
Simplified Parallel Domain Traversal

Wesley Kendall∗, Jingyuan Wang∗, Melissa Allen†, Tom Peterka‡, Jian Huang∗, and
David Erickson§

∗ Department of Electrical Engineering and Computer Science, The University of Tennessee, Knoxville
† Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville

‡ Mathematics and Computer Science Division, Argonne National Laboratory
§ Computational Earth Sciences Group, Oak Ridge National Laboratory

ABSTRACT
Many data-intensive scientific analysis techniques require
global domain traversal, which over the years has been
a bottleneck for efficient parallelization across distributed-
memory architectures. Inspired by MapReduce and other
simplified parallel programming approaches, we have de-
signed DStep, a flexible system that greatly simplifies effi-
cient parallelization of domain traversal techniques at scale.
In order to deliver both simplicity to users as well as scalabil-
ity on HPC platforms, we introduce a novel two-tiered com-
munication architecture for managing and exploiting asyn-
chronous communication loads. We also integrate our de-
sign with advanced parallel I/O techniques that operate di-
rectly on native simulation output. We demonstrate DStep
by performing teleconnection analysis across ensemble runs
of terascale atmospheric CO2 and climate data, and we show
scalability results on up to 65,536 IBM BlueGene/P cores.

Keywords
Data-Intensive Analysis, Parallel Processing, Parallel Parti-
cle Tracing, Atmospheric Ensemble Analysis

1. INTRODUCTION
Domain traversal is the ordered flow of information

through a data domain and the associated processing that
accompanies it. It is a series of relatively short-range and
interleaved communication/computation updates that ulti-
mately results in a quantity computed along a spatially- or
time-varying span. When the domain is partitioned among
processing elements in a distributed-memory architecture,
domain traversal involves a large number of information ex-
changes among nearby subdomains accompanied by local
processing of information prior to, during, and after those
exchanges. Examples include computing advection in flow
visualization; and global illumination, particle systems, scat-
tering, and multiple scattering in volume visualization.

A capability to flexibly analyze scientific data using paral-
lel domain traversal at scale is much needed but still funda-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SC11 November 12-18, 2011, Seattle, Washington, USA
Copyright 2011 ACM 978-1-4503-0771-0/11/11 ...$10.00.

mentally new to many application scientists. For example,
in atmospheric science, the planet-wide multi-physics mod-
els are becoming very complex. Yet, to properly evaluate
the significance of the global and regional change of any
given variable, one must be able to identify impacts outside
the immediate source region. One example is to quantify
transport mechanisms of climate models and associated in-
teractions for CO2 emitted into the atmosphere at specific
locations in the global carbon cycle. Uncertainty quantifi-
cation of ensemble runs is another example.

Parallelization of domain traversal techniques across
distributed-memory architectures is very challenging in gen-
eral, especially when the traversal is data dependent. For
example, numerical integration in flow advection depends
on the result of the previous integration step. Such data
dependency can make task parallelism the only option for
parallel acceleration; however, at large scale (e.g. tens of
thousands of processes), when each particle trace could po-
tentially traverse through the entire domain, one must deal
with complexities of managing dynamic parallelism of com-
munication, work assignment, and load balancing.

In this work, we provide application scientists with a sim-
plified mode of domain-traversal analysis in a general envi-
ronment that transparently delivers superior scalability. We
call our system DStep. In particular, we note DStep’s novel
ability to abstract and utilize asynchronous communication.
Since today’s HPC machines commonly offer multiple net-
work connections per node paired with direct memory access
(DMA), asynchronous communication is a viable strategy
for hiding transfer time. Asynchronous exchanges, however,
can easily congest a network at large process counts. We
found that efficient buffer management paired with a two-
tiered communication strategy enabled DStep to efficiently
overlap communication and computation at large scale. Us-
ing fieldline tracing as a test of scalability, DStep can ef-
ficiently handle over 40 million particles on 65,536 cores, a
problem size over two orders of magnitude larger than recent
studies in 2009 [23] and 2011 [21].

Along with abstracting complicated I/O and communica-
tion management, DStep also provides a greatly simplified
programming environment that shares similar qualities as
those of MapReduce [7] for text processing and Pregel [19]
for graph processing.

The simplicity of our approach paired with the scalable
back end has allowed us to write succinct and expressive
custom data analysis applications using DStep. As a re-
sult, atmospheric scientists have a new way to evaluate the
longitudinal dependence of inter-hemispheric transport; for

Exchange particles that go out of local bounds Merge partial results

Advect and repeat until termination

Place particles and start advection

Figure 1: One example of domain traversal is fieldline tracing, shown here using six distributed-memory
processes. The procedure initializes particles in the subdomains, which are then advected through the flow
field. Particles are exchanged when going out of bounds, and all partial fieldlines are merged when particles
finish advection.

example, to support CO2 source apportionment according to
movement patterns of specific CO2 molecules between the
Northern and Southern Hemispheres. Furthermore, they
also have innovative methods for assessing internal-model
variability. We have experimented with these creative anal-
yses on terascale atmospheric simulation data – an ability
not previously reported in the literature. We detail our ap-
proach in the following, and we provide driving application
results on an IBM Blue-Gene/P machine.

2. BACKGROUND
Our work encompasses a variety of areas related to large-

data processing. We first begin by describing related anal-
ysis techniques of our driving application. We then cover
related work in parallel flow tracing, which is our defining
problem for domain traversal. We also review existing ap-
proaches in simplified large-data processing.

2.1 Driving Application
The driving application for our work is terascale atmo-

spheric data analysis. Accurate modeling of the atmosphere
is critical to the understanding of global and regional cli-
mate: past, present and future. Likewise, determining the
relative contributions of the various sources and sinks of at-
mospheric CO2 in different regions is critical to understand-
ing the global carbon budget. As global circulation models
move to higher spatial and temporal resolution and are ca-
pable of incorporating detailed ground-based and satellite
observations as initial conditions for future predictions, cus-
tom tools for analysis will be required.

A variety of analysis tools are currently available such as
the NCAR Command Language (NCL) [4], Interactive Data
Language (IDL) suites [2], and general scientific visualiza-
tion tools such as VisIt [6]. Tools that both capture flow
lines and provide meteorological statistical analysis of par-
ticle trajectories at high resolution, however, are limited,
both in availability and capability. Most analyses rely on
point-to-point comparisons [9, 20], or some type of model
output reduction such as Empirical Orthogonal Functions
(EOF) [12] or various types of sampling of the data out-
put [10] because of limited computational power.

For example, in a very recent 2010 assessment of the ef-
fects of biomass burning in Indonesia, Ott et al. [20] ran
two ten-member ensemble simulations, each ensemble with
aerosol input data from a different source. The means of

the ensembles were then calculated along with each mem-
ber’s difference from its ensemble mean (and the Student’s
t-test performed) in order to evaluate the significance of the
global and regional change of a given variable as a result
of the change in aerosol concentration. Results from this
study were presented as difference plots using standard at-
mospheric visualization tools. The authors indicated that a
limitation of the study was the inability to identify potential
climate teleconnections and impacts outside of the immedi-
ate source region. Our analytical method addresses CO2

teleconnections directly since flow among regions is exam-
ined first in four dimensions, and probability distributions
are computed from the results.

2.2 Parallel Flow Tracing
Along with limited capability of large-scale processing

tools in atmospheric science, our motivation for a new anal-
ysis model stemmed from the recent efforts in paralleliz-
ing flow tracing techniques. Scalable parallelization of flow
analysis methods remains a challenging and open research
problem. The most widely-used analysis technique is the
tracing of tangential fieldlines to the velocity field. Steady-
state fieldlines are the solution to the ordinary differential
equation

d�x

ds
= �v(�x(s)) ; �x(0) = (x0, y0, z0), (1)

where x(s) is a 3D position in space (x, y, z) as a func-
tion of s, the parameterized distance along the streamline,
and v is the steady-state velocity contained in the time-
independent data set. Equation 1 is solved by using higher-
order numerical integration techniques, such as fourth-order
Runge-Kutta. For time-varying fieldlines, the integration
progresses through space and time.

An example of distributed fieldline tracing is in Figure 1,
which uses six processes that each own separate parts of the
domain. Processes first initialize particles, and they begin
particle advection through their subdomain. When parti-
cles go out of local bounds, they must be exchanged to the
owners of the proper subdomain. This continues until par-
ticles either exit the global domain or are terminated. The
fieldline traces can then be merged and visualized.

Efficient distributed-memory parallelization is difficult be-
cause of the communication requirements and task-parallel
nature of the problem. The problem has received much

recent attention. Yu et al. [27] demonstrated visualiza-
tion of pathlets, or short pathlines, across 256 Cray XT
cores. Time-varying data were treated as a single 4D uni-
fied dataset, and a static prepartitioning was performed to
decompose the domain into regions that approximate the
flow directions. The preprocessing was expensive, however,
less than one second of rendering required approximately 15
minutes to build the decomposition.

Pugmire et al. [23] took a different approach, opting to
avoid the cost of preprocessing altogether. They chose a
combination of static decomposition and out-of-core data
loading, directed by a master process that monitors load
balance. They demonstrated results on up to 512 Cray
XT cores, on problem sizes of approximately 20 K parti-
cles. Data sizes were approximately 500 M structured grid
cells, and the flow was steady.

Peterka et al. [21] avoided the bottleneck of having one
master and instead used static and dynamic geometric par-
titioning strategies for achieving desirable load balance. The
authors showed that simple static round-robin partition-
ing schemes outperformed dynamic partitioning schemes in
many cases because of the extra data movement overhead.
They showed scalability results up to 32 K Blue Gene/P
cores on steady and time-varying datasets on problem sizes
of approximately 120 K particles.

Because parallel particle tracing is one of the most well-
defined domain traversal problems in visualization, we use it
as the primary test case. However, beyond this test case, our
overall goal is to create a design for general domain traver-
sal problems. The novelty of our work is to improve user
effectiveness by allowing them to write succinct and pow-
erful analysis applications, and by transparently acheiving
scalability at large scale without the need of detailed under-
standing of each parallel systems’ unique aspects. Hence,
a comparison solely about performance against algorithms
mentioned in this section is beyond the scope of this work.

2.3 Simplified Large-Scale Data Processing
Many large data processing problems have been solved

by allowing users to write serial functional programs which
can be executed in parallel. The defining example is
Google’s MapReduce [7], which provides a simple program-
ming framework for data parallel tasks. Users implement
a map() and reduce() function. The map() function takes
an arbitrary input and outputs a list of intermediate [key,
value] pairs. The reduce() function accepts a key and a list
of values associated with the key. Reducers typically merge
the values, emitting one or zero outputs per key. Output
values can then be read by another MapReduce application,
or by the same application (i.e. an iterative MapReduce).

While the programming interface is restricted, MapRe-
duce provides a powerful abstraction that alleviates pro-
gramming burdens by handling the details of data parti-
tioning, I/O, and data shuffling. The power offered to users
by this abstraction has advocated new approaches at solv-
ing large-scale problems in industrial settings [8]. There are
also systems that have implemented MapReduce on top of
MPI [13, 22] as well as multi-GPU architectures [25].

The profound success of MapReduce in industry has in-
spired its use in scientific settings. Tu et al. [26] designed Hi-
Mach, a Molecular Dynamics trajectory analysis framework
built on top of MapReduce. The authors extended the origi-
nal MapReduce model to support multiple reduction phases

for various time-varying analysis tasks, and they showed
scalability up to 512 cores on a Linux cluster. Kendall et
al. [14] also performed time-varying climatic analysis tasks
on over a terabyte of satellite data using an infrastructure
similar to MapReduce. The authors showed scalability up to
16 K Cray XT4 cores and total end-to-end execution times
under a minute.

Although MapReduce is useful for data-parallel tasks,
many problems are not inherently data parallel and are
difficult to efficiently parallelize with MapReduce. Graph
processing is one class of problems that fit in this cate-
gory. Malewicz et al. introduced Pregel [19], a program-
ming framework and implementation for processing large-
scale graphs. In contrast with MapReduce, a process in
Pregel has the ability to communicate to neighbors based
on the topology of the graph. Users are required to imple-
ment various functions that operate on a per-vertex basis.
The authors showed that the model was expressive enough
to perform many popular graph algorithms, and to also scale
across thousands of cores in a commodity cluster.

Like Pregel, we have found that allowing a restricted form
of communication provides a much more flexible model for
data traversal. In contrast, DStep and our analysis needs are
centered around spatiotemporal scientific datasets. Allow-
ing arbitrary traversal through a domain, while powerful for
many tasks, can easily introduce high communication vol-
umes that do not have a structured form such as a graph.

3. DSTEP - SIMPLIFIED PARALLEL DO-
MAIN TRAVERSAL

Our analysis approach and implementation, DStep, is
built primarily on two functions: dstep() and reduce(). The
dstep() function is passed an arbitrary point in a spatiotem-
poral domain. Given this point, steppers (those executing
the dstep() function) have immediate access to a localized
block of the domain which surrounds the point. During the
global execution of all steppers (the traversal phase), each
stepper has the ability to implicitly communicate with one
another by posting generic data to a point in the domain.
In contrast to MPI, where processes communicate to others
based on rank, this abstraction is more intuitive for domain
traversal tasks, and it also allows for flexible integration into
a serial programming environment. In other words, DStep
programs do not have awareness of other processes.

The reduce() function is identical to that of MapReduce.
We found that after the traversal phase, data-parallel oper-
ations were important for many of our collaborators’ needs.
For example, one operation is reducing lat-lon points to com-
pute monthly averages and vertical distribution statistics.

3.1 DStep API
The API of DStep promotes a similar design to that of

MapReduce. Users define functions that take arbitrary data
as input, and data movement is guided by emit functions.
Two functions are defined by the user:

dstep(point, block, user data) – Takes a point tuple from
the dataset ([x, y, z, t]), the enclosing block subdomain,
and user data associated with the point.

reduce(key, user data[]) – Takes a key and list of associated
user data.

Three functions are called by the user program:

emit dstep(point, user data) – Takes a point tuple belong-
ing to any part of the domain and arbitrary user data.
The data is sent to the proper part of the domain,
where it may continue traversal.

emit reduce(key, user data) – Takes a key and associated
user data. All user data values associated with a key
are sent to a reducer.

emit write(user data) – Takes arbitrary user data, which is
stored to disk.

Using this API, the dstep() function of our fieldline tracing
problem shown in Figure 1 could be written as:

function dstep(point, block, user data)
if user data.empty() then

user data.key = point � Key equals trace start
user data.trace size = 0 � Initialize trace size

end if
Fieldline trace � Initialize partial fieldline trace
while user data.trace size < MaxTraceSize do

trace.append(point)
point = RK4(point, block) � Runge-Kutta
user data.trace size++
if !block.contains(point) then

� Post new point when going out of bounds
emit dstep(point, user data)
break

end if
end while
emit reduce(user data.key, trace) � Partial result

end function

In this example, fieldlines are computed using fourth-
order Runge-Kutta integration. During tracing, steppers
emit points to other subdomains when tracing goes out of
bounds, and they also emit partial fieldlines for reduce().
The reduce() function would then be responsible for merg-
ing partial fieldlines (as shown in Figure 1).

The user data variable allows users to pass around arbi-
trary data for analysis purposes. In fact – although not rec-
ommended because of performance reasons – the user could
also pass the entire computed fieldline to other steppers in-
stead of reducing partial results.

3.2 DStep Application Instantiation
There are three aspects to instantiating a DStep appli-

cation, each of which can be controlled programmatically
or by XML configuration files. The first is data input. In
the spirit of designs such as MapReduce and NoSQL (i.e.
avoiding data reorganization before analysis), DStep man-
ages input of native application datasets. This ability has
been crucial to our user and application needs, which (in
our case) has allowed us to abstract the management of
thousands of multi-variable netCDF files. Furthermore, we
have observed that our scientists are often only interested
in analyzing subsets of their datasets at a given time. Be-
cause of this observation, which is common in many set-
tings [24], we allow users to specify input as compound range
queries. For example, users may specify a range query of
[0 ≤ X ≤ 100]&&[0.2 ≤ CO2 ≤ 0.4] to filter all of the
points that have anX and CO2 value within the given range.
This approach integrates elegantly into our design, and each

dstep(point, block, user_data)

S0 S1 S2 S3

reduce(key, values[])

R0 R1 R2

MPI-I/O

emit_dstep()

emit_reduce()

emit_write()

Query blocks

Partition and read

Figure 2: Data flow using DStep. Data movement,
primarily directed by emit functions, is shown by
arrows. Computational functions and associated
workers are enclosed in blocks.

point matching the user query is simply passed as the point
parameter to the dstep() function.

The second aspect is data output. As we will explain
later, users simply specify a directory for output, and DStep
utilizes a custom high-level format which can easily be read
in parallel by another DStep application or parsed serially
into other scientific formats.

The final aspect is job configuration. Although we ul-
timately want to hide partitioning and parallel processing
details, we allow users to specify job configurations for ob-
taining better performance on different architectures. One
parameter of the job configuration is the partitioning granu-
larity. Users can specify how many blocks should be assigned
to each of the workers, and our system handles round-robin
distribution of the blocks. For data replication, we allow
users to specify an elastic ghost size. Instead of explicitly
stating a ghost size for each block, DStep will automati-
cally adjust the ghost size to fit within a specified memory
threshold.

3.3 DStep Data Flow
Given our API and the design of application instantiation,

we illustrate the entire data flow of DStep in Figure 2. A
volumetric scientific dataset is partitioned into blocks, which
are assigned to steppers. Input to dstep() comes from query-
ing these blocks, and it also comes from other steppers that
call emit dstep(). Data from emit reduce() are shuffled to
reducers. Similar to [26], we also allow reducers to perform
multiple reduction steps for more sophisticated analysis. Re-
ducers or steppers may store data with emit write().

The most difficult data flow complexity is introduced by
emit dstep(). Users can induce voluminous and sporadic
communication loads with this function call. We have de-
signed a two-tiered communication architecture to manage
this intricate data flow. We overview the general implemen-
tation surrounding this data flow (the DStep Runtime) in
the following, and we provide comprehensive details of our
communication strategy.

get_next_work()
execute_work()
exchange_work()

queue<Work> incoming, outgoing
worker_state
application_state

Worker Superclass

Block Input

PnetCDF, HDF5

MPI-I/O

MPI

Protocol Buffers

Partition Group
Message

Comm Pool

Unstructured
Output

Boost

Thread
Pool

Stepper Reducer Communicator Writer

Only used by steppers Only used by writers

Used by all workers Open-source module

Figure 3: The software design of DStep is shown,
with open-source modules in gray and custom com-
ponents in other colors.

4. THE DSTEP RUNTIME
The DStep Runtime is a C++ hybrid threaded/MPI exe-

cution system that is designed to perform complex domain
traversal tasks on large scientific datasets directly after sim-
ulation. In contrast with industrial scenarios that leverage
large commodity clusters for batch jobs [7], we designed our
implementation to leverage HPC architectures for scientific
analysis scenarios.

4.1 Software Architecture
A general overview of the DStep software stack is illus-

trated in Figure 3. Components are shown in a bottom-up
fashion with open-source tools in gray and our components
in other colors.

DStep utilizes up to four different types of workers per
MPI process: steppers, reducers, communicators, and writ-
ers. The Worker Superclass specifies three virtual functions
for work scheduling, which manage the inherited incoming
and outgoing work buffers. This management is described
in detail in the next subsection. The general responsibilities
of the workers are as follows.

Stepper – Steppers own one or more blocks from a static
round-robin distribution of the domain. They are re-
sponsible for reading the blocks, processing the user’s
query on each block, sending the queried input to
dstep(), and sending any input from other steppers
to dstep().

Reducer – Reducers own a map of keys that have an associ-
ated array of values. They are responsible for sending
this input to reduce() when the traversal phase has
finished.

Communicator – As we will describe later, communication
happens in a group-based manner. The sole responsi-
bility of communicators is to act as masters of a worker
group, managing worker/application state and routing
any long-range messages to other groups.

Writer – Writers manage data sent to the emit write()
function and use a fixed functionality for data output.
We note that we also provide the user to override a
write() function for sending output to other channels
such as sockets.

Worker Group Configuration

<worker_group>
 <worker communicator />
 <worker stepper repeat=6 />
 <worker reducer writer />
</worker_group>

Worker Layout

C0 S0

S1 S2

S3 S4

S5 R0W0

C1 S6

S7 S8

S9 S10

S11 R1W1

Quad-core processor

Worker group

Figure 4: Example worker group configuration and
layout. The worker group configuration specifies
eight different workers, which are replicated across
pairs of quad-core processors.

4.2 Resource and I/O Management
All workers have access to various limited system re-

sources. The first is a group messaging module, which pro-
vides an abstraction for asynchronous group-based commu-
nication. It is built on top of a communication pool, which
manages pending asynchronous communication requests to
other group members. If too many requests are pending,
i.e. if MPI Test() returns false for all MPI Requests in the
pool, the module buffers group messages until resources are
available. The module also manages the complex unstruc-
tured messages from workers, which can include arbitrary
user data and state information (such as how much work
has been initialized and finished). We use Google’s Protocol
Buffer library [5] for packing and unpacking these messages.
Protocol Buffers allow users to define a message that can
be compiled into a dynamic and serializable C++ class. In
contrast to a textual format such as XML, Protocol Buffers
pack data into a condensed binary representation.

Another resource is a thread pool, which utilizes the Boost
thread library [1]. Workers send work to this thread pool,
which manages execution across pre-spawned threads.

We perform I/O with two in-house solutions. For reading
data from a block-based partition, we use the Block I/O
Layer (BIL) [15]. BIL provides an abstraction for read-
ing multi-file and multi-variable datasets in various formats
(raw, netCDF, and HDF). It does this by allowing processes
to add as many blocks from as many files as needed, and
then collectively operating on the entire set. In the imple-
mentation, BIL aggregates the requests across files, sched-
ules reading from multiple files at once, and then performs
a second exchange of data back to the requesting processes.
Depending on the nature of the requests, BIL can utilize I/O
bandwidth more efficiently than standard single-file collec-
tive access. Furthermore, block-based requests which have
ghost regions do not suffer from any redundant I/O, and
data replication is instead performed in memory. This strat-
egy has allowed us to efficiently operate on native simulation
datasets, and we direct the reader to [15] for a more elabo-
rate explanation of implementation details.

For writing data, we use an unstructured output module
that also utilizes Google Protocol Buffers for serializing dy-
namic user data. Each writer possesses a separate file and
header, to which data are appended in chunk sizes equal to
file system stripe size. Utilizing multiple file output is ben-
eficial for two primary reasons. First, it can alleviate lock
contention issues that arise in parallel file system writes [11].
Second, in a similar method to [18], we found that pinning

In

Out

In

Out

In

Out

In

Out

In

Out

In

Out

In

Out

In

Out

In

Out

S0

S1

C0

S0

S1

C0

S0

S1

C0

In

Out

In

Out

In

Out

In

Out

In

Out

In

Out

In

Out

In

Out

In

Out

S0

S1

C0

S0

S1

C0

S0

S1

C0

In

Out

In

Out

In

Out

In

Out

In

Out

In

Out

In

Out

In

Out

In

Out

C1

S2

S3

C1

S2

S3

C1

S2

S3

In

Out

In

Out

In

Out

In

Out

In

Out

In

Out

In

Out

In

Out

In

Out

C1

S2

S3

C1

S2

S3

C1

S2

S3

Work message

Work and worker state message

Work and application state message

Worker group

Figure 5: Example of two epochs executed by two worker groups that contain steppers and communicators.
Steppers initially fill their incoming work queues with points that match the user query, and work progresses
through the system. The second execute work() function shows the primary overlap of communication with
computation - communicators are performing long-range communication while steppers are performing work.

files to storage targets in a round-robin manner provided
an efficient method for managing variability in writes. Since
users define their output in Protocol Buffer format, the data
can easily be parsed afterwards serially or in parallel.

4.3 Two-Tiered Data Management
We introduce a novel two-tiered strategy for managing

data flow during execution and exploiting asynchronous
communication. The bottom tier of the architecture con-
sists of groups of workers which can communicate asyn-
chronously. The top tier includes processes (i.e. communica-
tors) that are dedicated to routing any inter-group messages.
Configurable worker groups paired with buffered work man-
agement form the basis of this strategy.

Worker Groups.
Worker groups define the placement of workers to pro-

cessing elements, and they also restrict asynchronous ex-
changes to the defined groups. An example worker group is
illustrated in Figure 4, which shows a user-specified XML
configuration along with its associated worker assignment
on quad-core processors. The configuration, which speci-
fies eight workers, is replicated across the total amount of
processing elements (in this example, 16 cores).

The primary advantage of worker groups is the ability
to perform asynchronous communication without congest-
ing the network. Workers can only post asynchronous mes-
sages to others in the same group, and communicators are
responsible for routing any inter-group messages. If com-
municators reside on separate processing elements, routing
will ideally occur simultaneously while others perform com-
putation. Furthermore, the communicators can also manage
worker state (e.g. the number of initialized and completed
work elements) and manage global application state (e.g. de-
termine when the traversal and reduction phases complete).

Worker groups offer several unique advantages for manag-
ing large communication loads on HPC architectures. First,
the bottleneck of having one master manage worker state is
alleviated. Second, HPC architectures often organize pro-
cessors into racks and cabinets, each of which have larger
latencies to one another. Configurable worker groups al-

low users to localize asynchronous communication, from the
shared memory on a node to the nodes of an entire rack,
and allow communicators to manage long-range messages.

Buffered Work Management.
Workers buffer work to more efficiently overlap communi-

cation with computation. Given �, which defines the max-
imum amount of work elements to be executed in a given
epoch, the DStep Runtime executes workers as follows:

repeat
for all w in workers do

w.get next work(�) � Epoch start
w.execute work()
w.exchange work() � Epoch finish

end for
� Check global application state for termination

until Runtime::application finished()

Each worker implements three functions: get next
work(�), execute work(), and exchange work(). These func-
tions are responsible for managing workers’ incoming and
outgoing work queues. The actions taken by the workers
during these functions are as follows:

get next work(�) –Workers gather up to � work elements for
execution by popping data from their incoming work
queues. If steppers have less than � elements, they
process the next �− incoming work.size() elements of
the user-defined query.

execute work() – Steppers, reducers, and writers pass work
elements to user-defined or fixed functions. If any
emit functions are called by the user, the DStep
Runtime places elements in workers’ outgoing work
queues. Communicators collectively route any inter-
group messages, update global application state, and
place routed work elements in their outgoing work
queues.

exchange work() – Based on the destinations of work ele-
ments in outgoing work queues, all workers post asyn-
chronous sends to the other appropriate group work-

ers. If resources are not available, i.e. if the commu-
nication pool has too many pending requests, workers
simply retain work in their outgoing work queues. If
any worker has new state information, it is posted to
the communicator of the group. Similarly, if the com-
municator has new application state information, it is
posted to all of the group workers. After sends are
posted, workers poll and add any incoming messages
to their incoming work queue.

Execution is designed such that workers sufficiently over-
lap communication and computation without overloading
the network. Furthermore, � is chosen to be sufficiently large
(≈250) such that enough computation occurs while incom-
ing asynchronous messages are buffered by the network.

We provide a thorough example of two epochs of execu-
tion in Figure 5. For simplicity, we only use two groups
with communicators and steppers, and we show execution
of functions in a synchronous manner. We note, however,
that synchronization only happens among communicators
during execute work().

The user starts by executing their application with the
DStep environment and providing a query as input. In the
first epoch, steppers’ incoming work queues are filled with
� query results. The incoming work is then sent to dstep(),
which calls emit dstep() for each element in this example.
Work elements are placed in steppers’ outgoing work queues
and then exchanged. In the example, S0 and S2 both have
work elements that need to be sent to steppers outside the
group (which is posted to their respective communicators)
and inside the group (which is posted directly to them).

In the second epoch, querying happens in the same man-
ner, with S1 and S3 appending queried elements to queues
that already include incoming work from others. Steppers
perform execution similar to the previous epoch, and com-
municators exchange work and update the application state.
Exchange occurs similar to the previous epoch, except com-
municators now post any new application state information
and inter-group work messages from the previous epoch.

The entire traversal phase completes when the number of
initialized dstep() tasks equal the number completed. The
reducers, although not illustrated in our example, would
then be able to execute work elements that were added to
their incoming work queues from emit reduce() calls. In a
related fashion to steppers, reducers also maintain state in-
formation since they have the ability to proceed through
multiple reduction phases.

In contrast to the synchronous particle tracing strategy
presented in [21] and the strategy that used a single master
in [23], we have found this hybrid and highly asynchronous
strategy to be beneficial to our data demands. We demon-
strate the performance of the DStep Runtime in the context
of our driving application – terascale atmospheric analysis.

5. DRIVING APPLICATION RESULTS
Our initial user need was the ability to analyze telecon-

nections and perform internal-model variability studies. A
teleconnection can generally be described as a significant
positive or negative correlation in the fluctuations of a field
at widely separated points. We provide an overview of our
dataset, the technical use case of our analysis problem, and
then driving results in inter-hemisphere exchange. We then
provide a performance evaluation of our application.

March 2000

January 2000

Source
Destination

Densely seed source area

Advect particles through time

Quantitatively analyze
 destination during advection

Figure 6: Detecting correlations in atmospheric flow
from source to destination (teleconnection) is a chal-
lenging domain traversal problem. Given an un-
steady flow field, what type of quantitative charac-
teristics can be derived from interactions between a
given source and destination?

5.1 GEOS-5 Ensemble Runs
NASA Goddard Space Flight Center (Lesley Ott) has

provided us with state-of-the-art atmospheric simulation
data (GEOS-5) for researching better and more sophisti-
cated types of teleconnection and internal-model variability
analysis. The GEOS-5 general climate model (GCM) uses
a flux-form semi-Lagrangian finite-volume dynamical core
with floating vertical coordinates developed by [17]. The
GCM computes the dynamical tendencies of vorticity, diver-
gence, surface pressure, and a variety of selected trace con-
stituents. The spatial resolution of the model is a 1 ◦×1.25 ◦

lat-lon grid with 72 vertical pressure layers that transition
from terrain-following near the surface to pure pressure lev-
els above 180 hPa. The top vertical boundary is at 0.01 hPa
(near 80 km). At the ocean surface, temperature and sea ice
distributions are specified using a global data set, and the
Hadley Center sea surface temperatures match the calendar
dates of the output.

An eight-member ensemble of simulations using a free-
running model, each initialized with meteorology from dif-
ferent days in January, was performed in order to examine
the effect of internal-model variability on simulated trace
gas distributions. Annual CO2 flux values distributed both
hourly and monthly are input from the Carnegie Ames Stan-
ford Approach (CASA) datasets for the years 2000 and 2001
in each of the eight model runs. In total, the eight-model
daily dataset consists of 5,840 timesteps saved in separate
daily netCDF files. Each file has roughly 35 floating-point
variables, totaling to ≈2.3 terabytes of data.

Average CO fossil fuel until arrival (ppm)2Time until arrival (days)

0 30 60 0 0.000183 0.000367

January

July

Ensemble 1 Ensemble 2 Ensemble 1 Ensemble 2

January

July

A

B

C

D

Figure 7: Three-dimensional direct volume renderings of the time until arrival and average CO2 concentrations
from January and July in two GEOS-5 ensemble runs. The circled areas are explained in Section 5.3.

5.2 Technical Use Case
The technical requirements of our studies involved quan-

titatively assessing relationships among the flows from dif-
ferent sources to different destinations. Figure 6 illustrates
the general problem and approach. Given an unsteady flow
field and an initial source of flow (the United States), how
can we assess the relationships of the flow with respect to a
destination area (China in this example)? While a visualiza-
tion method such as fieldline rendering can be used (such as
in this example), it is difficult for the user to quantitatively
assess the relationship. For example, our collaborators were
interested in the following analyses:

Time Until Arrival – Starting from the source at various
points in time, how long does it take for the flow field
to reach the destination?

Residence Time – Once the flow enters the destination, how
long does it reside in the area before exiting?

Average CO2 Until Arrival – What is the concentration of
various CO2 properties along the path to the destina-
tion area?

Internal-Model Variability – Given these quantitative anal-
yses, how can they be used in a manner for assessing
variability of models with different initial conditions?

Along with these initial challenges, another need from our
users was the ability to operate in four dimensions. The
GEOS-5 dataset has a time-varying hybrid-sigma pressure
grid, with units in meters per second in the horizontal layers
and Pascals per second in the vertical direction. Dealing
with this grid in physical space involves adjusting for the
curvilinear structure of the lat-lon grid and then utilizing
another variable in the dataset to determine the pressure
thickness at each voxel. Our collaborators were unaware
of any tools that could process the flow of their grid using
all four dimensions, and we wrote a custom Runge-Kutta
integration kernel for this purpose.

The dstep() function of our application is similar to the
example from Section 3, with the exception that particles
carry statistics during integration. After each Runge-Kutta
step, the particles perform the following function:

function update particle(particle)
if particle.in destination() then

if particle.has already arrived() then
particle.residence time += StepSize

else
particle.time until arrival = particle.time
particle.residence time = 0

end if
else

particle.co2 accumulation += particle.co2
end if

end function

The particles are then reduced based on their starting grid
point and the month from which they began tracing. The
reduce function then performs point-wise operations of the
daily data, averaging it into monthly values. The reduce()
function operates in the following manner:

function reduce(key, particles[])
Result model results[NumModels]
for all p in particles[] do

� Compute monthly averages for each model
model results[p.model].update stats(p)

end for
for all r in model results[] do

emit write(r) � Store statistics
end for

end function

Once finished, the computed statistics may then be ren-
dered and compared with standard point-based techniques.

5.3 Application Impact – Studying Inter-
Hemisphere Exchange

We used the previously described application to analyze
the effects of the flow field from lower levels of the Northern
Hemisphere to the lower levels of the Southern Hemisphere.
The interaction of the two areas is important since the dis-
tributions of heat, moisture, CO2 and other chemical tracers
are critically dependent on exchange between the Northern
and Southern Hemispheres. We first used DStep to query
for the lower 22 pressure layers of the Northern Hemisphere,
and particle tracers were initialized from each queried point.
The destination location was set to the lower 22 pressure
layers of the Southern Hemisphere.

Since our dataset has a relatively short time span (two
years), we focused on small-scale interactions. Specifically,
we only saved particles which reached the destination area
in under two months. Particles were emitted in five day time
intervals for the first year of each model, and each particle
was allowed to travel for a year. Before hitting the desti-
nation area, particles accumulated CO2 information at even
time samplings and used this to compute the average con-
centrations along the trace. Once hitting the target destina-
tion, particles then accumulated residence time information
until exiting the area. If particles exited the area or did not
reach it within two months, they were terminated.

We gathered interesting observations using the time un-
til arrival and CO2 concentrations. Three-dimensional ren-
derings of these characteristics from January and July in
two of the ensemble runs are shown in Figure 7. The time
until arrival starting from January shows interesting prop-
erties right along the border of the hemispheres. Between
South America and Africa (circle A), one can observe a gap
where the particles take up to two months to reach the
Southern Hemisphere. In contrast to the surrounding ar-
eas, where particles almost immediately reach the Southern
Hemisphere, this area is a likely indicator of exchange. Ex-
amining the CO2 concentration at this gap (circle D), one
can also observe that the particles traveled through areas
with much higher CO2 concentration.

Time until arrival also shows interesting characteristics in
July. In the summer months, the jet stream is located closer
to border of the United States and Canada. It appears to
be directing many of the particles eastward, which then go
into an area of strong downward flow. This downward flow
is more apparent in the second ensemble (circle C), resem-
bling the shape of a walking cane. The scientists believed
this area could potentially be responsible for much of the in-
teraction that is occurring between the area around the jet
stream and the Southern Hemisphere. When observing the
CO2 July rendering, one can observe that many of the main
CO2 emitters potentially carry more CO2 into the Southern
Hemisphere.

One can also arrive at conclusions from visually compar-
ing the ensembles. For example, a structure appears over
Canada in January of ensemble two (circle B), but not in
ensemble one. For a closer look, we computed the probabil-
ity that a given lat-lon point over all of the queried verti-
cal layers made it to the Southern Hemisphere within two
months. We plotted the absolute differences in probability
in Figure 8. Color represents the model which had higher
probability, and the opacity of color is modulated by the
absolute difference to highlight differences between the en-
sembles. One can observe that in January near the Hawai-

January July

Ensemble 1 Ensemble 2

Figure 8: Differences between two ensemble runs
are revealed by examining their probability distri-
butions in the vertical direction. Color indicates the
ensemble that had a higher probability of flow trav-
eling from the Northern to Southern Hemisphere
within two months. The opacity of this color is mod-
ulated by the absolute difference between the two
ensembles, revealing the areas that are different.

ian area of the Pacific Ocean, particles have a much higher
probability of reaching the Southern Hemisphere in ensem-
ble one. As mentioned before, one can also see the structure
from ensemble two appearing over Canada in January. In
July, the models appear to have similar probabilistic char-
acteristics, which could potentially mean that the ensembles
are converging through time.

5.4 Performance Evaluation
We have evaluated performance of the DStep Runtime in

the context of our driving application. Our testing environ-
ment is Intrepid, an IBM BlueGene/P supercomputer at Ar-
gonne National Laboratory. Intrepid contains 40,960 nodes,
each containing four cores. We used virtual node mode on
Intrepid, which treats each core as a separate process. We
also used Intrepid’s General Parallel File System (GPFS) for
storage and I/O performance results.

We used five variables in the GEOS-5 application. Three
variables are horizontal wind and vertical pressure velocities.
One variable provides the vertical grid warping, and the last
variable is the CO2 fossil fuel concentration. The dataset is
stored in its original netCDF format across 5,840 files. The
five variables total to approximately 410 GB.

For inter-hemisphere analysis, the application issued a
query for the lower 22 vertical layers of the Northern Hemi-
sphere. We strided the queried results by a factor of two in
each spatial dimension and performed this query for the first
year of each of the eight ensemble runs in five day intervals.
The application initialized approximately 40 million queried
particles, which could be integrated up to a year before ter-
mination. Many of the particles, however, would be cut off
after two months of integration if they had not yet arrived
in the Southern Hemisphere.

The tests utilized a worker group of 16 workers that con-
sisted of 15 steppers on separate cores. Reducers, writers,
and communicators were placed on the 16th core of each
group. Although reducers and writers could potentially in-
terfere with the routing performance of the communicators,
this application had small reduction and data output re-
quirements. In total, approximately 400 MB of information
were written by the application.

Each worker was configured to own two blocks from the
domain and could use up to 128 MB of memory. Because
of the memory restrictions, models were processed one at

 10

 100

 1,000

 10,000

1 K 2 K 4 K 8 K 16 K 32 K 64 K

T
im

e
 (

s
e
c
o
n
d
s
)

Processes

Total Time

Total Time

Instantiation

Optimal Scaling1,870

165

(a) Total Time (log-log scale)

 100

 1,000

 10,000

1 K 2 K 4 K 8 K 16 K 32 K 64 K

 0

 0.2

 0.4

 0.6

 0.8

 1

B
a
n
d
w

id
th

 (
M

B
/s

)

P
e
r
c
e
n
ta

g
e
 o

f
IO

R

Processes

Read Bandwidth

Bandwidth

Percent of IOR

(b) Read Bandwidth (log-log scale)

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

1 K 2 K 4 K 8 K 16 K 32 K 64 K

By
te

s
(G

B)

Processes

Total Bytes Communicated

(c) Bytes Communicated

Figure 9: Performance using DStep to conduct entire analysis of inter-hemisphere exchange.

a time at 1 K processes, two at a time at 2 K processes,
and so on until all eight models could be processed simulta-
neously on 8 K processes. Beyond 8 K processes, steppers
dynamically incremented the ghost sizes of blocks until their
128 MB limitation was reached. This replicated much of the
data, kept more computation local, and ultimately reduced
communication requirements.

Timing results are shown in Figure 9(a). The top line
shows the entire application time from start to finish. The
other line shows the total instantiation time, which includes
the time it takes to read the dataset and perform any data
replication. In all, the application showed decreased total
timing results at every scale, from 1,870 seconds at 1 K pro-
cesses to 165 seconds at 64 K processes. We observed better
parallel efficiency going from 8 K to 64 K (50% efficiency)
when compared to 1 K to 8 K (35% efficiency). We at-
tribute this to additional data replication that occurs past
8 K processes.

The instantiation times leveled out at 16 K processes,
which again is likely attributed to the additional data repli-
cation and communication overhead. The reading results,
which include data replication as part of the aggregate band-
width, are shown in Figure 9(b). The red line shows the
bandwidth, which scales up to about 10 GB/s at 16 K
cores. We have compared these bandwidth results to the
IOR benchmark [3] on Intrepid. IOR provides a baseline
benchmark of the maximum obtainable bandwidth. We used
similar IOR parameters from the study in [16] for compar-
isons. For most of the experiements, we were able to obtain
50% of the benchmark. For an application scenario such as
ours, which operates on thousands of multivariable netCDF
files, consistently obtaining 50% of the benchmark was con-
sidered a success.

The asynchronous and dynamic nature of our system
makes it difficult to measure component times other than ini-
tialization. We have plotted the total bytes transferred over
the network in Figure 9(c) to better illustrate some of the
communication requirements of this application. At smaller
scales (less than 16 K), processes did not have much extra
room for dynamic ghost size extension and communicated
about 90 GB of particle information in total throughout the
job. At 16 K and beyond, processes have much more room
to dynamically resize ghost regions of their blocks, which
in turn kept more computation local. This is the primary
reason why job times continue to scale past 16 K cores.

In all, the performance results showed that – even at data
sizes of hundreds of GBs, time scales at thousands of days,

and advection of tens of millions of particles – the execu-
tion of complex domain traversal analysis can be scaled to
the largest of today’s machines in reasonable times for an
interactive scientific analysis setting. To the best of our
knowledge, this is the largest particle tracing experiment to
date.

6. CONCLUSION
We have shown that the challenging problem of paralleliz-

ing domain traversal can be solved in an elegant manner.
Our solution, which can efficiently hide and scale manage-
ment of complex parallel tasks, has provided a new capa-
bility for data-intensive scientific analysis tasks. Along with
being applicable to our system, we believe the two-tiered
communication and work management strategy can be effec-
tively utilized by other communication-bound applications.

Besides having a user interface that offers an expressive
and succinct serial programming interface, another fruitful
aspect for our application scientists is the ability to perform
analysis directly after a simulation on its native architec-
ture with its native data format. Furthermore, the ability
to allow combination of unsteady flow features with local
analysis of scalar quantities has also allowed our users to
perform innovative full-range ensemble analysis.

In the future, we plan to explore out-of-core techniques,
heterogeneous processor architectures, and integrate our sys-
tem with fault-tolerant techniques. We are also interested
in integrating our work with production analysis tools such
as NCL and also adopting early users from other application
domains.

7. ACKNOWLEDGMENT
This work is funded primarily through the Institute of

Ultra-Scale Visualization (http://www.ultravis.org) under
the auspices of the SciDAC program within the U.S. Depart-
ment of Energy. Our work would be impossible without the
facilities provided by the Argonne Leadership Computing
Facility (ALCF) and the Oak Ridge Leadership Computing
Facility (OLCF). We thank Lesley Ott and NASA Goddard
Space Flight Center for providing us with GEOS-5 data.
We also thank Robert Latham and Rob Ross at Argonne
National Laboratory for their comments and help with im-
proving I/O performance. We also acknowledge Scott Sim-
merman for his suggestions that improved the work.

8. REFERENCES
[1] Boost C++ libraries. http://www.boost.org.
[2] IDL: Interactive data language.

http://www.ittvis.com/idl.
[3] IOR benchmark.

http://www.cs.sandia.gov/Scalable_IO/ior.html.
[4] NCL: NCAR command language.

http://www.ncl.ucar.edu.
[5] Protocol Buffers: Google’s data interchange format.

http://code.google.com/p/protobuf.
[6] Visit: Software that delivers parallel interactive

visualization. https://wci.llnl.gov/codes/visit.
[7] Jeffrey Dean and Sanjay Ghemawat. Mapreduce:

Simplified data processing on large clusters. In OSDI
‘04: Sixth Symposium on Operating System Design
and Implementation, 2004.

[8] Jeffrey Dean and Sanjay Ghemawat. Mapreduce:
Simplified data processing on large clusters.
Communications of the ACM, 51:107–113, January
2008.

[9] D. J. Erickson, R. T. Mills, J. Gregg, T. J. Blasing,
F. M. Hoffman, R.J. Andres, M. Devries, Z. Zhu, and
S. R. Kawa. An estimate of monthly global emissions
of anthropogenic CO2: The impact on the seasonal
cycle of atmospheric CO2. Journal of Geophysical
Research, 113, 2007.

[10] D. Galbally, K. Fidkowski, K. Willcox, and
O. Ghattas. Non-linear model reduction for
uncertainty quantification in large-scale inverse
problems. International Journal for Numerical
Methods in Engineering, 81(12):1581–1608, 2010.

[11] Kui Gao, Wei keng Liao, Arifa Nisar, Alok Choudhary,
Robert Ross, and Robert Latham. Using subfiling to
improve programming flexibility and performance of
parallel shared-file i/o. International Conference on
Parallel Processing, pages 470–477, 2009.

[12] A. Hannachi, I. T. Jolliffe, and D.B. Stephenson.
Empirical orthoghonal functions and related
techniques in atmospheric science: A review.
International Journal of Climatology, 27:1119–1152,
2007.

[13] T. Hoefler, A. Lumsdaine, and J. Dongarra. Towards
efficient mapreduce using MPI. In Recent Advances in
Parallel Virtual Machine and Message Passing
Interface, 16th European PVM/MPI Users’ Group
Meeting. Springer, Sep. 2009.

[14] Wesley Kendall, Markus Glatter, Jian Huang, Tom
Peterka, Robert Latham, and Robert Ross. Terascale
data organization for discovering multivariate climatic
trends. In SC ‘09: Proceedings of ACM/IEEE
Supercomputing 2009, Nov. 2009.

[15] Wesley Kendall, Jian Huang, Tom Peterka, Rob
Latham, and Robert Ross. Visualization viewpoint:
Towards a general I/O layer for parallel visualization
applications. IEEE Computer Graphics and
Applications, 31(6), Nov./Dec. 2011.

[16] Samuel Lang, Philip Carns, Robert Latham, Robert
Ross, Kevin Harms, and William Allcock. I/O
performance challenges at leadership scale. In SC ‘09:
Proceedings of ACM/IEEE Supercomputing 2009,
2009.

[17] S-J Lin. A “vertically lagrangian” finite-volume

dynamical core for global models. Monthly Weather
Review, 132:2293–2307.

[18] Jay Lofstead, Fang Zheng, Qing Liu, Scott Klasky,
Ron Oldfield, Todd Kordenbrock, Karsten Schwan,
and Matthew Wolf. Managing variability in the I/O
performance of petascale storage systems. In SC ‘10:
Proceedings of ACM/IEEE Supercomputing 2010,
2010.

[19] Grzegorz Malewicz, Matthew H. Austern, Aart J.C
Bik, James C. Dehnert, Ilan Horn, Naty Leiser, and
Grzegorz Czajkowski. Pregel: A system for large-scale
graph processing. In Proceedings of the 2010
International Conference on Management of Data,
SIGMOD ’10, pages 135–146, 2010.

[20] L. Ott, B. Duncan, S. Pawson, P. Colarco, M. Chin,
C. Randles, T. Diehl, and E. Nielsen. Influence of the
2006 Indonesian biomass burning aerosols on tropical
dynamics studied with the GEOS-5 AGCM. Journal
of Geophysical Research, 115, 2010.

[21] Tom Peterka, Robert Ross, B. Nouanesengsey,
Teng-Yok Lee, Han-Wei Shen, Wesley Kendall, and
Jian Huang. A study of parallel particle tracing for
steady-state and time-varying flow fields. In IEEE
International Parallel and Distributed Processing
Symposium (IPDPS), May 2011.

[22] Steven J. Plimpton and Karen D. Devine. Mapreduce
in mpi for large-scale graph algorithms. 2011.

[23] Dave Pugmire, Hank Childs, Christoph Garth, Sean
Ahern, and Gunther H. Weber. Scalable computation
of streamlines on very large datasets. In Proceedings of
the 2009 ACM/IEEE conference on Supercomputing,
2009.

[24] Kurt Stockinger, John Shalf, Kesheng Wu, and E. Wes
Bethel. Query-Driven Visualization of Large Data
Sets. In Proceedings of IEEE Visualization 2005, pages
167–174. IEEE Computer Society Press, October
2005. LBNL-57511.

[25] Jeff Stuart and John Owens. Multi-GPU MapReduce
on GPU clusters. In IEEE International Parallel and
Distributed Processing Symposium (IPDPS), May
2011.

[26] Tiankai Tu, Charles A. Rendleman, David W.
Borhani, Ron O. Dror, Justin Gullingsrud, Morten Ø.
Jensen, John L. Klepeis, Paul Maragakis, Patrick
Miller, Kate A. Stafford, and David E. Shaw. A
scalable parallel framework for analyzing terascale
molecular dynamics simulation trajectories. In
Proceedings of the 2008 ACM/IEEE conference on
Supercomputing, SC ’08, 2008.

[27] Hongfeng Yu, Chaoli Wang, and Kwan-Liu Ma.
Parallel hierarchical visualization of large time-varying
3d vector fields. In Proceedings of the 2007
ACM/IEEE conference on Supercomputing, SC ’07,
pages 1–24, 2007.

