skip to main content
10.1145/2462456.2464441acmconferencesArticle/Chapter ViewAbstractPublication PagesmobisysConference Proceedingsconference-collections
research-article

CrowdAtlas: self-updating maps for cloud and personal use

Published:25 June 2013Publication History

ABSTRACT

The inaccuracy of manually created digital road maps is a persistent problem, despite their high economic value. We present CrowdAtlas, which automates map update based on people's travels, either individually or crowdsourced. Its mobile navigation app detects significant portions of GPS traces that do not conform to the existing map, as determined by state-of-the-art Viterbi map matching. When there is sufficient evidence collected, map inference algorithms can automatically update the map. The CrowdAtlas server aggregates exceptional traces from users with the navigation app as well as from other, large-scale data sources. From these it automatically generates high quality map updates, which can be propagated to its navigation app and other interested applications. Using CrowdAtlas app, we mapped out a 4.5 km^2 street block in Shanghai in less than half an hour and built a walking/cycling map of the SJTU campus. Using taxi traces collected from Beijing, we contributed completely computer-generated roads for this large, 61 km of missing roads to OpenStreetMap, the first set of open-source map community.

References

  1. GPS dataset. grid.sjtu.edu.cn/mapupdate/.Google ScholarGoogle Scholar
  2. NAVTEQ. navteq.com/company_history.htm.Google ScholarGoogle Scholar
  3. OsmAnd: OSM Automated Navigation Directions Android app. www.osmand.net.Google ScholarGoogle Scholar
  4. Storm: Distributed and fault-tolerant realtime computation. storm-project.net/.Google ScholarGoogle Scholar
  5. TomTom Map Update Service. www.tomtom.com/en_gb/maps/map-update-service/.Google ScholarGoogle Scholar
  6. G. Agamennoni, J. I. Nieto, and E. M. Nebot. Robust inference of principal road paths for intelligent transportation systems. IEEE Trans. on Intelligent Transportation Systems, 12(1):298--308, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. M. Ali, T. Rautman, J. Krumm, and A. Teredesai. ACM SIGSPATIAL Cup 2012. In GIS, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. H. Alt, A. Efrat, G. Rote, and C. Wenk. Matching planar maps. Journal of Algorithms, 49(2):262--283, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. J. Angwin and J. V.-Devries. Apple, Google collect user data. Wall Street Journal, April 2011.Google ScholarGoogle Scholar
  10. R. K. Balan, K. X. Nguyen, and L. Jiang. Real-time trip information service for a large taxi fleet. In MobiSys, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. J. Biagioni and J. Eriksson. Inferring road maps from GPS traces: Survey and comparative evaluation. In Transportation Research Board, 2012.Google ScholarGoogle Scholar
  12. J. Biagioni and J. Eriksson. Map inference in the face of noise and disparity. In ACM GIS, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. A. Biem, E. Bouillet, H. Feng, A. Ranganathan, A. Riabov, O. Verscheure, H. N. Koutsopoulos, and C. Moran. IBM Infosphere streams for scalable, real-time, intelligent transportation services. In SIGMOD, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk. On map-matching vehicle tracking data. In VLDB, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. L. Cao and J. Krumm. From GPS traces to a routable road map. In ACM GIS, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. C. Chen and Y. Cheng. Roads digital map generation with multi-track GPS data. In International Workshop on Geoscience and Remote Sensing, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. D. Chen, D. Chen, L. J. Guibas, J. Hershberger, and J. Sun. Road network reconstruction for organizing paths. In SODA, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Y. Chen and J. Krumm. Probabilistic modeling of traffic lanes from GPS traces. In ACM GIS, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. T. Cook. A letter from Tim Cook on maps, 2012. apple.com/letter-from-tim-cook-on-maps.Google ScholarGoogle Scholar
  20. J. J. Davies, A. R. Beresford, and A. Hopper. Scalable, distributed, real-time map generation. IEEE Pervasive Computing, 5(4):47--54, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. D. H. Douglas and T. K. Peucker. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica, 10(2):112--122, Oct. 1973.Google ScholarGoogle ScholarCross RefCross Ref
  22. B. Dudley. Google Maps gets bike routes, built in Fremont. The Seattle Times, March 2011.Google ScholarGoogle Scholar
  23. S. Edelkamp and S. Schrödl. Route planning and map inference with global positioning traces. In Computer Science in Perspective, p.128--151, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. J. Eriksson et al. The pothole patrol: using a mobile sensor network for road surface monitoring. In MobiSys, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. R. Gordon and J. Tucker. Ruling paves way for San Francisco bike lanes. San Francisco Chronicle, August 2010.Google ScholarGoogle Scholar
  26. M. Haridasan, I. Mohomed, D. Terry, C. A. Thekkath, and L. Zhang. Startrack next generation: A scalable infrastructure for track-based applications. In OSDI, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. B. Hoh, M. Gruteser, R. Herring, J. Ban, D. B. Work, J. C. Herrera, A. M. Bayen, M. Annavaram, and Q. Jacobson. Virtual trip lines for distributed privacy-preserving traffic monitoring. In MobiSys, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. J. Hu, A. Razdan, J. Femiani, M. Cui, and P. Wonka. Road network extraction and intersection detection from aerial images by tracking road footprints. IEEE T. Geoscience and Remote Sensing, 45(12--2):4144--4157, 2007.Google ScholarGoogle Scholar
  29. C. Johnson, C. Shea, and C. Holloway. The role of trust and interaction in GPS related accidents. In Int'l Conference on Systems Safety, 2008.Google ScholarGoogle Scholar
  30. S. Karagiorgou and D. Pfoser. On vehicle tracking data-based road network generation. In Proceedings of the 20th International Conference on Advances in Geographic Information Systems, SIGSPATIAL '12, pages 89--98, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. B. Kégl, A. Krzyzak, T. Linder, and K. Zeger. Learning and design of principal curves. IEEE Trans. Pattern Anal. Mach. Intell., 22(3):281--297, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. X. Liu, J. Biagioni, J. Eriksson, Y. Wang, G. Forman, and Y. Zhu. Mining large-scale, sparse GPS traces for map inference: Comparison of approaches. In KDD, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. N. Lomas. GPS driving British motorists to distraction. Bloomberg Businessweek, July 2008.Google ScholarGoogle Scholar
  34. Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, and Y. Huang. Map-matching for low-sampling-rate GPS trajectories. In ACM GIS, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. S. Madden. Keynote: Going big on spatial data. In ACM GIS, 2012.Google ScholarGoogle Scholar
  36. A. C. Madrigal. How Google builds its maps. The Atlantic, Sept 2012.Google ScholarGoogle Scholar
  37. S. Mathur, T. Jin, N. Kasturirangan, J. Chandrasekaran, W. Xue, M. Gruteser, and W. Trappe. Parknet: drive-by sensing of road-side parking statistics. In MobiSys, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. O. Mazhelis. Using recursive Bayesian estimation for matching GPS measurements to imperfect road network data. In IEEE Conference on Intelligent Transportation Systems, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  39. B. McClendon (Google VP). Keynote: The path from paper to product: How spatial research reaches users. In ACM GIS, 2012.Google ScholarGoogle Scholar
  40. P. Newson and J. Krumm. Hidden markov map matching through noise and sparseness. In ACM GIS, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. B. Niehoefer, R. Burda, C. Wietfeld, F. Bauer, and O. Lueert. GPS community map generation for enhanced routing methods based on trace-collection by mobile phones. In Advances in Satellite and Space Communications, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. J. Paek, J. Kim, and R. Govindan. Energy-efficient rate-adaptive GPS-based positioning for smartphones. In MobiSys, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. S. Reddy, M. Mun, J. Burke, D. Estrin, M. H. Hansen, and M. B. Srivastava. Using mobile phones to determine transportation modes. TOSN, 6(2), 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. S. Rogers, P. Langley, and C. Wilson. Mining gps data to augment road models. In KDD, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. S. Schrödl, S. Schrödl, K. Wagstaff, S. Rogers, P. Langley, and C. Wilson. Mining GPS traces for map refinement. Data Min. Knowl. Discov., 9(1):59--87, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Y.-W. Seo, C. Urmson, and D. Wettergreen. Exploiting publicly available cartographic resources for aerial image analysis. In GIS, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. W. Shi, S. Shen, and Y. Liu. Automatic generation of road network map from massive GPS, vehicle trajectories. In IEEE Conf. on Intelligent Transportation Systems, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  48. R. Sibson. Slink: An optimally efficient algorithm for the single-link cluster method. The Computer Journal, 16(1):30--34, 1973.Google ScholarGoogle ScholarCross RefCross Ref
  49. A. Skabardonis, T. Chira-Chavala, and D. Rydzewski. The I-880 field experiment: Effectiveness of incident detection using cellular phones. Technical Report UCB-ITS-PRR-98--1, University of California, Berkeley, 1998.Google ScholarGoogle Scholar
  50. A. Steiner and A. Leonhardt. A map generation algorithm using low frequency vehicle position data. In Transportation Research Board, 2011.Google ScholarGoogle Scholar
  51. A. Thiagarajan et al. Accurate, low-energy trajectory mapping for mobile devices. In NSDI, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. T. Vanderbilt. It wasn't me, officer! It was my GPS. Slate, June 2010. www.slate.com.Google ScholarGoogle Scholar
  53. N. R. Velaga, N. R. Velaga, M. A. Quddus, and A. L. Bristow. Developing an enhanced weight-based topological map-matching algorithm for intelligent transport systems. Transportation Research Part C: Emerging Technologies, 17(6):672--683, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  54. R. Wabash. 9 car accidents caused by Google Maps & GPS. Ranker, April 2012. ranker.com.Google ScholarGoogle Scholar
  55. Y. Wang, Y. Zhu, Z. He, Y. Yue, and Q. Li. Challenges and opportunities in exploiting large-scale GPS probe data. Technical Report HPL-2011--109, HP Labs, 2011.Google ScholarGoogle Scholar
  56. H. Wei, Y. Wang, G. Forman, Y. Zhu, and H. Guan. Fast Viterbi map matching with tunable weight functions. In GIS, 2012. (SIGSPATIAL Cup). Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. C. E. White, D. Bernstein, and A. L. Kornhauser. Some map matching algorithms for personal navigation assistants. Transportation Research Part C, 8(1--6):91--108, 2000.Google ScholarGoogle Scholar
  58. S. Worrall and E. Nebot. Automated process for generating digitised maps through GPS data compression. In Australasian Conference on Robotics and Automation, 2007.Google ScholarGoogle Scholar
  59. J. Yoon, B. Noble, and M. Liu. Surface street traffic estimation. In MobiSys, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. J. Yuan, Y. Zheng, X. Xie, and G. Sun. T-Drive: Enhancing driving directions with taxi drivers' intelligence. IEEE Trans. Knowl. Data Eng., 25(1):220--232, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Y. Zheng, L. Liu, L. Wang, and X. Xie. Learning transportation mode from raw GPS data for geographic applications on the web. In WWW, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. CrowdAtlas: self-updating maps for cloud and personal use

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in
            • Published in

              cover image ACM Conferences
              MobiSys '13: Proceeding of the 11th annual international conference on Mobile systems, applications, and services
              June 2013
              568 pages
              ISBN:9781450316729
              DOI:10.1145/2462456

              Copyright © 2013 ACM

              Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 25 June 2013

              Permissions

              Request permissions about this article.

              Request Permissions

              Check for updates

              Qualifiers

              • research-article

              Acceptance Rates

              MobiSys '13 Paper Acceptance Rate33of211submissions,16%Overall Acceptance Rate274of1,679submissions,16%

              Upcoming Conference

              MOBISYS '24

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader