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ABSTRACT
Events play a prominent role in our lives, such that many so-
cial media documents describe or are related to some event.
Organizing social media documents with respect to events
thus seems a promising approach to better manage and or-
ganize the ever-increasing amount of content in social me-
dia applications. A challenge is to automatize this process
so that incoming documents can be assigned to their corre-
sponding event without any user intervention. We present
a system that is able to classify a stream of social media
data into a growing and evolving set of events. By doing
this, we successfully address two key problems that arise
in this context: i) scaling to the data sizes and rates en-
countered in social media applications, and ii) tackling the
new event detection problem, i.e. the problem of determin-
ing whether an incoming data item belongs to a new or a
known event. We successfully address these problems by
i) including a candidate retrieval step that retrieves a set
of event candidates that the incoming data point is likely
to belong to and ii) by including a function trained using
machine learning techniques to determine whether the in-
coming data item belongs to the top scoring candidate or
rather to a new event. We show that our system addresses
the above mentioned challenging issues successfully and that
it outperforms other state-of-the-art approaches in terms of
quality and scalability.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval; D.2.8 [Software Engineering]:
Metrics—Complexity Measures, Performance Measures

General Terms
Algorithms, Experimentation, Measurement, Performance
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Clustering, Classification, Event Identification, SVMs
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1. INTRODUCTION
Social Media Applications are proliferating and they are

characterized by an ever-increasing amount of content that
represents a never-ending data stream growing at high rates.

As events play a prominent role in our lives, many of the
documents uploaded to social media sites are related to some
event. Classifying social media documents by the events
they represent or are related to is thus a promising approach
to better manage and organize the ever-increasing amount
of user-generated content in social media applications.

Many social media sites support tagging to better organize
the content and thus facilitate the search for specific data
items. Such tags can also be used to organize data according
to the events they belong to. For this purpose, last.fm1 hosts
an event database with unique identifiers in the form of so
called “machine tags” that can be used to tag pictures –
for example when uploading them to Flickr – thus assigning
them to one or more uniquely identified events. While some
users exploit such tags, the majority of pictures on Flickr
are not assigned to events via such machine tags.

Given the above explanations, it seems clear there is an
impending need for automatic techniques that perform the
assignment of a social media item (newly uploaded to some
social media site) to its corresponding event (if it already
exists) or creates a new event to which future data items
can be assigned to. In line with Becker et al. we refer to
this problem as the event identification problem [4].

From the perspective of the organizations hosting a social
media application, the uploaded postings, messages, pictures
etc. can be seen as an exponentially growing and never-
ending stream of data. When considering the task of event
identification, we are thus faced with the challenge of classi-
fying a massive and never-ending stream of data into their
corresponding events. There are at least three challenges in-
volved in developing a system that can classify data streams
as originating in social media applications into event cat-
egories. First, the challenge is to deal with the massive
amount of data arriving per minute. Second, the challenge is
to classify data into potentially millions of events. Thirdly,
we need to deal with the fact that the set of events that we
assign data items to is constantly growing. This is a problem
that has been referred to as ‘ ‘concept drift” [17, 35]. Due
to the growing nature of the target categories, standard su-
pervised learning techniques which assume that the target
categories are fixed are less suited to the task.

In this article we present a system for the classification of
social media stream data into corresponding events that ad-

1http://last.fm



dresses the above mentioned three challenges. We frame the
problem as a stream data classification problem. Each new
data item uploaded to the system is either classified into one
of the existing events or a new event is created in the system.
In particular, we provide the following contributions:

• We present a complete system that classifies an incom-
ing set of documents into the events they describe or
are related to, creating a new event if necessary. We
experimentally demonstrate that our system success-
fully addresses the above mentioned challenges.

• We show in particular that the problem of assigning a
new data item to its corresponding event can be mod-
eled successfully as a ranking problem where a pre-
selected number of events is ranked according to how
likely the new data point belongs to. By choosing the
top-ranked event, we show that the accuracy of as-
signing a new data item to its corresponding event is
close to 100%. We use a function learned using ma-
chine learning techniques and discuss the impact of the
different features on this decision.

• We further show that the decision whether the new
data item belongs to one of the existing events or a
new event can also be taken with reasonable accuracy
(85.9%) and also discuss a subset of optimal features
that lead to this result.

• We show that the system can indeed scale to large
numbers of events by using an appropriate candidate
retrieval step which retrieves a set of event candidates
that the incoming data point is likely to belong to.
With this step we avoid scanning all the events in the
database and thus allow our system to scale to very
large numbers of events. We show in particular that
retrieving around 300 candidates yields a reasonable
trade-off between scalability and clustering quality.

• As baseline, we compare to the state-of-the-art sys-
tem of Becker et al. [4] with respect to quality and
efficiency, showing that our systems outperforms this
baseline by 15% points with respect to F-Measure,
having in particular a much higher precision (80% vs.
46%). Our system is also much more efficient than the
one of Becker et al., showing a nearly constant process-
ing time independently of how many documents the
system has processed so far, a requirement for scaling
to much larger numbers of documents. We show that
these two improvements in terms of quality and scal-
ability are due to the candidate retrieval step that we
rely on (see above).

The article is structured as follows: in Section 2 we present
our overall approach and discuss its single components. In
Section 3 we describe how we created our dataset consist-
ing of 1 million Flickr pictures together with an appropriate
gold standard developed using last.fm machine tags. We
also describe how the machine learning components were
trained and provide experimental results. Before conclud-
ing, we discuss related work on event identification in social
media, stream-based classification and outlier detection.

2. SYSTEM DESCRIPTION
Our system processes an incoming stream of documents

D as follows. For each incoming document d ∈ D:

Figure 1: Overview of the event identification sys-
tem

1. A set E of k events that d is likely to belong to are
retrieved from the event database (candidate retrieval)

2. For each of these candidates e ∈ E, the probability
that d belongs to e, P (e|d), is computed, and all candi-
dates are ranked according to this probability (scoring
and ranking). Let emax be the top scoring candidate

3. Given this ranked list of candidates, the probability
that d belongs to a new event, Pnew(d), or that it be-
longs to the first event in the list, Pbelongs to top cand(d),
is computed. We assume that these are the only two
options, i.e. Pnew(d) + Pbelongs to top cand(d) = 1.

4. If Pnew(e) > θn, a new event e′ is created and d is

assigned to this newly created event; ~e′ := ~d (new event
detection).

5. Otherwise, d is assigned to emax; the centroid ~emax is
recomputed.

Algorithm 1 Stream-based classification into events

for all d ∈ D do
Topk(d) = retrieve a ranked list of promising event can-
didates to which d could belong
for all e ∈ Topk(d) do

compute P (e|d) – the prob. that d belongs to e
end for
emax = maxe′∈Topk(d)P (e′|d)
compute Pnew(d) – the prob. that d belongs to a new
event
if Pnew(d) > θn then

create a new event e′

e′ = {d}
~e′ = ~d

else
emax = emax ∪ {d}
recompute ~emax

end if
end for

The above procedure is illustrated by the pseudocode in
Algorithm 1 and depicted graphically in Figure 1. We com-



ment on some crucial aspects of our approach in what fol-
lows, pointing to the relevant sections where the correspond-
ing components are described in more detail:

• The candidate retrieval step relies on a set of SQL
queries that build on appropriate inverted indices (for
text data like tags) as well as on timestamps to re-
trieve a set of promising candidates. This step is cru-
cial to keep the approach scalable and to avoid having
to process all events stored in the database. This step
is described in more detail in Section 2.1.

• As feature representation, we compute a number of
similarities between a document d and each event e
from the list of top-k retrieved events. This is de-
scribed in more detail in Section 2.2.

• The above mentioned probabilities P (e|d) and Pnew(d)
are computed using support vector machines trained
on the basis of an appropriate training dataset. Below,
we describe in more detail how these SVMs are trained
and how the probabilities are computed. Each of these
SVM models is trained on a separate split of training
data. This is described in more detail in Section 2.3.

• An important parameter is the hyperparameter θn,
which essentially determines whether a new event is
created or the new data item is assigned to an existing
event in the database. This hyperparameter is tuned
on a separate training data split.

The different steps mentioned above are described in de-
tail in the following sections.

2.1 Candidate Retrieval
In order to make our approach scalable, we implement a

candidate retrieval step that retrieves a set of k promising
events in the database that d could belong to. Essentially,
this corresponds to a blocker or candidate generator used in
record linkage approaches [27].

We implement this candidate retrieval by issuing 6 queries
to the database, retrieving the nearest events by capture
time (200), by upload time (50), by geographic location (20),
by similarity of tags (20), by similarity of title (20), and by
similarity of description (20).

With these queries, we retrieve a total of k = 330 events
that are further processed by our system.

2.2 Feature Extraction
A pair of a document and a candidate event is described

in terms of a vector of nine features that describe the match
between the document and the event. In particular, we use
nine similarity measures which exploit the following infor-
mation sources:

• Temporal information: We rely on the timestamp
when the document was created (e.g. when the picture
was taken) in order to define a time-based similarity
measure as:

simtime(d, e) = 1− log(|time(d)− time(e)|)
y

where time(d) and time(e) are timestamps denoting
the number of minutes elapsed since the Unix epoch,
and y is the logarithm of the number of minutes in a

year. This yields two similarity measures: one calcu-
lated on the basis of the capture time (simcapture(d, e))
and one calculated on the basis of the upload time
(simupload(d, e)).

• Geographical information: We use the latitude and
longitude indicating the place where the document was
created to determine the great-circle distance between
two points using the Harversine-formula as in the ap-
proach by Reuter et al. [29].

• Textual information: contains tags, a title, a de-
scription, etc. We describe the textual content by way
of TF-IDF vectors. To determine the similarity we rely
on the cosine similarity (simcos

text(e, d)) as well as the
BM25 formula [30] (simBM25

text (d, e)).

Overall, a vector describing the similarity between a pair
of document and event looks as follows:

~sim(d, e) =



simcapture(d, e)
simupload(d, e)
simgeo(d, e)
simcos

tags(d, e)
simBM25

tags (d, e)
simcos

title(d, e)
simBM25

title (d, e)
simcos

description(d, e)
simBM25

description(d, e)


2.3 Scoring and Ranking

For each incoming document d, we compute the likeli-
hood that it belongs to a given event e, P (e|d), and or-
der the events retrieved by the candidate retrieval step by
decreasing probability. The likelihood that document d be-
longs to event e is calculated using a support vector machine
as follows. We train a SVM that relies on an appropriate
training dataset to discriminate between pairs of document
and corresponding event (positive examples) and pairs of
documents that do not belong to the given event (negative
examples). We use 4,000 examples for each of these classes
to train binary SVMs and compute the probability P (e|d)
as the probability that the pair (d, e) – described by the
above mentioned vector of similarities – belongs to the pos-
itive class, i.e. P (e|d) = P (positive| ~sim(e, d)). We use the
C-SVMs implemented in libsvm, which uses Platt’s algo-
rithm[24] to compute the above probability as follows:

P (positive| ~sim(e, d)) :=
1

1 + exp(A〈~e, ~d〉+B

where the parameters A and B optimized by the SVM by
minimizing the negative log likelihood of the training data.

2.4 Event Detection and Classification
Given the candidates ranked by the likelihood that d be-

longs to them, an important question is whether the docu-
ment d belongs to the top ranked event or rather to a new
event to be created. This is what we refer to as new event
detection problem. The top scoring candidate might actu-
ally represent an event that d is not related to, such that
we need a decision function that decides whether to assign
the document d to the top scoring candidate or to a newly
created event.



For this purpose, we also employ a C-SVM trained on
an appropriate dataset consisting of examples in which the
document belongs to the top-scoring event (positive exam-
ples) and examples in which the document belongs to a new
event (negative examples). As features for this task we use
the following:

• max (max): P (e1|d), i.e. the prob. that d belongs to
the top-scoring event

• min (min): the probability P (e10|d) – the probability
that d belongs to the 10-th ranked event

• average (avg): 1
10

∑10
i=1 P (ei|d) – the average proba-

bility of the top-10 most likely events

• standard deviation (stddev): the standard devia-
tion of the top-10 most likely events

• maximum capture time (maxtst): simcapture(d, e1)

• maximum upload time (maxtsu): simupload(d, e1)

For each document d this yields a feature vector ~new(d)
that is used to classify d into two classes: belongs to top
scoring event (positive) or belongs to a new event (nega-
tive). The SVM classifier is trained using an equal number
of positive and negative examples and as in the above case
returns a probability that the document belongs to a new
event: Pnew(d) = P (negative| ~new(d)).

We then use a threshold on this probability as a hyperpa-
rameter to be tuned that decides about whether the event is
assigned to a new event or assigned to the top ranked event.
The optimal threshold is determined empirically using a gra-
dient descent technique on a split of our training data. We
report on the performance of this new event detection deci-
sion model in Section 3.1.3 describing our experiments.

3. EXPERIMENTAL SETUP & RESULTS
After having presented our system, we now describe how

our dataset consisting of 1 million pictures from Flickr has
been created as well as our experimental results.

3.1 Experimental Settings

3.1.1 Dataset Creation
Since 2007, last.fm provides a freely available event data-

base in which every event contained has a unique event ID.
A key function of Flickr is the possibility for the user to
assign so-called machine tags to a picture. The main dif-
ference to normal tags is that machine tags follow a fixed
schema. Such a machine tag might have the following form:
lastfm:event=#eventid; this provides us the following in-
formation about the picture: a) the picture belongs to an
event contained in the last.fm database and b) the corre-
sponding event on last.fm has the ID #eventid. Therefore,
this allows us to assume that pictures marked with the same
machine tag on Flickr belong to the same event. We thus
constructed our gold standard by downloading pictures with
last.fm machine tags from Flickr using their API, grouping
them into events using the event IDs.

We considered pictures with a capture time between Jan-
uary 2006 and October 2011, yielding a dataset of 1 million
pictures assigned to 36,782 events. We divided this dataset

into 10 splits consisting of 100,000 pictures each, in tem-
poral order. Only 31.3% of the documents have a geo tag
assigned, 90.2% have at least one tag, 97.9% have a title,
and 45.9% have a description assigned. Machine tags were
only used to create the gold standard and were no longer
part of the dataset to conduct our experiments on. Splits 1-
3 have been used to train the machine learning components
and to optimize parameters. We use splits 4-10 to test the
system, reporting average performance of our system with
respect to precision, recall and F-Measure (defined below).

3.1.2 Baseline and Evaluation Measures
As a baseline we use the CLASS-SVM method described

in Becker et al. [4]. Becker et al. present an incremen-
tal clustering approach also making use of an SVM as in our
approach to find the most likely event that the document be-
longs to. There are two crucial differences to our approach.
First, Becker et al. do not use a second decision model to
detect new events, but a simple threshold. Second, Becker
et al. do not use a candidate retrieval or blocking step and
thus have to scan all the events in the database for each
incoming document. Their approach can thus not scale to
larger datasets.

We report our results in terms of Precision, Recall and
F-Measure which are defined as in Becker et al. [4].

Pb =
∑
d∈D

1

|D|
|Cluster(d) ∩GoldStandard(d)|

|Cluster(d)|

Rb =
∑
d∈D

1

|D|
|Cluster(d) ∩GoldStandard(d)|

|GoldStandard(d)|

F1-Measure = 2 · Pb ·Rb

Pb +Rb

We reimplemented the approach of Becker et al. and tested
it under the same conditions and on the same dataset as our
approach.

3.1.3 Training

Decision for Assignment of Data Items to Event.
To create our training examples for the correct event as-

signment SVM model, we follow Reuter et al. [28] and cre-
ate a balanced training set with 8,000 samples from split 1.
As proposed we use the nearest sampling strategy where we
choose 4,000 consecutive documents ordered by time as posi-
tive examples. The pairs (d,e) selected as negative examples
are such that d is temporally very close to e, but does not be-
long to it. This strategy for creating negative examples was
proved effective by Reuter et al. [28]. In order to train this
SVM, we use a C-SVM with a linear kernel Φ(d, e) = 〈d, e〉.
The hyperparameter C denoting the trade-off between the
training error and margin is set to 1.0. In addition, we ex-
tend the SVMs so that they can handle missing features
instead of assuming that the similarity for a missing feature
(e.g. geo tag) is 0.0, thus not being able to distinguish be-
tween the case where the feature is missing and the the case
where the similarity is actually 0.0.

SVM for New Event Detection.
This SVM is trained using the same options as described

above with the difference that we use an RBF kernel in the



following form: Φ(d, e) = exp(−γ · ||d− e||2), γ = 1
4
. We use

split 2 to train this SVM. As split 2 contains 1,900 unique
events, the number of positive examples amounts to 1,900.
We use an equal number of negative examples to have a
balanced training set. The optimal value for the hyperpa-
rameter θn is determined by gradient descent on split 3 us-
ing F-Measure as optimization criterion, yielding an optimal
value of 0.63 for our approach and 0.48 for the approach of
Becker et al.

3.1.4 Candidate Retrieval
We calculate the distance between a document and all

events in the event database for the single features capture
time, upload time, geographic position, tags, title, and de-
scription using the corresponding similarity metrics. The
events are ordered by their distance to the document. Then,
k events beginning from the less distant are retrieved. We
determined empirically that – for optimal results – we need
to retrieve the top-200 documents by capture time, the top-
50 documents by upload time, and the top-20 each for ge-
ographic information, tags, title, and description, thus re-
trieving 200 + 50 + 4× 20 = 330 events per document.

3.2 Results

3.2.1 Candidate Retrieval
Using our candidate retrieval as described above, in 99.9%

of all cases the correct event cluster is in the subset of candi-
dates returned. This is clearly a satisfactory results corrobo-
rating the effectiveness of our candidate generation strategy.

3.2.2 Scoring and Ranking
Figure 2 plots the accuracy of the SVM used to calculate

P (e|d) over different combinations of features. Here accu-
racy represents the number of cases in which the top-ranked
event is also the correct one. It can be appreciated that using
all features yields the best results (99.4%). But even when
using a subsets of all features, the results are compelling.
Using only the time and tag similarities, the accuracy is al-
ready 98.9%.

3.2.3 New Event Detection
For the new event detection task, we conducted a feature

analysis in order to find an optimal combination of features
considering the accuracy of the decision. In particular, we
employed a greedy strategy, adding the next best feature
in each step as long as the accuracy increased. The six
features we consider here are the ones described in Section
2.4. Figure 3 depicts the steps of this greedy search strategy.
We can see that the combination of the four features max,
maxtsu, avg, stddev yields the highest accuracy of 85.9%.

3.2.4 Overall System Performance
We compare the overall performance of our system in

terms of Precision, Recall and F-Measure to the performance
of the baseline system of Becker et al. We compare in fact
the following three systems:

• Becker et al. (Baseline): this is the re-implemented
CLASS-SVM method described Becker et al. [4].

• Becker et al. with Blocking: the method of Becker
et al., extended with our candidate retrieval strategy.

max
79.411

min
53.766

avg
55.788

stddev
74.311

maxtst
56.243

maxtsu
66.867

min
79.396

avg
81.008

stddev
79.059

maxtst
78.839

maxtsu
81.023

min
83.118

avg
84.965

stddev
80.964

maxtst
80.730

min
84.994

stddev
85.492

maxtst
84.613

min
85.229

maxtst
85.199

Figure 3: Greedy search for optimal features for the
new event detection task

• Our method: our system with the two decision mod-
els and the candidate retrieval step.

The results are reported in Table 1 in terms of Precision,
Recall and F-Measure, averaged over 7 folds. The key ob-
servations here are the following:

• Blocking has a crucial impact on the performance in
terms of quality, corroborated by the fact that our
method and the approach of Becker et al. extended
by our candidate retrieval step clearly outperform the
baseline. It is indeed surprising that the candidate
retrieval step does not only increase the efficiency of
the system, but also increases the classification per-
formance. The reason for this is that the candidate
retrieval step is eliminating many events that the doc-
ument is unlikely to belong to, thus eliminating noise
that might confuse the scoring and ranking as well as
the new event detection components.

• While our method has a comparable performance to an
extension of the baseline of Becker et al. by our can-
didate retrieval component in terms of F-Measure, our
method has a much higher precision (80% vs. 71%),
which is an advantage in our settings as we assume that
a user is interested in seeing “pure” clusters with only
few spurious examples. Further, we are currently ex-
perimenting with a post-processing strategy that aims
to increase recall by merging clusters of similar events.
However, as increasing recall always comes at the ex-
pense of reducing precision a higher precision as ob-
tained by our approach in comparison to the one of
Becker et al. is benefitial.

It is important to note that the performance of the Becker
et al. approach is much lower compared to the results re-
ported in their paper [4], i.e. F=59% vs. the F-Measure of
81%. This difference has a reasonable explanation. We have
tested our system with a much higher number of documents
compared to Becker et al. who used a dataset consisting of
27,000 documents. When using more documents, there are
also more events and the chance of assigning a document
to a wrong event is thus much higher. This explains the
lower F-measures we report here compared to the ones re-
ported by Becker et al. When testing our system and our
re-implementation of Becker et al. on splits of 27,000 doc-
uments only, we get in fact F-measures of around 81%. If



Figure 2: Accuracy of SVM calculating P (e|d) for different combinations of features

Table 1: Results of different methods using 100,000
splits
Method Prec Rec F-Measure

Becker et al. (Baseline) 0.464 0.818 0.589 (±3%)
Becker et al. w/ Blocking 0.714 0.784 0.744 (±2%)
Our Method 0.803 0.696 0.744 (±4%)

Figure 4: Comparison of runtime for system using
blocking or not

we use 10,000 documents we get F-Measures around 87%,
clearly showing that classifying documents with respect to
a lower number of events is inherently easier.

3.2.5 Efficiency
We also compare our approach to the baseline in terms

of efficiency, both in terms of absolute runtime as well as in
(average) processing time per incoming document. Figure 4
shows the absolute runtime of our system compared to the
one of Becker et al. While the absolute runtime increases ex-
ponentially in the approach of Becker et al., our runtime in-
creases linearly. This result is particularly remarkable given
the fact that we have much higher quality in terms of F-
Measure compared to the approach of Becker et al. Figure
5 shows the average processing time per document over the
number of documents processed by the system. While the

Figure 5: Comparison of computing time for for doc-
ument processing using blocking or not

system of Becker et al. shows a linear increase in the number
of documents, our system shows a nearly constant processing
time. Our approach can thus scale to data streams of infinite
size (theoretically), assuming that all events and documents
can be stored physically.

4. RELATED WORK
The problem of event identification in social media was in-

troduced by Becker et al. [4] who presented an incremental
clustering algorithm that classifies social media documents
into a growing set of events. They use a comparable but
much smaller dataset than that in our work, thus reporting
higher F-Measures than we do. We have re-implemented
their approach, evaluating it on our dataset and under the
same conditions, showing that it is clearly outperformed by
our approach both in terms of quality and efficiency. There
has been other work on detecting and indexing events in so-
cial media streams. Chen and Roy [9] present an approach
to detect events which is based on exploiting the temporal
and locational distribution of tags, distinguishing between
periodic and aperiodic events. In this sense their work is
related to the one of Rattenbury et al. [26] who have pre-
sented a method called Scale-structure Identification that
can also be applied to identify tags that represent events as



well as places. The task is however not directly related to
our task as we are not only concerned with identifying tags
which represent events, but with producing clusters of social
media items that collectively describe or are related to an
event. Mattivi et al. [23] have presented an application of
the concept of indexing media by events to the organization
of photo collections which corroborates the usefulness of or-
ganization of data by events from an end user perspective.
In contrast, Liu et al. [20] have addressed the opposite prob-
lem, i.e. the one of finding media that describe or illustrate
a given event. Sayyadi [31] have presented an approach that
exploits user community detection methods used in social
network analysis to compute keyword graphs based on key-
word co-occurrence in order to discover and describe events.

As we have argued in the introduction, the problem of
classifying a stream of social media data into events can be
seen as an instance of stream data classification where the
set of classes is constantly growing and evolving. Several
supervised learning approaches have been developed to per-
form classification of the data items in a data stream. The
main challenge addressed by the various approaches is the
detection of concept drift, consisting essentially in the deci-
sion whether a new data point belongs to one of the patterns
or classes seen so far or to a new class [11, 10, 19]. The new
event detection problem can be seen as an instance of the
outlier, anomaly or novelty detection problems [21, 22]. Dif-
ferent approaches have been proposed to solve this problem,
among them i) unsupervised or clustering-based, ii) super-
vised or classification-based and iii) statistical approaches
[8].

Clustering-based approaches attempt to discover low-den-
sity regions in the space, assuming that outliers or anomalies
belong to a cluster with a density below a threshold [7, 13].

Other techniques assume that“normal data points”belong
to clusters, while anomalies do not belong to any cluster [15,
18]. The algorithm by Yu et al. [37] for example regards all
documents which have not been assigned to any cluster as
outliers. Frequent item-set mining has also been applied to
detect normal patterns in training data, regarding all those
data points that do not fit the frequent item-set patterns
[3]. While most of these algorithms work only in an offline
setting, some authors have proposed online methods and ap-
plied them to sequence data [5, 6]. Allan et al. [2] proposed
an incremental clustering approach which allows to detect
events in text document streams. Other approaches rely on
a distance-based criterion and define an outlier point to be
one that is, on average, furthest away to all other points (see
[34]).

Classification-based approaches use discriminative tech-
niques to separate high-density from low-density regions.
SVMs, Neural Networks and Bayesian Networks have been
applied in this context [8]. Ratsch et al. [25] consider the
problem of outlier detection as a one-class learning problem,
using RBF kernels to define complex regions that contain
the training data instances. For each test data instance, it
is determined if the instance falls in this region, regarding it
as an outlier if it does not. Other authors use Neural Net-
works to detect novelties. The underlying idea is to test an
input for acceptance in the network. If it does not get ac-
cepted, it is regarded as an outlier [22]. Theofilou et al. [33]
presented an approach called Long-term Depressant SOM
(LTD) where the weight vectors of the cells in the map be-
come more and more dissimilar to the seen training instance.

Contrary to the classic Kohonen network where weight vec-
tors move close to the input distribution, in the LTD-like
case weights move away from it. New data points that are
close to these weight vectors are then regarded as outliers.

Statistical approaches can be divided into parametric and
non-parametric. Parametric techniques rely on standard
statistical tests such as Grubb’s test [1], the t-test [32] and
χ2 [36]. They have been used to check whether a new data
point indeed stems from the training distribution or not.
Non-parametric approaches do not make strong assumptions
about the distribution or density of data. Histogram-based
techniques that maintain a profile of the normal data have
been applied here [12, 14, 16].

5. CONCLUSIONS
We have presented a system that is able to classify a

stream of social media data into a growing and evolving set
of events. We have applied our method to a dataset derived
from Flickr, using machine tags representing a unique event
from last.fm to define a gold standard. We have shown in
particular that our approach addresses successfully two key
problems: i) scaling to the data sizes and data rates en-
countered in social media applications, and ii) tackling the
new event detection problem, i.e. the problem of determin-
ing whether an incoming data item belongs to a new or a
known event. We successfully address these problems by
i) including a candidate event retrieval steps that retrieves
a set of event candidates that the incoming data point is
likely to belong to and ii) by including a function trained
using machine learning techniques to determine whether the
incoming data item belongs to the top scored candidate or
rather to a new event. We have in particular shown that the
new event detection decision can be taken with reasonable
accuracy and carried out a feature analysis using a greedy
strategy to find an optimal combination of features. We have
directly compared our system to the approach of Becker et
al., showing that it outperforms this baseline both in terms
of F-Measure as well as in terms of efficiency. The benefit
of our approach is that it scales as the processing time per
documents remains nearly constant with increasing docu-
ments, thus addressing the scalability challenge mentioned
above. There are two important issues that we intend to
address in future work. First, we intend to systematically
analyze the impact of different blocking strategies involving
different computational costs on the task of classifying social
media documents into events. Second, we intend to investi-
gate whether the performance, in particular the recall, can
be increased by extending our approach by a second step
which merges different events into one.
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