2222 17024 88 

image/jpeg 106039 1513 2101 25 

26117 37.6% 5.4% 6.7% 98.0% 47.4% 29.5% 

5397 47.5% 6.8% 6.1% 100.0% 49.9% 38.8% 

text/plain 7023 67 493 

application/x-msnwebqt 401 0 400 

459 77.7% 70.6% 23.6% 99.8% 91.6% 36.6% 

93 64.0% 57.5% 0.3% 100.0% 85.8% 0.3% 

2 

0 

applicationlozlzer 1301 116 107 2 440 48.6% 7.5% 8.6% 92.5% 43.9% 20.8% 

imagelozlzer 2319 9 85 0 117 92.9% 76.0% 12.4% 100.0% 90.5% 12.7% 

other or unknown 5002 105 170 4 1045 66.5% 40.2% 68.4% 99.4% 70.6% 74.5% 

Table 5-5: Summary of savings by content-type, for vdefta (packet-level trace) 

5.8. Effect of clustering query URLs 
A significant fraction of the URLs seen in the proxy trace 

(42% of the URLs referenced) contained a “?” character, and 
so probably reflect a query operation (for example, a request 
for a stock quote). By convention, responses for such URLs 
are uncachable, since the response might change between 
references (H’ITP/1.1, however, provides explicit means to 
mark such responses as cachable, if appropriate). In this trace, 
23% of the status-200 responses were for query URLs. (There 
are fewer status-200 responses for query URLs than distinct 
query URLs in the trace, because many of these requests yield 
a status-302 response, a redirection to a different URL.) 

House1 and Lindquist [8], in their paper on WebExpress, 
point out that in many cases, the individual responses to dif- 
ferent queries with the same “URL prefix” (that is, the prefix 
of the URL before the “?” character) are often similar enough 
to make delta encoding effective. Since users frequently make 
numerous different queries using the same URL prefix, it 
might be much more effective to compute deltas between dif- 
ferent queries for a given URL prefix, rather than simply be- 

tween different queries using an identical URL. Banga et 
al. [2] make a similar observation. We will refer to this tech- 
nique as “clustering” of different query URLs with a com- 
mon prefix. (Such clustering is done implicitly for POST 
requests, since POST requests carry message bodies, and so 
the response to a POST may depend on input other than the 
u=.) 

The WebExpress paper did not report on the frequency of 
such clustering in realistic traces. We found, for the proxy 
trace, that the 100780 distinct query URLs could be clustered 
using just 12004 prefix URLs. Further, of the 86191 
status-200 responses for query URLs, only 28395 (33%) were 
delta-eligible if the entire URL was used, but 77314 (90%) 
were delta-eligible if only the prefix had to match. 

Tables 5-7 and 5-8 show that clustering not only finds more 
cases where deltas are possible, but also provides significantly 
more reduction in bytes transferred and in response times. In 
fact, a comparison of tables 5-8 and 5-l shows that when 
queries are clustered, delta encoding improves query response 
transfer efficiency more than it does for responses in general. 
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MBytes Total 7 I Refs 
time improved 

Time 
saved 

14.2% 

Bytes 
saved 

19.8% 

Content-type Refs 

6216 12053775 1 72.8% 

2222 1 823893 1 55.7% 4.6% 

68.8% 1276 1 516791 1 99.7% 

2.8% 2.6% 

12.3% application/octet-stream 77531 Yizr+x? 30.6% 

25.3% 

i 35.2% 

56.3% 

20.3% 

0.4% 40: ap;;otion/x-msnwebqt / 

12.6% 

71.7% 

11.0% 

38.8% 
I I 

105 27088 62.5% 26.2% 19.1% 

;s by content-type (all status-200 Table 5-6: ummary of grip compression savin 

(We note, however, that because most query responses are 
generated on the fly, and are somewhat shorter on average 
than other responses, the query processing overhead at the 
server may dominate any savings in transfer time.) 

esponse in pack :&level trace) 

6. Including the cost of end-host processing 
The time savings calculation described in section 5.4 omits 

any latency for creating and applying deltas, or for compress- 
ing and decompressing responses. Since these operations are 
not without cost, in this section we quantify the cost of these 
operations for several typical hardware platforms. We chose 
three systems: a 50 MHz 80486 (running BSD/OS, SPECint92 
= 30), which would now be considered very slow; a 90 MHz 
Pentium (running Linux, SPECint95 = 2.88); and a 400 MHz 
AlphaStation 500 (running Digital UNIX V3.2G), SPECint95 
= 12.3). The 90 MHz Pentium might be typical for a home 
user, and the 400 MHz AlphaStation is typical of a high-end 
workstation, but by no means the fastest one available. 

Table 6-l shows the results, which were computed from 10 
trials on files (or, for deltas, pairs of instances) taken from the 
packet-level trace. For the delta experiments, we used 65 pairs 
of text files and 87 pairs of non-text files; for the compression 
experiments, we used 685 text files and 346 non-text files. 
The files were chosen to be representative of the entire set of 
responses. (We sorted the responses in order of size, and 
chose every ntb entry to select 1% of the pairs, and 0.1% of 
the single-instance responses.) We express the results in terms 
of the throughput (in KByteslsec) for each processing step, 
and for the sequential combination of the server-side and 
client-side processing steps. (Deltas created by dz@are applied 
using the ed program; deltas and compressed output created by 
vdelra are fed to the vupdate program.) For deltas, the 
throughput is calculated based on the average size of the two 
input files. 

We also show the standard deviations of these values. The 
deviations are large because there is a large fixed overhead for 
each operation that does not depend on the size of the input, 
and so tbroughputs for the larger files are much larger than the 
means. Much of this fixed overhead is the cost of starting a 
new process for each computation (which ranges from 15 to 
34 msec. on the systems tested). However, since several of the 
delta and compression algorithms already exist as library func- 

Improved MBytes Retrieval 
Computation References saved time saved 

unchanged 9169 1 (10.6%) 11 1 (2.9%) 1477 1 (1.0%) 

I diff -e 1 5052 1 (5.9%) 1 26 1 (6.7%) 1 3078 1 (2.2%) 1 

diff -e I gzip 5241 (6.1%) 35 (8.9%) 5130 (3.6%) 

vdelta 19197 (22.3%) 62 (15.6%) 12325 (8.7%) 

N = 86191,419 MBytes, 141076 seconds 

Table 5-7: Improvements relative to all status-200 
responses to queries (no clustering) 

Comnut. 
Improved MBytes 
References saved 

Retrieval 
time saved 

unchanged 13905 (16.1%) 5 (1.3%) 1036 (0.7%) 

diff -e 39063 (45.3%) 95 (24.0%) 9488 (6.7%) 

diff-elgzip 40664 (47.2%) 226 (56.7%) 17920 (12.7%) 

*: including unchanged responses 

N= 86191,419 MBytes, 141076 seconds 

Table 5-8: Improvements when clustering queries 
(all status-200 responses to queries) 
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I 50 Mhz 80486 BSD/OS 2.1 1 90 MHz Pentium Linux 2.0.0 1 400 MHz AlphaStn SOO/DUNIX 3.2G 1 

diff -e I gzip 33.6 29.3 0 0 90.7 83.3 0 0 153.4 135.9 0 0 

gunzip I ed 14.8 14 0 0 37.9 33.6 0 0 472.3 407.9 0 0 

bollrsrepsabove 9.6 8.6 0 0 26.6 23.7 0 0 114.4 99.4 0 0 
I I I I I 

Vddh 1 63.4 1 46.4 1 89.4 1 60.8 1 183.1 1 160.1 1 193.4 1 133.2 1 149.6 1 331.9 1 188 1 226.9 

vupdale 100.3 97.3 176.7 175.6 272 301.6 460.3 570.7 331.9 529 341.3 406.3 

both steps above 37.7 29.2 55.9 40.2 106.4 102.2 122 90.1 100.7 133.6 117.1 136 

SZiP 72.9 43.4 106 78.4 100.5 78.6 106 78.4 252 151.6 189 139.4 

gunzip 145.4 124.2 218.6 216.4 199.6 220.6 218.6 216.4 412.9 563.5 374.9 407.4 

both steps above 47.6 31.2 70.1 56.8 64.2 54 70.1 56.8 147.9 103.2 121.8 100.3 

vdelta (compress) 102.4 58.6 86.2 45.6 134.2 105.5 130.4 100.2 121.5 117.4 133.3 118.5 

vupdate (decomp) 181.4 154.9 250.1 264.3 172.7 197.3 259.8 394.7 155.5 87.1 125.9 136.9 

both deps above 63.8 40.9 60.7 38.5 73.1 64.6 79.9 74.2 66.2 46.7 63.3 60.7 

vdelta (library) 924.8 731.6 1579.6 1660.6 2640.3 1879.5 3713.2 3460.6 

vupdate (librav) 5189.5 5325.3 7939.3 10647.5 

both steps above 1606.1 1208.5 2245.6 2338.6 

Values are in Kbyteskc., based on elapsed times IZI: not applicable 

Table 6-1: Overheads for compression and delta encoding 

tions, an implementation could easily avoid this overhead2. 
The last three lines in table 6-l show preliminary measure- 
ments of a library version of the vdelta and vupdafe algorithms 
on two of the tested platforms. The results of these tests 
suggest that simply eliminating the use of a separate process 
reduces overheads by an order of magnitude. Although the 
Alpha’s performance for the non-library versions of vdelta and 
vupdate are poor, relative to the much slower Pentium, the 
results for the library version of vdelta imply that the Alpha’s 
poor performance on the non-library code is due to some 
aspect of the operating system, not the CPU. 

We did not make an attempt to include these costs when 
calculating the potential net savings in section 5.5, because 
(1) we have no idea of the actual performance of the end 
systems represented in the trace, (2) some of the computation 
could be done in parallel with data transfer, since all of the 

2The existing versions of the “dip -e” command generates 
output that is not entirely compatible with the ed command. ed 
requires one additional line in its input stream, which is normally 
generated by running another UNIX command. This adds sig- 
nificant overhead on some versions of UNIX, and since there is a 
simple, efiicient fix for this problem, our measurements do not 
include the execution of this additional command. 

algorithms operate on streams of bytes (3) it would not be 
always necessary to produce the delta-encoded or compressed 
response “on-line”; these could be precomputed or cached at 
the server, and (4) historical trends in processor performance 
promise to quickly reduce these costs. 

However, we make several observations. First, the through- 
puts for almost all of the computations (except, on the slowest 
machine, for “gunzip I ed”) are faster than a Basic-rate ISDN 
line (128 Kbitskec, or 16KBytes/sec), and the library im- 
plementations of vdelta and vzpdare computations are sig- 
nificantly faster than the throughput of a Tl line (1.544 
Mbitskec, or 193 KByteslsec.) This suggests that delta encod- 
ing and compression would certainly be useful for users of 
dialup lines (confirming [2]) and Tl lines, would probably be 
useful for sites with multiple hosts sharing one T3 line, and 
might not be useful over broadband networks (at current levels 
of CPU performance). 

Second, computation speed often scales with CPU perfor- 
mance, but not always. For example, the cost of using ed to 
apply a delta appears to depend on factors other than CPU 
speed. Generally, vdeh seems to be the most time-efficient 
algorithm for both delta encoding and compression, except 
sometimes when compared against “diff -err (which produces 
much larger deltas). 
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Finally, the cost of applying a delta or decompressing a 
response is lower than the cost of creating the delta or com- 
pressed response (except for some uses of ed), for a given 
CPU, This is encouraging, because the more expensive 
response-creation step is also the step more amenable to cach- 
ing or precomputation. 

6.1, What about modem-based compression? 
Many users now connect to the Internet via a modem; in 

fact, most of the slowest links, and hence the ones most likely 
to benefit from data compression, are modem-based. Modem 
modems perform some data compression of their own, which 
could reduce the benefit of end-to-end (HTTP-based) com- 
pression, However, we believe that a program which can see 
the entire input file, and which has available a moderate 
amount of RAM, should be able to compress HTML files 
more effectively than a modem can. 

We conducted a simple experiment to test this, transferring 
both plain-text and compressed versions of several HTML 
files via FTP over both 10 MBit/set Ethernet LAN and 
modem connections. URLs for these files are listed in table 
6-2; our measurements used local copies of these URLs, made 
in January, 1997. Table 6-3 shows the measurements. The 
modems involved were communicating at 28,800 bps, and 
used the V.42bis compression algorithm (a form of the 
Lempel-Ziv-Welch algorithm; gzip uses the Lempel-Ziv algo- 
rithm). We used FIP instead of HTTP for a number of 
reasons, including the lack of caching or rendering in FTP 
clients; the retrieved files were written to disk at the client (a 
75 MHz Intel 486 with Windows 95). 

File I URL I 
A I http://v~wv~.v~3.org/pub/WWWlProtocolsl I 
B I http:llwv~v~.v~3.orglpublWWWl 

C I http:Nwwv~.specbench.org/osg/cpu95/resul~/resul~.ht~ I 

D I http://wwv/.specbench.org/osglcpu95/results/~nt95.ht~ I 

Table 6-2: URLs used in modem experiments 

Table 6-3 shows that while the modem compression al- 
gorithms do work, and the use of high-level compression al- 
gorithms reduce the link-level bit rate, the overall transfer time 
for a given file is shorter with high-level compression than 
with modem compression. For example, the achieved transfer 
rate for file C using only modem compression was 55.3 Kbps 
(over a nominal 28.8 Kbps link), while the transfer rate for the 
vdelta-compressed version of the same file was only 16.3 
Kbps, But, ignoring the costs of compression and decompres- 
sion at the client and server, the overall transfer time for the 
file was 68% shorter when using high-level compression. 

We found that although vdeh provided greater savings for 
large files (C and D), for the smaller files (A and B) the gzip 
algorithm apparently provides better results. It might be use- 
ful for an HTTP server generating compressed responses to 
choose the compression algorithm based on both the document 
size and the characteristics of the network path, although it 
could be difficult to discover if the path involves a compress- 
ing modem. In any case, using high-level compression seems 
almost always faster than relying on modem compression, par- 
ticularly for large tiles. 

When the costs of compression and decompression, shown 
in table 6-4, are included, the overall transfer time for the 
longer files (A, C, and D) is still much better using high-level 
compression. For the measurements in table 6-4, we used the 
slowest available system (the 50 MHz 80486 rmming 
BSD/OS); the results in table 6-l imply that a more modem 
CPU would reduce these costs substantially. 

7. Extending HTTP to support deltas 
We have proposed a simple extension to HTTP to support 

the use of deltas [14], but space here permits only a brief 
description. We assume the use of HTTP/l.1 [6], which 
(while not yet widely deployed) provides better control over 
caching than does HTTP/1.0. 

When an HTTP client wishes to check the validity of a 
cache entry, it sends a “conditional GET” to the server. This 
request indicates the identity of the cached response (using the 
“entity-tag” and “If-None-Match” features of HITP/l.l). 
We extend this by adding an optional “Delta” header, so that 
the client may express to the server the set of delta-encoding 
algorithms it understands. 

If resource has changed, and if the server supports at least 
one of the delta encodings known to the client, the server may 
choose to use a delta-encoded response. The server knows 
exactly which previous instance to base the delta on, since the 
client’s entity-tag specifies this unambiguously. A delta- 
encoded response is marked to indicate which encoding is 
used, and to prevent improper caching by shared proxies. 

The use of deltas would slightly increase HTTP header 
sizes. Conditional request headers would be about 14 bytes 
longer, or 5% of the observed mean request size. (The client 
might choose to omit the “Delta” header on requests for 
images, thus avoiding this overhead.) The headers for delta- 
encoded responses would be slightly longer than for normal 
responses, but the increase would be much less than the 
decrease in response body size. 

8. Future work 
We have not been able to explore all aspects of delta encod- 

ing in this study. Here we discuss several issues that could be 
addressed using a trace-based analysis. Of course, the most 
important proof of the delta-encoding design would be to im- 
plement it and measure its utility in practice, but because 
many variations of the basic design are feasible, we may need 
additional trace-based studies to establish the most effective 
protocol design. (The previous studies [2,8] did implemen- 
tations, but using a double-proxy-based approach that adds 
store-and-forward delays.) 

We also note that all of our analyses would benefit from a 
more accurate model for the transfer time, perhaps including a 
model of network congestion. 

8.1. Delta algorithms for images 
A significant fraction of the responses in our traces (or 

logged but not traced by the proxy), and an even larger frac- 
tion of the response body bytes, were of content-type 
“image/*” (i.e., GIF, JPEG, or other image formats). Delta- 
eligible image responses are relatively rare, but if these could 
be converted to small deltas, that would still save bandwidth. 
While vdeh appears capable of extracting deltas from some 
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Times are the mean of at least 7 trials; standard deviations shown in parentheses 

Table 6-3: Effect of modem-based compression on transfer time 

Tnble G-4: Compression and decompression times (seconds) 
for files in tables 6-2 and 6-3 

pairs of these image files, it performs much worse than it does 
on text files, We also have evidence that vdelru does poorly 
on images generated by cameras, such as the popular “Web- 
Cam” sites, many of which are updated at frequent intervals. 
MPEG compression of video streams reIies on efficient deltas 
between frames, so we have some hopes for a practical image- 
delta algorithm. 

8,2. Effect of cache size on effectiveness of deltas 
Our trace analyses assumed that a client (or proxy) could 

use any previously traced response as the base instance for a 
delta. Although in many cases the two responses involved 
appear close together in the trace, in some cases the interval 
might be quite large. This implies that, in order to obtain the 
full benefits of delta encoding shown in our analyses, the 
client or proxy might have to retain many GBytes of cached 
responses, If so, this would clearly be infeasible for most 
clients, 

It would be fairly simple to analyze the traces using a max- 
imum time-window (e.g., 1 hour or 24 hours) rather than look- 
ing all the way back to the beginning of the trace when search- 
ing for a base instance. By plotting the average improvement 
as a function of the time-window length, one could see how 
this parameter affects performance. It might be somewhat 
harder to model the effect of a limited cache size. 

8.3, Deltas between non-contiguous responses 
Our analyses of delta-eligible responses looked only at the 

most recent status-200 response preceding the one for which a 
delta was computed. This policy simplifies the anaIysis, and 
would also simplify both the client and server implemen- 
tations, since it limits the number of previous instances that 
must be stored at each end. 

It is possible, however, that reductions in the delta sizes 
might be possible by computing deltas between the current 
instance and several previous instances, and then sending the 
shortest. The complexity and space and time overheads of this 

policy are significant, but the policy would not be hard to 
support in the protocol design. We couId modify our trace 
analysis tools to evaluate the best-case savings of such 
policies. 

8.4. Avoiding the cost of creating deltas 
The response-time benefits of delta encoding are tempered 

by the costs of creating and applying deltas. However, as 
shown in section 6, the cost of creating a delta is usually much 
larger than the cost of applying it. 

Fortunately, it may be possible to avoid or hide the cost of 
creating deltas, in many cases. Whenever a server receives 
several requests that would be answered with the same delta- 
encoded responses, it could avoid the computation cost of 
delta-creation by simply caching the delta. We could estimate 
the savings from this technique by counting the number of 
status-304 (Not Modified) and unchanged responses for a 
given URL, following a delta-eligible response for that URL 
in the trace. (The estimate would be conservative, unless the 
trace included the server’s entire reference stream.) 

Even when a delta is used only once, it may be possible for 
the server to hide the cost of creating it by precomputing and 
caching the delta when the resource is actually changed, rather 
than waiting for a request to arrive. While this might substan- 
tially increase the CPU and disk load at the server (because it 
would probably result in the creation of many deltas that will 
never be used), it should reduce the latency seen by the client, 
especially when the original files are huge. Many studies have 
shown that Web server loads are periodic artd bursty at many 
time scales (e.g., [l]). If the server sometimes has background 
cycles to spare, why not spend them to precompute some 
deltas? 

8.5. Decision procedures foi using deltas or compression 
While our results show that deltas and compression improve 

overall performance, for any given request the server’s deci- 
sion to use delta encoding, compression, or simply to send the 
unmodified resource value may not be a trivial one. It would 
not make much sense for the server to spend a lot more time 
deciding which approach to use than it would take to transfer 
the unmodified value. The decision might depend on the size 
and type of the file, the network bandwidth to the client, 
perhaps the presence of a compressing modem on that path 
(see section 6.1), and perhaps the past history of the resource. 
We believe that a simple decision algorithm would be useful, 
but we do not yet know how it should work. 
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9, Summary and conclusions 
Previous studies have described how delta encoding and 

compression could be useful. In this study, we quantified the 
utility based on traces of actual Web users. We found that, 
using the best known delta algorithm, for the proxy trace 83% 
of the delta-eligible response-body bytes and 31% of all 
response-body bytes could have been saved; at least 39% of 
the transfer time for delta-eligible responses and 12% of the 
total transfer time could have been avoided. For the packet- 
level trace, we showed even more savings for delta-eligible 
responses (85% of response-body bytes), although the overall 
improvement (9% of response-body bytes) was much less im- 
pressive, We confirmed that data compression can sig- 
nificantly reduce bytes transferred and transfer time, for some 
content-types, We showed that the added overheads for en- 
coding and decoding are reasonable, and support for deltas 
would add minimal complexity to the HTTP protocol. We 
conclude that delta encoding should be used when possible, 
and compression should be used otherwise, 

The goal for a well-designed distributed system should be to 
take maximal advantage of caches, and to transmit the min- 
imum number of bits required by information theory, given 
acceptable processing costs. delta encoding and compression 
together will help meet these goals. 
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