skip to main content
10.1145/2493432.2493449acmconferencesArticle/Chapter ViewAbstractPublication PagesubicompConference Proceedingsconference-collections
research-article

Walk detection and step counting on unconstrained smartphones

Published:08 September 2013Publication History

ABSTRACT

Smartphone pedometry offers the possibility of ubiquitous health monitoring, context awareness and indoor location tracking through Pedestrian Dead Reckoning (PDR) systems. However, there is currently no detailed understanding of how well pedometry works when applied to smartphones in typical, unconstrained use.

This paper evaluates common walk detection (WD) and step counting (SC) algorithms applied to smartphone sensor data. Using a large dataset (27 people, 130 walks, 6 smartphone placements) optimal algorithm parameters are provided and applied to the data. The results favour the use of standard deviation thresholding (WD) and windowed peak detection (SC) with error rates of less than 3%. Of the six different placements, only the back trouser pocket is found to degrade the step counting performance significantly, resulting in undercounting for many algorithms.

References

  1. H. J. Ailisto, M. Lindholm, J. Mantyjarvi, E. Vildjiounaite, and S. M. Makela. Identifying people from gait pattern with accelerometers. In SPIE, volume 5779, page 7, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  2. F. Allen, E. Ambikairajah, N. Lovell, and B. Celler. An adapted gaussian mixture model approach to accelerometry-based movement classification using time-domain features. In EMBS '06, pages 3600--3603, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  3. A. Avci, S. Bosch, M. Marin-Perianu, R. Marin-Perianu, and P. J. M. Havinga. Activity recognition using inertial sensing for healthcare, wellbeing and sports applications: A survey. In ARCS '10, pages 167--176, 2010.Google ScholarGoogle Scholar
  4. L. Bao and S. S. Intille. Activity recognition from user-annotated acceleration data. In PERVASIVE '04, pages 1--17, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  5. P. Barralon, N. Vuillerme, and N. Noury. Walk detection with a kinematic sensor: Frequency and wavelet comparison. In EMBS '06, pages 1711 --1714, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  6. S. Beauregard. A helmet-mounted pedestrian dead reckoning system. In IFAWC '06, pages 1--11, 2006.Google ScholarGoogle Scholar
  7. C. M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics). Springer, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. S. Chen, J. Lach, O. Amft, M. Altini, and J. Penders. Unsupervised activity clustering to estimate energy expenditure with a single body sensor. In BSN '13, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  9. B. Choe, J.-K. Min, and S.-B. Cho. Online gesture recognition for user interface on accelerometer built-in mobile phones. In ICONIP '10, pages 650--657, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. W. Dargie. Analysis of time and frequency domain features of accelerometer measurements. In ICCCN '09, pages 1--6, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. J. Demsar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7:1--30, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. D. Figo, P. C. Diniz, D. R. Ferreira, and J. M. P. Cardoso. Preprocessing techniques for context recognition from accelerometer data. Personal and Ubiquitous Computing, 14(7):645--662, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. M. Friedman. A comparison of alternative tests of significance for the problem of m rankings. The Annals of Mathematical Statistics, 11:86--92, 1940.Google ScholarGoogle ScholarCross RefCross Ref
  14. D. Gafurov and E. Snekkenes. Towards understanding the uniqueness of gait biometric. In FG '08, pages 1--8, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  15. A. R. Golding and N. Lesh. Indoor navigation using a diverse set of cheap, wearable sensors. In ISWC '99, pages 29--36, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. P. Goyal, V. Ribeiro, H. Saran, and A. Kumar. Strap-down pedestrian dead-reckoning system. In IPIN '11, pages 1--7, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  17. R. Harle. A survey of indoor inertial positioning systems for pedestrians. IEEE Communications Surveys & Tutorials, PP, 2013.Google ScholarGoogle Scholar
  18. Harvey WeinBerg. AN-602: Using the ADXL202 in Pedometer and Personal Navigation. Technical report, Analog Devices, 2002.Google ScholarGoogle Scholar
  19. Z. He, Z. Liu, L. Jin, L.-X. Zhen, and J.-C. Huang. Weightlessness feature - a novel feature for single tri-axial accelerometer based activity recognition. In ICPR '08, pages 1--4, 2008.Google ScholarGoogle Scholar
  20. T. Huynh and B. Schiele. Analyzing features for activity recognition. In sOc-EUSAI '05, pages 159--163, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. R. Ibrahim, E. Ambikairajah, B. Celler, and N. Lovell. Time-frequency based features for classification of walking patterns. In DSP '07, pages 187--190, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  22. R. Iman and J. Davenport. Approximations of the critical region of the friedman statistic. Communications in Statistics -- Theory and Methods, 9:571--595, 1980.Google ScholarGoogle Scholar
  23. T. Iso and K. Yamazaki. Gait analyzer based on a cell phone with a single three-axis accelerometer. In Mobile HCI '06, pages 141--144, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. J. J. Kavanagh and H. B. Menz. Accelerometry: a technique for quantifying movement patterns during walking. Gait & posture, 28(1):1--15, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  25. J. W. Kim, H. J. Jang, D.-H. Hwang, and C. Park. A Step, Stride and Heading Determination for the Pedestrian Navigation System. Journal of Global Positioning Systems, 3(1--2):273--279, 2004.Google ScholarGoogle Scholar
  26. T. Kobayashi, K. Hasida, and N. Otsu. Rotation invariant feature extraction from 3-d acceleration signals. In ICASSP '11, pages 3684--3687, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  27. A. Krause, D. P. Siewiorek, A. Smailagic, and J. Farringdon. Unsupervised, dynamic identification of physiological and activity context in wearable computing. In ISWC '03, pages 88--97, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. J. B. Kruskal and M. Liberman. The symmetric time-warping problem: from continuous to discrete. In Time Warps, String Edits, and Macromolecules - Theory and Practice of Sequence Comparison, 1983.Google ScholarGoogle Scholar
  29. J. Kwapisz, G. Weiss, and S. Moore. Cell phone-based biometric identification. In BTAS '10, pages 1--7, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  30. J. R. Kwapisz, G. M. Weiss, and S. Moore. Activity recognition using cell phone accelerometers. SIGKDD Explorations, 12(2):74--82, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. S. W. Lee and K. Mase. Activity and Location Recognition Using Wearable Sensors. IEEE Pervasive Computing, 1(3):24--32, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. J. Lester, C. Hartung, L. Pina, R. Libby, G. Borriello, and G. Duncan. Validated caloric expenditure estimation using a single body-worn sensor. In Ubicomp '09, page 225, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. F. Li, C. Zhao, G. Ding, J. Gong, C. Liu, and F. Zhao. A reliable and accurate indoor localization method using phone inertial sensors. In Ubicomp '12, pages 421--430, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. S. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information Theory, 28(2):129--137, 1982. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Y. Makihara, T. N. Thanh, H. Nagahara, R. Sagawa, Y. Mukaigawa, and Y. Yagi. Phase registration of a single quasi-periodic signal using self dynamic time warping. In ACCV '10, pages 667--678, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. S. Mallat. A wavelet tour of signal processing. Academic Press, 1999.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. A. Mannini and A. Sabatini. A hidden Markov model-based technique for gait segmentation using a foot-mounted gyroscope. In EMBC '11, pages 4369--4373, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  38. A. Mannini and A. M. Sabatini. Accelerometry-based classification of human activities using markov modeling. Comp. Int. and Neurosc., 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. J. Mantyjarvi, J. Himberg, and T. Seppanen. Recognizing human motion with multiple acceleration sensors. In SMC '01, volume 2, pages 747--752 vol.2, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  40. M. Marschollek, M. Goevercin, K.-H. Wolf, B. Song, M. Gietzelt, R. Haux, and E. Steinhagen-Thiessen. A performance comparison of accelerometry-based step detection algorithms on a large, non-laboratory sample of healthy and mobility-impaired persons. In EMBS '08, volume 2008, pages 1319--22, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  41. C. Nickel, H. Brandt, and C. Busch. Benchmarking the performance of SVMs and HMMs for accelerometer-based biometric gait recognition. In ISSPIT '11, pages 281--286, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. C. Nickel, H. Brandt, and C. Busch. Classification of acceleration data for biometric gait recognition on mobile devices. In BIOSIG '11, pages 57--66, 2011.Google ScholarGoogle Scholar
  43. M. Nyan, F. Tay, K. Seah, and Y. Sitoh. Classification of gait patterns in the time-frequency domain. Journal of Biomechanics, 39(14):2647--2656, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  44. T. Pfau, M. Ferrari, K. Parsons, and A. Wilson. A hidden markov model-based stride segmentation technique applied to equine inertial sensor trunk movement data. Journal of Biomechanics, 41(1):216--220, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  45. S. Pirttikangas, K. Fujinami, and T. Nakajima. Feature selection and activity recognition from wearable sensors. In UCS '06, pages 516--527, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. S. J. Preece, J. Y. Goulermas, L. P. J. Kenney, D. Howard, K. Meijer, and R. Crompton. Activity identification using body-mounted sensors -- a review of classification techniques. Physiological Measurement, 30(4):R1, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  47. A. Rai, K. K. Chintalapudi, V. N. Padmanabhan, and R. Sen. Zee - zero-effort crowdsourcing for indoor localization. In Mobicom '12, page 293, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. C. Randell, C. Djiallis, and H. Muller. Personal position measurement using dead reckoning. In ISWC '03, pages 166--173, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. N. Ravi, N. Dandekar, P. Mysore, and M. L. Littman. Activity recognition from accelerometer data. In AAAI '05, pages 1541--1546, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. L. Rong, D. Zhiguo, Z. Jianzhong, and L. Ming. Identification of individual walking patterns using gait acceleration. In ICBBE '07, pages 543--546, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  51. B. Santhiranayagam, D. Lai, C. Jiang, A. Shilton, and R. Begg. Automatic detection of different walking conditions using inertial sensor data. In IJCNN '12, pages 1--6, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  52. P. Siirtola and J. Röning. Recognizing human activities user-independently on smartphones based on accelerometer data. IJIMAI, 1(5):38--45, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  53. P. (Sundar) Balakrishnan, M. Cooper, V. Jacob, and P. Lewis. A study of the classification capabilities of neural networks using unsupervised learning: A comparison with k-means clustering. Psychometrika, 59(4):509--525, 1994.Google ScholarGoogle ScholarCross RefCross Ref
  54. C. Torrence and G. P. Compo. A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79(1):61--78, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  55. M. Vetterli and J. Kovacevic. Wavelets and Subband Coding. Prentice Hall PTR, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. A. Viterbi. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Transactions on Information Theory, 13(2):260--269, 1967. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. J.-H. Wang, J.-J. Ding, Y. Chen, and H.-H. Chen. Real time accelerometer-based gait recognition using adaptive windowed wavelet transforms. In APCCAS '12, pages 591--594, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  58. O. Woodman and R. Harle. Pedestrian Localisation for Indoor Environments. In UbiComp '08, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. A. Ying, Hong, C. A. Silex, A. Schnitzer, A., S. A. Leonhardt, and M. Schiek. Automatic Step Detection in the Accelerometer Signal. In S. Leonhardt, T. Falck, and P. Mähönen, editors, BSN '07, 2007.Google ScholarGoogle Scholar

Index Terms

  1. Walk detection and step counting on unconstrained smartphones

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        UbiComp '13: Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing
        September 2013
        846 pages
        ISBN:9781450317702
        DOI:10.1145/2493432

        Copyright © 2013 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 8 September 2013

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        UbiComp '13 Paper Acceptance Rate92of394submissions,23%Overall Acceptance Rate764of2,912submissions,26%

        Upcoming Conference

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader