skip to main content
research-article

On-Chip Universal Supervised Learning Methods for Neuro-Inspired Block of Memristive Nanodevices

Published:27 April 2015Publication History
Skip Abstract Section

Abstract

Scaling down beyond CMOS transistors requires the combination of new computing paradigms and novel devices. In this context, neuromorphic architecture is developed to achieve robust and ultra-low power computing systems. Memristive nanodevices are often associated with this architecture to implement efficiently synapses for ultra-high density. In this article, we investigate the design of a neuro-inspired logic block (NLB) dedicated to on-chip function learning and propose learning strategy. It is composed of an array of memristive nanodevices as synapses associated to neuronal circuits. Supervised learning methods are proposed for different type of memristive nanodevices and simulations are performed to demonstrate the ability to learn logic functions with memristive nanodevices. Benefiting from a compact implementation of neuron circuits and the optimization of learning process, this architecture requires small number of nanodevices and moderate power consumption.

References

  1. Guillaume Agnus, Weisheng Zhao, and Vincent Derycke, et al. 2010. 2-Terminal carbon nanotube programmable devices for adaptive architectures. Adv. Mater. 22, 6, 702--706.Google ScholarGoogle ScholarCross RefCross Ref
  2. Olivier Bichler, Weisheng Zhao, and Fabien Alibart, et al. 2010. Functional model of a nanoparticle organic memory transistor for use as a spiking synapse. IEEE Trans. Electron. Dev. 57, 11, 3115--3122.Google ScholarGoogle ScholarCross RefCross Ref
  3. Olivier Bichler, Weisheng Zhao, and Fabien Alibart, et al. 2013. Pavlov's dog associative learning demonstrated on synaptic-like organic transistors. MIT press journals. Neural Computat. 25, 549--566. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Julien Borghetti, Zhiyong Li, and Joseph Straznicky, et al. 2009. A hybrid nanomemristor/transistor logic circuit capable of self-programming. Proc. Nat. Acad. Sci. USA, 106, 6, 1699--1703.Google ScholarGoogle ScholarCross RefCross Ref
  5. Julien Borghetti, Gregory S. Snider, and Philip J. Kuekes, et al. 2010. Memristive switches enable stateful logic operations via material implication. Nature. 464, 873--876.Google ScholarGoogle ScholarCross RefCross Ref
  6. Djaafar Chabi and Jacques-Olivier Klein. 2010. Height fault tolerance in neural crossbar. In Proceedings of the 5th International Conference on Design and Technology of Integrated Systems in Nanoscale Era (DTIS), 23--25.Google ScholarGoogle ScholarCross RefCross Ref
  7. Djaafar Chabi, Weisheng Zhao, Damien Queriloz, and Jacques-Olivier Klein. 2011. Robust neural logic block (NLB) based on memristor crossbar array. In Proceedings of the IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH), 137--143. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Djaafar Chabi, Weisheng Zhao, Damien Queriloz, and Jacques-Olivier Klein. 2014. Robust learning approach for neuro-inspired nanoscale crossbar architecture. ACM J. Emerg. Tech. Comput. Syst. 10, 1, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. David Choi, Kyu Choi, and John D. Villasenor. 2008. New non-volatile memory structures for FPGA architectures. IEEE Trans. (VLSI) Syst. 16, 7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Hyejung Choi, Heesoo Jung, and Joonmyoung Lee, et al. 2009. An electrically modifiable synapse array of resistive switching memory. Nanotechnology. 20, 34, 345201.Google ScholarGoogle ScholarCross RefCross Ref
  11. Yoon-Hwa Choi, Myeong-Hyeon Lee, and Young Kwan Kim. 2004. A two-level redundancy scheme for enhancing scalability of molecular-based crossbar memories. In Proceedings of 4th IEEE Conference on Nanotechnology, 505--508.Google ScholarGoogle Scholar
  12. Stephen Y. Chou, Peter R. Krauss, and Preston J. Renstrom. 1995. Imprint of sub-25 nm vias and trenches in polymers. Appl. Phys. Lett. 67, 21, 3114.Google ScholarGoogle ScholarCross RefCross Ref
  13. Leon O. Chua and Sung Mo Kang. 1976. Memristive devices and systems. Proc. IEEE 64, 209--223.Google ScholarGoogle ScholarCross RefCross Ref
  14. André DeHon and Konstantin K. Likharev. 2005. Hybrid CMOS/nanoelectronic digital circuits: Devices, architectures, and design automation. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design. 375--382. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Dimitrios Simos, Ioannis Papaefstathiou, and Manolis Katevenis. 2008. Building an FoC using large, buffered crossbar cores. IEEE Design Test Comput. 5, 538--548. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Karim Gacem, Jean-Marie Retrouvey, Djaafar Chabi, et al. 2013. Neuromorphic function learning with carbon nanotube based synapses. Nanotechnology 24, 384013.Google ScholarGoogle ScholarCross RefCross Ref
  17. Pierre-Emmanuel Gaillardon, D. Sachetto, G. B. Beneventi, and M. H. Ben Jamma, et al. 2013. Design and architectural assessment of 3-D resistive memory technologies in FPGAs. IEEE Trans. Nanotechnol. 12, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Chakku Gopalan, Yi Ma, and T. Gallo, et al. 2011. Demonstration of conductive bridging random access memory (CBRAM) in logic CMOS process. Solid-State Electron. 58, 1, 54--61.Google ScholarGoogle ScholarCross RefCross Ref
  19. Tsuyoshi Hasegawa, Takeo Ohno1, and Kazuya Terabe1, et al. 2010. Learning abilities achieved by a single solid state atomic switch. Adv. Mater. 22, 16, 1831--1834.Google ScholarGoogle ScholarCross RefCross Ref
  20. Michel He, J.-O. Klein and Eric Belhaire. 2008. Design and electrical simulation of on-chip neural learning based on nanocomponents. Electron. Lett. 44, 9, 575--576.Google ScholarGoogle ScholarCross RefCross Ref
  21. Yu Huang, Xiangfeng Duan, and Yi Cui, et al. 2001. Logic gates and computation from assembled nanowire building blocks. Science. 294, 5545, 1313--1317.Google ScholarGoogle Scholar
  22. Sung Hyun Jo, Kuk-Hwan Kim, and Wei Lu. 2009. Programmable resistance switching in nanoscale two-terminal devices. Nano Lett. 9, 1, 496--500.Google ScholarGoogle ScholarCross RefCross Ref
  23. Sung Hyun Jo, Ting Chang, and Idongesit Ebong, et al. 2010. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 4, 1297--1301.Google ScholarGoogle ScholarCross RefCross Ref
  24. Philip J. Kuekes, Warren Robinett, Gadiel Seroussi, and R. Stanley Williams. 2005. Defect-tolerant interconnect to nanoelectronic circuits: Internally redundant demultiplexers based on error-correcting codes. Nanotechnology 16, 869--882.Google ScholarGoogle ScholarCross RefCross Ref
  25. Qianxi Lai, Lei Zhang, Zhiyong Li, et al. 2010. Ionic/electronic hybrid materials integrated in a synaptic transistor with signal processing and learning functions. Adv. Mater. 22, 22, 2448--2453.Google ScholarGoogle ScholarCross RefCross Ref
  26. Jung Hoon Lee and Konstantin K. Likharev. 2007. Defect-tolerant nanoelectronic pattern classifiers. Int. J. Circuit Theory Appl. 35, 3, 239--264. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Yubao Li, Alexander Sinitskii, and James M. Tour. 2008. Electronic two-terminal bistable graphitic memories. Nat Mater. 7, 12, 966--971.Google ScholarGoogle ScholarCross RefCross Ref
  28. Jiale Liang and H.-SP Wong. 2010. Cross-point memory array without cell selectors—device characteristics and data storage pattern dependencies. IEEE Trans. Electron Devices 57, 2531--2538.Google ScholarGoogle ScholarCross RefCross Ref
  29. Si-Yu Liao, Montassar Najari, Cristell Maneux, et al. 2011. Design of neuro-inspired learning circuit using OG-CNTFET modelling and technology, IEEE Trans. Circ. Syst. Regul. Pap. 58, 2172--2181.Google ScholarGoogle ScholarCross RefCross Ref
  30. Eike Linn, Roland Rosezin, Carsten Kügeler, et al. 2010. Complementary resistive switches for passive nanocrossbar memories. Nat. Mater. 9, 5, 403--406.Google ScholarGoogle ScholarCross RefCross Ref
  31. Bo Liu, Zhitang Song, Songlin Feng, and Bomy Chen. 2005. Characteristics of chalcogenide nonvolatile memory nano-cell-element based on Sb2Te3 material. Microelectron. Eng. 82, 2, 168--174. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Wei Lu and Charles M. Lieber. 2007. Nanoelectronics from the bottom up. Nat Mater. 6, 11, 841--850.Google ScholarGoogle ScholarCross RefCross Ref
  33. Konstantin Nikolic, Akram Sadek, and Michael Forshaw. 2002. Fault-tolerance technique for nanocomputer. Nanotechnol. 13, 280--346.Google ScholarGoogle ScholarCross RefCross Ref
  34. Seonyeong Park, Youngjae Kim, and Bhuvan Urgaonkar, et al. 2011. A comprehensive study of energy efficiency and performance of flash-based SSD. J. Syst. Archit. 57, 354--365. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Yuriy V. Pershin and Massimiliano Di Ventra. 2010. Experimental demonstration of associative memory with memristive neural networks. Neural Netw. 23, 7, 881--886. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Pujol Hubert, Jacques-Olivier Klein, Eric Belhaire, and Patrick Garda. 1994. RA: An analog neurocomputer for the synchronous Boltzmann machine. In Proceedings of the 4th International Conference on Microelectronics for Neural Networks and Fuzzy Systems. 449--455.Google ScholarGoogle Scholar
  37. Damien Querlioz, Olivier Bichler, and Christian Gamrat. 2011a. A memristor-based spiking neural network immune to device variations. In Proceedings of the International Joint Conference on Neural Networks (IJCNN), 1775--1781.Google ScholarGoogle ScholarCross RefCross Ref
  38. Damien Querlioz, Philippe Dollfus, Olivier Bichler, and Christian Gamrat. 2011b. Learning with memristive devices: How should we model their behavior? In Proceedings of IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH). 150--156. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. José Antonio Pérez-Carrasco, C. Zamarreño-Ramos, T. Serrano-Gotarredina, and B. Linares-Barranco. 2010. On neuromorphic spiking architectures for asynchronous STDP memristive systems. In Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS), 1659--1662.Google ScholarGoogle Scholar
  40. Kyungah Seo, Insung Kim, and Seungjae Jung, et al. 2011. Analog memory and spike-timing-dependent plasticity characteristics of a nanoscale titanium oxide bilayer resistive switching device. Nanotechnology 22, 25, 254023.Google ScholarGoogle ScholarCross RefCross Ref
  41. Gregory S. Snider. 2007. Self-organized computation with unreliable, memristive nanodevices. Nanotechnology 18, 36, 365202.Google ScholarGoogle ScholarCross RefCross Ref
  42. Gregory S. Snider. 2008. Spike-timing-dependent learning in memristive nanodevices. In Proceedings of IEEE International Symposium on Nanoscale Architectures (NANOARCH), 85--92. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Gregory S. Snider. 2011. Instar and outstar learning with memristive nanodevices. Nanotechnology 22, 1, 015201.Google ScholarGoogle ScholarCross RefCross Ref
  44. Dmitri B. Strukov and Konstantin K. Likharev. 2005. CMOL FPGA: A reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices RID B-2689-2009. Nanotechnology 16, 6, 888--900.Google ScholarGoogle ScholarCross RefCross Ref
  45. Dmitri B. Strukov, Gregory S. Snider, Duncan R. Stewart, and R. Stanley Williams. 2008. The missing memristor found. Nature. 453, 80--83.Google ScholarGoogle ScholarCross RefCross Ref
  46. Dmitri B. Strukov and R. Stanley Williams. 2009. Four-dimensional address topology for circuits with stacked multilayer crossbar arrays. Proc. Nat. Acad. Sci. USA 106, 48, 20155--20158.Google ScholarGoogle ScholarCross RefCross Ref
  47. D. Tank and John J. Hopfield. 1986. Simple 'neural' optimization networks: An A/D converter, signal decision circuit, and a linear programming circuit. IEEE Trans. Circuits Systems. 33, 5, 533.Google ScholarGoogle ScholarCross RefCross Ref
  48. James M. Tour, Long Cheng, and David P. Nackashi, et al. 2003. NanoCell electronic memories. J. Amer. Chem. Soc. 125, 43, 13279--13283.Google ScholarGoogle ScholarCross RefCross Ref
  49. Massimiliano Versace and Ben Chandler. 2010. The brain of a new machine. IEEE Spectrum 47, 12, 30--37. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Pascal O. Vontobel, Warren Robinett, Philip J. Kuekes, and Duncan R. Stewart, et al. 2009. Writing to and reading from a nano-scale crossbar memory based on memristors. Nanotechnology 20, 42, 425204.Google ScholarGoogle ScholarCross RefCross Ref
  51. Frank Zhigang Wang, Helian Na, and Sining Wu, et al. 2010. Delayed switching in memristors and memristive systems. IEEE Electron. Devi. Lett. 31, 755--757.Google ScholarGoogle ScholarCross RefCross Ref
  52. Zhaohao Wang, Weisheng Zhao, and Wang Kang, et al. 2014. Ferroelectric tunnel memristor-based neuromorphic network with 1T1R crossbar architecture. In Proceedings of the International Joint Conference on Neural Networks (IJCNN), 29--34.Google ScholarGoogle ScholarCross RefCross Ref
  53. Rainer Waser. 2009. Resistive non-volatile memory devices. Microelectron. Eng. 86, 7--9, 1925--1928. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Bernard Widrow and Marcian E. Hoff. 1960. Adaptive switching circuits. IRE WESCON Convention Record, 96--104.Google ScholarGoogle Scholar
  55. Qiangfei Xia, Warren Robinett, and Michael W. Cumbie, et al. 2009. Memristor-CMOS hybrid integrated circuits for reconfigurable logic. Nano Lett. 9, 3640--5.Google ScholarGoogle ScholarCross RefCross Ref
  56. J. Joshua Yang, Julien Borghetti, David Murphy, Duncan R. Stewart, and R. Stanley Williams. 2009. A family of electronically reconfiguiable nanodevices. Adv. Mater. 21, 3754--3758.Google ScholarGoogle ScholarCross RefCross Ref
  57. Shimeng Yu, Yi Wu, and H.-S. Philip Wong. 2011. Investigating the switching dynamics and multilevel capability of bipolar metal oxide resistive switching memory. Appl. Phys. Lett. 98, 10, p. 103514.Google ScholarGoogle ScholarCross RefCross Ref
  58. Weisheng Zhao, Guillaume Agnus, and Vincent Derycke, et al. 2010. Nanotube devices based crossbar architecture: Toward neuromorphic computing, Nanotechnology 21, 175202.Google ScholarGoogle ScholarCross RefCross Ref
  59. Weisheng Zhao, Celso Accoto, and Jacques-Olivier Klein, et al. 2012. Cross-point architecture for spin transfer torque magnetic random access memory. IEEE Trans. Nanotechnology 11, 907--917. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. On-Chip Universal Supervised Learning Methods for Neuro-Inspired Block of Memristive Nanodevices

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Journal on Emerging Technologies in Computing Systems
          ACM Journal on Emerging Technologies in Computing Systems  Volume 11, Issue 4
          Special Issues on Neuromorphic Computing and Emerging Many-Core Systems for Exascale Computing
          April 2015
          231 pages
          ISSN:1550-4832
          EISSN:1550-4840
          DOI:10.1145/2767119
          Issue’s Table of Contents

          Copyright © 2015 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 27 April 2015
          • Accepted: 1 April 2014
          • Revised: 1 December 2013
          • Received: 1 July 2013
          Published in jetc Volume 11, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader