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ABSTRACT
There is a growing body of research exploring new network
architectures for the data center. These proposals all seekto
improve the scalability and cost-effectiveness of currentdata
center networks, but adopt very different approaches to do-
ing so. For example, some proposals build networks entirely
out of switches while others do so using a combination of
switches and servers. How do these different network archi-
tectures compare? For that matter, by what metrics should
we even begin to compare these architectures?

Understanding the tradeoffs between different approaches
is important both for operators making deployment decisions
and to guide future research. In this paper, we take a first step
toward understanding the tradeoffs between different data
center network architectures. We use high-level models of
different classes of data center networks and compare them
on cost using both current and predicted trends in cost and
power consumption.

1. INTRODUCTION
The network infrastructure is a first order design concern

for data center operators. It represents a significant fraction
of the initial capital investment while not contributing di-
rectly to future revenues. For this reason, reducing the net-
work infrastructure cost is seen by operators as a key driver
for maximizing data center profits. The search for efficient
and low-cost data center network fabrics has motivated sev-
eral research proposals in recent years [14,15,23–25]. These
proposals address a similar set of challenges (e.g.,reducing
cost, improving bisection bandwidth, and increasing fault
tolerance) but adopt very different approaches. For exam-
ple, some architectures use only switches to forward traf-
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fic between servers [15,23] while others require that servers
participate in packet forwarding [14,24,25].

While there is a clear need for a sound methodology for
comparing different network architectures, there has to date
been little work in this direction. Such a comparison is chal-
lenging for multiple reasons. First, there are many dimen-
sions that characterize performance,e.g.,latency, bandwidth,
power, cost, failure resilience and so forth. A second chal-
lenge is due to the fundamental differences in proposed net-
work designs that make it difficult to identify a level playing
field from which to compare different solutions. For exam-
ple, in traditional networks, one might simply count switch
costs but for architectures that route packets through servers
one must determine how to apportion the cost of servers that
participate in such packet forwarding. A final complication
is the various factors that drive costs and the impact future
trends in server and network equipment may have on any
comparison drawn from the capabilities and costs of current
equipment.

In this paper, we make two contributions that together
constitute a first attempt at understanding the trade-offs in-
volved in the design of data center network architectures.

First, we propose a methodology for estimating and com-
paring the costs of several data center network architectures
(§3). To a first approximation, our approach is based on
setting a target performance level in terms of the key per-
formance metrics of network capacity and latency and then
comparing the network costs incurred by different design op-
tions when provisioned to sustain this target performance.

Second, using the proposed methodology, we conduct a
cost analysis of several representative architectures (§4). In
our analysis, we use current market prices and power con-
sumption figures for hardware equipment and explore how
technology trends may impact our conclusions. In addition,
we analyze relative costs in a manner that is agnostic to ab-
solute price values and in an asymptotic context.

The remainder of this paper is organized as follows. In
Section 2 we provide an overview of the design space for
data center networks and justify our selection of a small set
of representative designs. In Section 3, we describe our
methodology for comparing different network designs and
then present our results in Section 4. We conclude with a
discussion of the implications of our findings and potential
directions for future work.



2. DATA CENTER NETWORK DESIGNS
Our goal is to compare different data center network ar-

chitectures. Toward this, we start with a high-level classi-
fication of data center network designs based on which we
narrow our study to several architecture instances. The many
proposals for next-generation data center network architec-
tures [14,15,23–25] target a similar goal—namely, support-
ing high bisection bandwidth between very large numbers
of servers in a cost-effective manner—but adopt very dif-
ferent approaches to achieving this. A key dimension along
which these proposals differ is the form of hardware equip-
ment used to forward or process network traffic. This leads
us to classify designs into three broad categories along this
dimension.

In switch-only architectures, packet forwarding is imple-
mented exclusively using switches. Traditional data cen-
ter networks that organize switches in a simple tree topol-
ogy [19] fall under this category as do recent proposals such
as VL2 [23] and the work of El-Fareset al. [15] that inter-
connect switches in more sophisticated topologies such as
fat trees. Our second category, which we termhybrid ar-
chitectures, include designs in which packets are forwarded
using a combination of switches and servers as exemplified
by systems such as BCube [24] and DCell [25]. Finally,
we haveserver-only data center architectures which do not
rely on switches for packet forwarding. Instead, each server
plays a dual role – running regular applications and also re-
laying traffic between servers. Every server is directly con-
nected to a few other servers to form a data center-wide in-
terconnect topology of server-to-server links. Abu-Libdeh
et al. [14] propose such a design in which servers are inter-
connected in a three dimensional torus topology. In some
sense, switch-only and server-only designs can be viewed
as the two extreme points in the design spectrum of hybrid
architectures.

In scoping our analysis, we made two key choices. First,
we chose to focus on data centers in which each server has
10Gbps connectivity rather than the current 1Gbps. Our ra-
tionale in this was simply that discussions around upgrading
server connectivity from 1Gbps to 10Gbps are already un-
derway in industry. In fact, some cloud computing providers
have already started to offer 10Gbps connectivity with full
bisection bandwidth for high performance computing [3].
Moreover, existing tree-based network architectures appear
adequate for servers with 1Gbps connectivity and hence any
overhaul of data center networks (at which point comparing
design options has greater relevance) is more likely to ac-
company an upgrade to server connectivity. Because scaling
traditional tree-based architectures to servers with 10Gbps
connectivity is problematic (for reasons described in [15]),
we eliminate this design from consideration.

Our second methodological decision has to do with rout-
ing in switch-only architectures. Current Ethernet routing
protocols based on constructing spanning trees scale poorly
to large data center sizes; the issues involved have been fre-

quently documented and several ongoing efforts propose mod-
ified routing algorithms that address these problems [15,23,
29,31,33]. In our study, we assume an idealized routing pro-
tocol that forwards packets along the shortest path(s) to the
destination, with load-balancing across the set of such paths
to make full use of the available network capacity. Implicitly,
this assumes that current problems with Ethernet routing will
be addressed in next-generation data center networks and
that the resulting design will efficiently exploit available net-
work capacity. Further, by using idealized route selection,
the performance of a switch-based design becomes largely
dependent on the inter-switch topology selected and less on
issues such as addressing. Most proposals for new switch-
only designs share similar topologies (typically a form of
Clos network), differing more on how routing and address-
ing are implemented. Hence we can narrow our focus to
a candidate switch-only architecture – we select the fat-tree
based proposal of El-Fareset al. – and expect that our results
are roughly representative of switch-only proposals basedon
similar topologies.

With these methodological choices in place, our study com-
pares the following four data center network designs.
(1) FatTree-based switch-only networks: As mentioned
above, we choose the fat-tree based proposal of El-Fareset
al. from the class of switch-only network designs. We refer
to this as SW-FatTree. In SW-FatTree, switches are inter-
connected in a folded-Clos topology; servers form the leaves
in this tree and each server is connected to one switch port.
We compute routes over this topology as described above.
We believe that using VL2 would not change our high-level
conclusions, since VL2 also uses a Clos topology.1

(2) de Bruijn-based server-only networks:In considering
server-only network designs, we started with servers inter-
connected in a 3D-torus as in CamCube [14]. However we
found that this design consistently suffered (in both perfor-
mance and cost) relative to our other designs and that this
was due to the relatively long routing paths in a torus—
O(N1/3) hops, withN servers.2

Since the notion of a server-only network design is broader
than the specific choice of topology made in CamCube, we
looked for topologies that would overcome this limitation
particular to a low-dimensional torus. A natural alternate
is a de Bruijn topology because it has an optimal diameter
(log N ) given a constant degree of the nodes. In a de Bruijn
graph of dimensionn and basek, each vertex has a repre-
sentation of lengthn in basek (i.e.,with values 0,...,k − 1).
Thus, the set of vertices isV = {(0, ..., 0), (0, ..., 1), . . . , (k−

1As originally proposed in [23], VL2 uses heterogeneous linkca-
pacities and is more difficult to scale to 10Gbps bandwidth per
server. For simplicity, we narrow the scope of our comparison and
only use homogeneous link capacities in this paper.
2In addition to the performance penalty, longer paths resultin
higher cost because longer path lengths lead to a higher total vol-
ume of traffic and hence the network must be provisioned for higher
capacity.



1, ..., k − 1)}. The edges are between nodes of the form
((a1, ..., an), (b1, ..., bn)) wherea2 = b1, a3 = b2,...,an =
bn−1, i.e., the endpoint identifiers are shifted by one digit.
Thus, nodes havek neighbors. Since de Bruijn is a directed
graph while network links are bidirectional, we use a mod-
ified version of a de Bruijn graph where links are consid-
ered undirected (e.g.,see [36]). In this graph, nodes have (at
most)2k neighbors, similar to a de Bruijn graph where the
identifiers of the neighbors of each node are shifted both left
and right.

Like the torus, a de Bruijn graph requires a small and con-
stant number of connections per server but has a much bet-
ter worst-case path length oflogk N . When requiring full
bisection bandwidth, we found that a de Bruijn topology re-
duced costs by 2-3× relative to a 3D-torus, while providing
equivalent performance even for small network sizes such
as 15,000 hosts. As expected, due to the different scaling
properties, these differences increase with the network size.

We thus introduce a new “SRV-deBruijn” server-only net-
work design in which servers within a rack are connected
with a de Bruijn graph. Between racks we also use de Bruijn
graphs. To provide the necessary bisection bandwidth, we
creater identical de Bruijn graphs between racks, wherer
is the number of servers in a rack. More precisely, if we
order the servers in each rack from1 to r, servers labeled
1 from each rack are part of one de Bruijn graph between
the racks, servers labeled2 are part of another identical de
Bruijn graph, and so forth. Thus, our architecture consistsof
r + C de Bruijn graphs, whereC is the number of racks.C
of these graphs are inside racks (typically smaller), andr of
them are between racks.

Note that SRV-deBruijn, similar to CamCube, achieves a
low fanout at therack level in the sense that for a base-k
inter-rack de Bruijn topology, (servers in) a given rack is
connected to (servers in)2k other racks. Intuitively, this
simplifies wiring complexity since the cables exiting a rack
are “aggregatable” into a small number of inter-rack aggre-
gates. One drawback of the de Bruijn topology relative to
the 3D-torus is that some inter-rack links can be longer than
in a torus, where most inter-rack links are between imme-
diately adjacent racks. Our results (in §4) suggest that this
additional cost is small, and hence we deemed the tradeoff
worthwhile.

Finally, in addition to the de Bruijn topology, we also con-
sidered the class of expander graphs since these offer high
bisection bandwidth, low diameter and low degree topolo-
gies. In particular, we have experimented with random graphs
(known to be good expanders) and record degree/diameter
graphs [4] with equal degree and diameter. We typically
found that these offered an additional∼10% cost savings
relative to the de Bruijn topologies. However, because rout-
ing over such a topology is more complex than over a de
Bruijn or torus and because these graphs are more difficult
to analyze, we opted for the de Bruijn as our representative

server-only network design in this paper.3

(3) BCube and (4) de Bruijn-based hybrid networks:From
the class of hybrid network architectures, we started with the
DCell [25] and BCube [24] proposals. In our tests, DCell
consistently achieved similar performance at a higher cost
compared to at least one of the other topologies, and hence
we do not consider DCell further in this paper.

Closer examination of BCube revealed that, as a point in
the design space of hybrid architectures, BCube skews more
toward the “switch heavy” end of the spectrum in the sense
that switches take on a greater share of the job of packet
forwarding than do servers. For example, in the particular
instantiation of BCube that we are using (K = 2), over 60%
of packet forwarding is done by switches. To better cover
the spectrum of hybrid network designs, we thus introduce a
new hybrid network architecture inspired by the de Bruijn-
based server-only network introduced earlier. Starting with
the SRV-deBruijn design, we replace theintra-rack server-
based de Bruijn topology with a single Top-of-Rack (ToR)
switch; i.e., every server is connected to the ToR switch
within its rack and all traffic between servers in the same
rack flows through the ToR switch. Thus a server has no
direct links to any other server within its rack; the inter-
rack connectivity between servers remains identical to that
in SRV-deBruijn. We term this hybrid architecture as HY-
deBruijn. In a HY-deBruijn topology, each server has2k+1
links and a worst-case path length oflogkC + 2, wherek is
the base of the inter-rack de Bruijn graph andC is the num-
ber of racks. For example, in a scenario withk = 3 and
C = 243, HY-deBruijn handles 70% of packet forwarding
in servers and only 30% in switches thus offering a useful
counterweight to the HY-BCube hybrid design.
Discussion:We thus compare four specific network designs
– a fat-tree interconnect of only switches (SW-FatTree), a
de Bruijn interconnect of only servers (SRV-deBruijn), the
switch-heavy BCube hybrid (HY-BCube) and the server-heavy
de Bruijn+ToR hybrid network (HY-deBruijn). It is impor-
tant to note that we do not claim that these solutions are
the best, or even broadly representative, of their class of so-
lutions; rather, we pick these as they represent the current
state-of-the-art from each design class and look to compare
them as a starting point for future work on refining and un-
derstanding design options. In particular, we expect our
work to be relevant because all the four topologies that we
use have similar asymptotic behaviors, in that the dominant

3In both a de Bruijn or torus topology, routing decisions are made
greedily based on local state (e.g.,the identifiers of a node’s imme-
diate neighbors). By contrast, routing over a random graph would
require a computation based on knowledge of the entire network, or
a precomputation that holds forwarding state entries for each node
in the graph. On the other hand, the architectures based on ran-
dom graphs have the ability to scale more easily compared to for
example the architectures based on de Bruijn graphs, which ide-
ally require the number of hosts/racks to be a strict power oftheir
base. (Techniques using virtual nodes could alleviate someof these
concerns.) We leave an exploration of this topic to future work.



resource used for forwarding (switch ports, NIC ports, CPU
cores) scales asNlogN whereN is the number of nodes
in the topology (§4.3). Since interconnect topologies have
been studied extensively in the literature (and thus few big
surprises are expected in designing fundamentally different
topologies), we expect our findings to be useful even for fu-
ture data center architectures using other topologies.

3. METHODOLOGY
When comparing data center networks, the two broad axes

along which we would like to evaluate different architectures
are cost and performance. In accounting costs, we consider
both the capital expenditure and power consumption due to
the network-related infrastructure. These are derived from
the cost and power profile of the networks’ various com-
ponent parts, which for the solutions we consider include:
switches, cables, server network interface cards (NICs) and
server CPU cores used to forward packets by hybrid and
server-only architectures. We measure performance in terms
of two metrics: the capacity (bisection bandwidth) that the
network supports and the latency in routing between servers.
An additional performance metric that might be considered
is resilience or the network’s ability to “route around fail-
ure” of individual components. We leave an evaluation of
resilience to future work, but we note that the topologies we
study (fat-trees, de Bruijn graphs and BCube graph) all have
a large number of paths between any two end-points; hence
we expect all these topologies to be reasonably resilient at
low failure rates.

The challenge in attempting a comparative study stems
from the large number of parameters simultaneously at play.
The network in each of our solutions is constructed from
multiple hardware components, each with its correspond-
ing performance, power and cost characteristics, leading to
a range of possible performance-to-cost tradeoffs. For ex-
ample, in a server-only network, if we double the number of
NICs at each server (increasing NIC-related cost), we obtain
a topology with higher per-node degree and hence shorter
paths (improving performance) but also lower hop-count (in-
curring lower CPU costs since servers forwards less traffic).
In addition, we must consider how different solutions behave
for different data center sizes and application workloads.

At a high level, our approach to bringing order to the pa-
rameter space is to first arrange (by construction) for the dif-
ferent solutions to achieve roughly similar performance and
then compare the total cost of the resultant constructed net-
works. Effectively, we ask what the cost of the network is
to achieve a particular target performance level. Thus we
can evaluate and compare the cost of our four solutions for
varying network size and target performance.

Our methodology thus consists of the following three steps.
(1) Equalize latency (path lengths):We first arrange for the
topologies in the four designs we consider to have roughly
similar routing path lengths. We do so by fine-tuning dif-
ferent topology parameters such as the number of levels and

N (1000s servers)

0 20 40 60
0

2

4

6

8

SW−FatTree
HY−BCube
HY−deBruijn
SRV−deBruijn

(a) Average

N (1000s servers)

0 20 40 60
0

2

4

6

8

10

SW−FatTree
HY−BCube
HY−deBruijn
SRV−deBruijn

(b) Max

Figure 1: Hop count

ports per switch (for SW-FatTree, HY-BCube and HY-deBruijn)
and the fanout at every server (for SRV-deBruijn and HY-
deBruijn). But we also have to make sure the resulting topolo-
gies are feasible in terms of the necessary hardware require-
ments. In particular, we have to make sure that the switch
port count and the number of NICs per server can be prac-
tically achieved. In this paper, we require the switch port
count to be at most 96 and the maximum number of network
ports per server to be on the order of 12 (corresponding to 2
NICs/server, assuming 6-port NICs as available today [5]).

Fig. 1 presents the resultant average and maximum paths
we obtain for each of the solutions for increasing data center
size (i.e.,number of servers). Given the previous constraints
and the different topological designs, it is difficult to exactly
match the latency between the different architectures, butwe
believe the results in Fig. 1 are sufficiently close for our pur-
pose of a high-order-bit comparison. The HY-BCube and
SW-FatTree maximum paths are practically represented by
step functions, increasing every time the fixed “level” pa-
rameter increases,i.e., the K parameter of BCube and the
number of levels for the folded Clos; we use 2 and 3 as the
values for these two parameters in Fig. 1. We usek = 3
for the de Bruijn topologies, for both the intra and inter rack
graphs. In general, the path length as well as the component
requirements scale logarithmically with the number of nodes
for all the selected topologies (see 4.3), and thus similar be-
havior, although in larger jumps, can be expected for all data
center sizes.

Hence, after this step we construct topologies of roughly
equal path length for each of the solutions we consider, and
this effectively normalizes the latency metric.
(2) Equalize capacity: Given topologies with similar path
lengths, we next arrange for these topologies to have equal
capacity. For this, we first select a target input traffic work-
load and thenprovision the network with the capacity re-
quired to support this input load. Provisioning in this context
implies ensuring sufficient switch capacity (for switch-based
solutions) or that servers have sufficient NICs and cores to
accommodate the desired traffic load. For example, say that
in a de Bruijn topology, the traffic demands are such that
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Figure 2: Component requirements per server, 60k
server network

17Gbps of traffic should be forwarded between two servers
A andB; in this case, we must provision for two 10G links
betweenA and B. Likewise, say thatA ends up relay-
ing/forwarding 29Gbps of traffic; then we must ensureA has
a number of cores capable of processing 29Gbps. If we say
that one core can process a value ofα Gbps, then serverA
must be provisioned with29/α cores. In this paper, we use
a value ofα = 10 Gbps, based on recently published empir-
ical results [26,34]. To determine the resources (ports, NICs
and cores) each switch or server must be provisioned with,
we built a high-level simulator that routes the specified input
workload over the target data center topology and computes
the resultant traffic load at each server and switch.

As before, we must ensure that the provisioned topology
is feasible—ensuring that the port count (for switches and
servers) and core count (for servers) is possible using cur-
rent technology. We described our limits on port counts pre-
viously. With respect to core counts, current off-the-shelf
servers have at most 24-32 cores. Hence we deem any topol-
ogy that requires more than∼10 cores per server for han-
dling communications as infeasible since we expect data cen-
ter designers to be not willing to sacrifice a significant frac-
tion of the processing power for networking tasks.

In this paper, we require the data center to have sufficient
bisection bandwidth to allow any pair of servers to commu-
nicate at full 10Gbps rate. We focus on this capacity re-
quirement as it reflects the driving assumption/requirement
of prior work [15, 23–25]—namely that supporting high bi-
section bandwidth is key to managing complexity and cost
in modern data centers. While we provision the networks for
full bisection bandwidth, our analysis also considers traffic
workloads that do not fully utilize this maximum available
capacity; such scenarios incur lower power and CPU costs
for network forwarding. Our overall methodology can be ap-
plied to different capacity subscription levels, and we leave it
to future work to explore these different set of requirements.

Given our capacity requirement, Figure 2 plots the resul-
tant number of component parts required by the appropri-
ately provisioned topology in each of the four network de-
signs for a data center size of 60,000 servers (some com-
ponents are not required by some topologies).4 We observe

4We use 60,000 as maximum data center size since it is at the

that in all cases the number of components are well within
the upper limits on core and port counts mentioned above;
this reveals that it isfeasibleto construct equally efficient
(as measured by hop count) and moderately-sized networks
with full-rate any-to-any bisection bandwidth using any of
the solutions we consider. Hence, from the standpoint of
performance alone, any of the solutions we consider appear
roughly equivalent, under-scoring the importance of under-
standing costs and alternate dimensions along which the de-
sirability of different solutions might diverge.

Note that in Figure 2, the presented topologies range in
the degree of ”hybridness” from left (switch-only) to right
(server-only), using fewer switch ports and more NICs and
cores. However, there are other topologies that make differ-
ent tradeoffs, for example DCell uses fewer NIC ports than
the HY-deBruijn but more cores, since its topology results in
longer path lengths.
(3) Count costs:Having normalized the different solutions
to achieve equivalent performance, we are left with compar-
ing their costs. We consider the cost due to both the capi-
tal expenditure for, and power consumption of, networking-
related equipment. For this, we consider the appropriately
provisioned topology (from steps 1 and 2 above) and sum up
the price and power consumption of each type of component
used. The resultant cost requires information on the per-
component price and power consumption and, in what fol-
lows, we elaborate on our assumptions in this regard. Note
that we do not account for other types of cost such as man-
agement costs, which are difficult to quantify but might in
fact tilt the balance between choosing one network design
against another (see §5 for a discussion on this topic).

3.1 Cost Model

Equipment Costs: With regard to capital expenditure, we
consider the prices for four components: (i) 10Gbps switches,
(ii) 10Gbps server NICs, (iii) server cores and (iv) cables.
These prices represent costs to the data center operator. We
introduce our specific price numbers in the following sec-
tions and here explain the assumptions underlying our cost
calculations.

Regarding switches, a key question is how we assume
the per-port price scales given the overall switch port count.
In this paper, we assume switch price is linear in the num-
ber of ports;i.e., the per-port price is constant. Intuitively,
one expects some non-linearity as the capacity of the switch
fabric is scaled. However, we require our solutions to use
switches with fewer than 96 ports and the vendor quotes
we received (described in Sec. 4) offer switches up to 48/64
ports at a fixed per-port price. Moreover, from discussions
with industry experts, this trend is expected to extend to be-

higher end of the spectrum for data center size [22], since wecould
match up all the architecture sizes almost exactly to this value, and
because it is difficult for the simulator to scale up to significantly
larger sizes.



tween 100-150 ports.5 Note that the scaling target of our
solutions is not accidental; architectures like HY-BCube and
SW-FatTree were designed to operate with relatively low-
port-count switches for cost-effective scaling. Hence, we
think this is a reasonable approximation for the range of port
counts necessary to scale to up to 60,000 servers. For exam-
ple, at this size, the switch fan out required by SW-FatTree is
62 (three level fat tree), for HY-BCube is 39 (K=2) and for
the HY-deBruijn is around 81 (we use 729 racks with base 3
de Bruijn graphs between racks).

With respect to server cores, a key question is the extent
to which a core should be viewed as dedicated to network
forwarding. The question arises because, unlike network in-
terfaces and switches, CPUs can be used to run regular ap-
plication jobs when not used for forwarding. We thus con-
sider two charging models for cores. In the first“reserved”
model, we assume that the number of cores required to pro-
cess the maximum target input traffic (i.e.,10Gbps per server
for our assumed input workload) are dedicated for network
forwarding and cannot be reclaimed even if the actual net-
work utilization drops below this provisioned level.

In the second“shared” model, we assume cores can be
used for other tasks when not busy forwarding packets and
hence assume core usage in proportion to network utiliza-
tion levels. Since the average network utilization is typi-
cally low [17,30] this can offer significant savings to server-
centric network designs. Note that this cost model assumes a
moreelasticdata center workload, where long running tasks
can be preempted or migrated under network traffic spikes.
Elastic workloads wherein certain jobs do not require strict
short-term performance guarantees are common in private
data centers/clouds with batch computing jobs, though less
common in data centers hosting public web services or pub-
lic clouds. Other drawbacks of this cost model might arise
as performance penalties due to the shared cache and I/O
between the forwarding processes and the rest of the jobs.

To account for the network interfaces, we count the num-
ber of ports required per server and use NIC list prices in a
straightforward manner (§4).

Finally, we must account for cabling costs. In this regard,
we are not aware of any publicly documented cost models
and hence we consider a model that emerged based on dis-
cussions with industry collaborators. Our cable model is
“labor-centric” and reflects discussions with operators that
suggested the dominant expense in cabling is due to the hu-
man cost of manually wiring equipment. Our labor-centric
model thus quantifies the intuition that: (a) it is cheaper/ sim-
pler to run cables between equipment within the same rack
and (b) givenk inter-rack cables, it is simpler/cheaper to run

5One reason for the increase in the number of ports for common
switches is the increase in the number of servers in a rack. Most
racks have 42 rack units and newer blades occupy less than a rack
unit, a common example being to fit 12 blades in 5 rack units; as
a consequence, up to 120 servers have been placed in a single rack
[18,35,38].

these cables between a smaller number of racks. For exam-
ple, if rackA has 5 inter-rack cables emanating from it, then
a topology in which all 5 cables go to a single other rack
B is preferable to a topology in which each cable is run to
a distinct rack, sayB, C, D, E andF . Thus, specifically,
our labor-centric model consists of a higher fixed price for
the first cable connecting two racks and a lower incremental
cost for each additional cable between a pair of racks (§4).
Power Costs: Similar to above, we compute power con-
sumption costs by adding up the power consumption due to
each of our components. For switches and NICs we use a
linear power model with a constant idle-time power draw
and an active power draw that is directly proportional to uti-
lization as reported by prior empirical studies [32]. For the
power consumption of CPU cores, we likewise use a linear
model [16,28]. In estimating the server power consumption,
we only account for the incremental power consumed by the
CPU and the network interface due to packet forwarding.

4. COST COMPARISON
Using the methodology described in the previous section,

we now compare the cost of different data center designs.
We explore three broad questions. First, how do the differ-
ent designs compare given current prices? We explore this
in Section 4.1. Next, in Section 4.2, we ask whether/how fu-
ture technology trends might alter the relative rankings we
observe in Section 4.1? Finally, in Section 4.3, we look
to compare designs in a manner that is agnostic to absolute
price values and in an asymptotic context.

4.1 Current Prices

4.1.1 Equipment Cost

The prices we use are based on quotes from vendors and
follow-up discussions with them. A challenge in any cost
analysis such as ours is that prices can vary greatly across
vendors depending on feature sets and various market fac-
tors. We address this as best as we can by considering ven-
dors that are commonly seen in data center deployments [7]
or that have explicitly positioned themselves as aggressive
on pricing for the data center market [2, 10]. We do not
account for factors such as volume discount, the impact of
equipment depreciation, and so forth. Such information can
be hard to obtain (and often confidential even if obtainable);
moreover, we expect these factors would have a similar ef-
fect across components—whetherswitches, servers or NICs—
and hence expect this omission to not affect our relative rank-
ing of solutions.

As representative of current prices, we use values of $450
per 10Gbps Ethernet switch port, $150 per 10G port on an
Ethernet NIC, and $200 per server core based on quotes we
obtained from Arista Networks [2], HotLava [5] and Super-
Micro [11] respectively. (These are well-known vendors and
generally viewed as price-competitive.) For simplicity, we
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Figure 3: Cost comparison - current prices

first consider the capital expenditure due to equipment only
and ignore cabling costs.

Fig. 3(a) presents the resultant capital expenditure for the
different data center designs using our reserved price model
for cores. (Recall that, under this reserved-core model, we
add the entire cost of the CPUs needed to forwardpeaknet-
work traffic load corresponding to each server generating
10 Gbps.) Fig. 3(b) presents the same results but from the
perspective of the cost per server. At a high level, we see
that most topologies achieve comparable costs with current
prices. HY-BCube achieves the lowest cost, followed closely
by SW-FatTree and HY-deBruijn that are 10-15% more ex-
pensive, while SRV-deBruijn can be up to 45% more expen-
sive. An additional point worth noting from Figure 3(b) is
that the per-server cost grows slowly with increasing data
center size.

Fig. 3(c) and Fig. 3(d) present capital expenditure under
the shared-core cost model, where CPU cores are assumed
to do other useful work when not forwarding packets. Here
the accounted cost is proportional to the average network
utilization. Fig. 3(c) assumes an average network utilization
of 10%, while we use a 20% average utilization in Fig. 3(d).
These values are picked based on measurement studies of
data center network utilization [17, 30, 37]. We see that the
ability to multiplex cores across applications and network-
related processing (as implied by the shared-core cost model)
makes the server-centric solutions more attractive; HY-deBruijn
now achieves the lowest cost although its advantage is rela-
tively modest compared to the other server-centric approaches.
For example, at 20% utilization and for 60,000 servers, SW-
FatTree is about 37% more expensive than HY-deBruijn, while
HY-BCube is about 7% more expensive and SRV-deBruijn is
about 20% more expensive.

Fig. 4 breaks down the total capital expenditure for a 60,000
server data center, assuming the reserved-core model. We
can extrapolate to the corresponding breakdown under the
shared-core model by scaling down all CPU costs in propor-
tion to network utilization; this is shown by whiskers on the
bars in Fig. 4 for a 20% average utilization. It is worth noting
the different tradeoffs made by the two hybrid designs, with
one having a profile similar to that of switch-based architec-
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Figure 4: Equipment cost breakdown for a 60k network

tures (HY-BCube) and the other closer to that of server-only
architectures (HY-deBruijn).

Thus, with our estimates of current prices, hybrid designs
achieve the lowest equipment costs, and the particular hy-
brid design achieving the lowest cost depends on the extent
to which cores can be shared between applications and net-
work processing. However, none of the designs achieve a
significantly lower cost.

4.1.2 Cabling Cost

To compute cabling costs, we use a price of: (i) $10 for
each intra-rack cable, (ii) $50 for each inter-rack cable, and
(iii) an additional $300 penalty for the first cable that con-
nects a pair of racks (in keeping with the labor-centric model
described in Sec. 3). We select these based on current ca-
ble prices, with $50 corresponding to a 70 feet category 6
10GbE cable.

A brief note on the details of the cabling layouts we as-
sume: we make the simplifying assumption that racks con-
tain the same number of servers as the switch port fan-out
(when used). For SW-FatTree, we use the approach pro-
posed in [15] and combine the leftover core switches from
each “pond” into racks. For HY-BCube we assume the size
of one rack to be the size of a BCube0, and we divide the
remaining switches (optimally) into racks of the same size.6

The de Bruijn-based architectures do not need any special

6The level 1 switches from each BCube1 were placed in a rack of
their own, then the firstn level 2 switches were placed in a rack, the
nextn level 2 switches in another rack and so on. (n is the switch
fan out.)
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Figure 5: Per server network power consumption

optimization, with each rack typically connected to 6 other
racks for base 3 de Bruijn networks.

SW-FatTree HY-BCube HY-deBruijn SRV-deBruijn
$101 $70 $170 $188

Table 1: Per Server Cabling Cost Estimates.

Table 1 presents the resultant per-server cabling cost. We
present a single value since we found that per-server cost
varies little for different data center sizes. We see that (some-
what surprisingly, given its use of low-radix switches) HY-
BCube achieves the lowest cost, about 40% lower than SW-
FatTree and almost three times less than the cost for SRV-
deBruijn. In the absolute however, we see that cabling costs
are small compared to equipment costs – typically between
3-8% of the latter (in the reserved core model). Hence, in the
bigger picture, the impact of cabling complexity appears un-
likely to be a deciding factor across different architectures.

4.1.3 Power Consumption

We next estimate the power consumption of networking
related equipment. For switch and NIC power consumption,
we use available data sheets for 10GbE equipment. In par-
ticular, we use 12 Watts as the maximum power consump-
tion per switch port [1] and 4 Watts for the NIC port maxi-
mum power consumption [6]. Since the technical datasheets
present only the maximum power consumption (i.e., for full
utilization) we use an energy proportionality index of 20%—
meaning that the idle power consumption represents 80% of
the maximum power—as suggested by published empirical
data [27,32].

To estimate the power due to packet forwarding at a server,
we measured the power consumption of a server when some
of the CPU cores were running and measured the additional
power usage when one or several of the cores were forward-
ing at full capacity. We used a software router technology [20]
and measured a 12 core server, with Intel Xeon (X5660)
cores. As a result of this experiment, we use the value of
10 Watts per core at maximum utilization. We assume the
per-core power consumption to be proportional with utiliza-
tion, as suggested by [16, 28]. In the shared core model, we
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Figure 6: Total network cost normalized by number of
servers after 5 years of operation at current prices

only add the value of the above active power. In the reserved
model, we also add a value of 5W for the idle power of a
core.

Fig. 5 shows the resultant total power consumption across
designs. In the reserved model, the server-heavy designs
(SRV-deBruijn and HY-deBruijn) are penalized by CPU idle
power leading to higher power consumption than the switch-
heavy designs. In the shared cost model however, the server-
centric approaches dominate SW-FatTree at low utilizations.
This suggests once again that the ability to use CPU cores for
processing when not forwarding in the server-centric topolo-
gies (i.e., the ability to use the shared cost model) is likely
to be an important differentiator across network designs. We
also see that the power draw of server-centric architectures
scales better with utilization. This result is not surprising
given that switches are often considered notoriously power-
inefficient, with power draws that do not scale with utiliza-
tion [27, 32], while servers incorporate relatively sophisti-
cated power management.

4.1.4 Overall Cost and Discussion

We now consider the total cost as the sum of equipment,
cabling and power costs. To convert power consumption to
costs, we assume a rate of $0.1 per kWh [13]. Fig. 6 presents
the resultant costs after 5 years of operation at a 20% average
network utilization, for both the reserved and shared core
cost models.

We draw/recap three high-level conclusions from these
results. The first has to do with the relative importance of
equipment costs, cabling charges and power costs. We see
that, in all the data center designs, power and cabling are
relatively small contributors to the total cost—between 10-
16%. One reason for this is that 10Gbps equipment is still
relatively expensive since it has not yet reached the deploy-
ment volumes needed to dramatically drive down prices (al-
though switches might soon be there, as we discuss in the
following section).

Our second conclusion points to the value of research aimed
at running clusters at higher utilizations and at using more
“elastic” workloads; techniques such as contention-aware
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scheduling and job placement allow operators to run servers
and switches at higher utilization without compromising per-
formance. These techniques would reduce network costs by
(a) enabling the shared-core cost model and (b) by reducing
the relative cost of the equipment, the dominant factor in the
network cost as identified before.

Our third high-level conclusion has to do with the relative
cost across different data center designs, which are not huge
regardless of the cost model. With a reserved-core model,
we conclude that the more switch-centric architectures are
superior to server-centric ones, with the server-only archi-
tecture being over 40% more expensive than the lowest-cost
architecture. With a shared-core model, server-heavier ar-
chitectures achieve lower costs, with the switch-only archi-
tecture being over 40% more expensive than the lowest cost
architecture. In both of these scenarios however, a hybrid
architecture achieves the lowest cost and the relative dif-
ferences to the architectures achieving the second and third
lowest prices are marginal; discussions with vendors suggest
that these differences are within feasible ranges of price cuts
that vendors might make in order to gain in market share.

4.2 Future Trends
In this section, we look at how the cost analysis presented

before might be affected by future technology and price trends.
Our results in the previous section revealed the dominant

effect of equipment costs and that per-server costs vary little
with data center size (Fig. 3) and hence, in this section, we
focus on the capital expenditure due to equipment for a fixed
data center size of 60,000 hosts.

We consider four potential trends in pricing: one based on
historical price trends, the remaining based on price reduc-
tions in switches, NICs and cores that one might anticipate
will follow high volume deployments.

Price trend#1: historical Our cost analysis from the previ-
ous section represents a particular snapshot in time. More
generally, one might look to historical price trends as in-
dicative of future ones. Historically, CPU prices fall in pro-
portion to Moore’s law (a 1.58× price drop per year) while
network equipment prices drop by between 1.47×–1.5× per

year (the former based on historical sales reports we were
able to obtain, the latter on the widely cited Nielsen’s law
[9]). Our projections (extrapolating our previous resultsbased
on the above price trend–we omit graphs) show that, over
any reasonable time period, this trend has minimal impact
on the relative assessment of switchvs.server based designs.
This is both because the difference in price decline is small
and because server-centric designs bear a high NIC-related
cost which we assume scales as network equipment.

Price trend#2: low-cost switchesThe phenomenal growth
in data centers and cloud computing has led to an aggres-
sively competitive market for 10G Ethernet switches and the
expectation that switch prices are poised for dramatic re-
ductions [12]. More specifically, discussions with enterprise
data center operators reveal that switches from Quanta [10]
at a price of approximately $100 per 10G port are now on
the market (we were not able to obtain a formal quote) and
it is reasonable to expect other switch vendors will follow
suit. Fig. 7 plots the impact of such low-cost switches—we
assume $90 per 10G switch port (1/5 of our current price es-
timate) and the reserved-core cost model. Not surprisingly,
low-cost switches puts the switch-based SW-FatTree far ahead
of the pack—over 5× cheaper than SRV-deBruijn and 2×
cheaper than even the best hybrid design.

Price trend #3: low-cost NICsCan hybrid and server-based
designs recover from the blow due to low-cost switches? A
reasonable expectation is that NIC prices will also drop with
growing deployments as servers are upgraded to 10Gbps NICs
(which, of course, can only follows upgrades to the switch-
ing infrastructure). Discussions with NIC designers rein-
force the possibility of such a trend since the manufactur-
ing costs of NICs are low and hence the price is largely of
demand. We thus assume a similar 5× reduction in NIC
prices (to $30 per 10G port, or $180 for a 6-port NIC which
is not much higher than current prices for 1Gbps NICs) and
plot the resultant costs in Figure 7(c). As expected, cheap
NICs help server-based designs but cannot fully close the
gap to SW-FatTree with cheap switches which retain a be-
tween 1.5×-3.5× savings over hybrid and server-only de-
signs.

Price trend #4: “for free” cores A common reaction we
encountered in sharing the results of our study was that we
were wrong/unfair to charge server-only based designs for
the cost of cores. That core counts are expected to scale
rapidly and that, even today, server operators do not fully uti-
lize the multicore capability of their servers and hence any
cores used for packet processing essentially come “for free”.
There are both justified and debatable aspects to this line of
reasoning and even some disagreement amongst the authors
regarding the validity of this argument. Hence, for com-
pleteness we consider the impact of ignoring core costs al-
together, shown in Figure 7(d). We see that in this scenario,
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Figure 8: Comparison between switch-based and server-based architectures for different price ratios of cores / NIC
ports (Y-axis) and switch ports / NIC ports (X-axis)

server-based approaches do achieve lower costs, achieving
cost drops of 25-35% compared to SW-FatTree.

Technology trend: integrated µswitches, hybrid cores?
Given the impact of low-cost switches, what avenues might
server vendors explore to get back in the game? We specu-
late on two possibilities. The first is that server vendors in-
corporate some form of switching capability inside the server–
we call this a serverµswitch. Such aµswitch might be lo-
cated within a server’s PCIe or I/O hub. Discussions with ar-
chitects suggest this is achievable at virtually no additional
manufacturing cost; in fact, recent integrated “PCIe bridg-
ing” technologies are a step in this direction [8]. The effect
of a serverµswitch is that packets that are not destined for
the server and that require little/no sophisticated processing
can be “turned around” at theµswitch without being copied
to memory or imposing on the CPUs. Such aµswitch is
akin to Paxsonet al.’s proposal for a “shunting” NIC [21].
Such aµswitch would be programmable so that the CPUs
(and hence software) have ultimate control over which flows
get processed by theµswitch vs. the cores. An alternate
approach would be for servers to have heterogeneous cores
where sophisticated (and expensive) cores are used for appli-
cation processing while simpler, low-cost cores can be ded-
icated to packet forwarding. In both these proposals, the
effect is to offload some traffic from the CPUs. We quan-
tify this impact by assuming this leads to aβ% reduction
in core costs; we useβ = 90% (this is admittedly a some-
what arbitrary choice but alternate values can be considered
in a straightforward manner). Figure 7(e) plots the resulting
costs. We see that such technology could close the gap in the
cost of switchvs.server-based designs.

DiscussionUltra low cost switches appear imminent and of-
fer switch-based architectures a decisive cost advantage.If
we take low-cost switches as a given, can server-based de-
signs compete? Our results here suggest server-based de-
signs can be cost competitive only if (a) we have correspond-
ingly low-cost NICsand (b) server cores come for (close
to) free or new features that integrate low-cost switching

capability into servers emerge. Even with these changes
however, server-based architectures are mostly equivalent
and not highly superior to switch-based solutions. Given
that server-based architectures represent a radical shiftin de-
ployed infrastructure, we speculate that they are unlikelyto
see significant adoptionunlessthey offer a significant ad-
vantage along a design dimension not considered here. We
speculate that two directions worth exploring are: (1) the rel-
ative manageability of different designs and (2) a network’s
ability to support richer in-network processing as recently
proposed by Symbiotic Routing [14].

4.3 Analysis
In this section, we investigate cost in a more abstract man-

ner, attempting to decouple our relative ranking of solutions
from specific absolute equipment prices. In other words, we
try to answer the question: what are the pricing conditions
under which a given architecture outperforms others?

4.3.1 Qualitative Analysis

We focus on a data center of 60,000 hosts. In the follow-
ing section, we analyze the asymptotic behavior and show
that similar behaviors are expected for any data center size.

Fig. 8 qualitatively shows the architecture that achieves
the lowest equipment cost over the full space of cost met-
rics (i.e., switch, NIC, and CPU). For readability purposes,
we flatten the three-dimensional price space by normalizing
the switch and CPU costs with respect to NIC costs. That
is, we consider the impact of varying the ratio of the price
of a switch port to that of a NIC port (X-axis) and the ra-
tio between the price of a CPU core and that of a NIC port
(Y -axis). Figure 8 also plots the particular data points cor-
responding to current prices with reserved and shared cores,
low-cost switches, low-cost NICs, andµswitches, provid-
ing some insight behind the results presented in the previous
sections.

To understand these results, let us analyze the boundary
between SW-FatTree and HY-BCube in Fig. 8. For this net-
work size, SW-FatTree uses a three-level fat-tree topology
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Figure 9: Quantitative Data for Fig. 8

SW-FatTree HY-BCube HY-deBruijn SRV-deBruijn
SP =O(log N) SP =O(log N) SP =O(1) SP =0
NP =O(1) NP =O(log N) NP =O(log N) NP =O(log N)
C=0 C=O(log N) C=O(log N) C=O(log N)

Table 2: Asymptotic hardware requirements per server. N is the

number of hosts,SP is the number of switch ports,NP is the number

of NIC ports, and C is the number of cores.

(as in [15]) with 5 switch ports per server and one NIC port;
on the other hand, HY-BCube uses 3 switch ports, 3 NIC
ports, and 2 cores. (This data is also presented in Fig. 2.)
Using this breakdown, one can easily derive the equation to
delimit SW-FatTree from HY-BCube as5Sprice + Nprice =
3Sprice + 3Nprice + 2Cprice, whereSprice is the price for a
switch port,Cprice is the price for a core, andNprice is the
price of a NIC port. Dividing byNprice, this equation results
in the boundary separating the two architectures in Fig. 8.
Due to space limitations, we do not explain the remaining
boundaries, but we consider the asymptotic behavior next.

4.3.2 Quantitative Analysis

After seeing which architecture is better in which circum-
stance, we now measure the amplitude of the results shown
previously. Figure 9 presents a quantitative view for two
“horizontal” lines in Fig. 8, one that crosses through the
marker for current prices with the reserved cores model (Fig.
9(a)) and one through the marker for current prices with the
shared cores model (Fig. 9(b)). This chart shows that the
server based architectures can be quite expensive compared
to switch based ones when the cost of a switch port is very
close to that of a NIC port. It also shows that the cost of
a switch port has to be just a bit more (1.5-2.5×) than that
of a NIC port to make server-based approaches cost efficient
when using the shared cores cost model.

4.3.3 Asymptotic Behavior Discussion

In the previous sections we analyzed data center sizes up
to 60k servers, and for these sizes we used simulations to
compute precise numerical estimates. A natural question
is how do these results scale asymptotically, especially for
very large data center sizes? Table 2 presents the high level
asymptotic behavior of the networking equipment require-

SW-FatTree HY-BCube HY-deBruijn SRV-deBruijn
SP =L SP =1/2L SP =1 SP =0
NP =1 NP =1/2L NP =L NP =L
C=0 C=1/2L C=L C=L

Table 3: Asymptotic hardware requirements per server in relation to

L, the path length.

ments for the tested topologies. (We use the same assump-
tions on required performance.) For simplicity, in Table 2 we
ignore all constants including the switch fan out and terms
smaller thanlog N .7 Note that the performance metrics have
the same asymptotic behavior for all topologies,i.e.,the max-
imum path length isO(log N) hops.

Table 2 does not allow us to infer asymptotic behavior
in a format similar to Fig. 8 because the latter requires the
associated constants. In order to arrive at a similar represen-
tation, we proceed as follows. First we express the equip-
ment requirements from Table 2 in terms of the average path
length,i.e.,replacingN by a function ofL (the path length),
and with constants obtained from the specific topologies we
construct. We then set the path length to be equal for all ar-
chitectures and show the resulting equipment requirements
in Table 3. Note that we ignore the additive constants with
respect toL, and the multiplicative constants we use are the
asymptotic values, which approximate the exact values cor-
responding to a specific data center size. Also, these con-
stants are optimistic (in particular for the de Bruijn-based
topologies) in that the data center sizes can be matched with
the optimum parameters for the topology and switch fan-out.

The expected boundary between SW-FatTree and HY-BCube
as computed from Table 3 matches closely the one in Fig. 8.
On the other hand, the boundary between HY-BCube and
HY-deBruijn converges to the same boundary as between
SW-FatTree and HY-BCube, thus “squeezing out” HY-BCube,
when considered asymptotically.

In order to identify the boundary between HY-deBruijn
and SRV-deBruijn, we need a further level of discrimina-
tion. Intuitively, SRV-deBruijn uses2KR−1 more NIC ports
than HY-deBruijn, whereKR is the degree of the de Bruijn
graph for inside the rack;KR should be on the order oflog R
whereR is the number of servers in a rack. This provides
us the point where the boundary between HY-deBruijn and
SRV-deBruijn intersects with the X-axis (which is2KR−1).
Also, SRV-deBruijn usesLR more cores for forwarding traf-
fic, whereLR is the average path within a rack, while HY-
deBruijn uses one switch port. This provides the slope of the
boundary, which isarctan(1/LR), whereLR is also on the
order oflog R.

Hence, we expect a qualitatively similar behavior as pre-
sented in Fig. 8 for all data center sizes, but with particular
boundaries determined by the exact parameters used for each
of the topologies to achieve the desired performance goals
for a given data center size.

7In Table 2, a more exact approximation when selecting the best pa-
rameters for the de Bruijn topologies isNP = log N/W (log N),
whereW is the Lambert W function, andC = log N/ log log N .



5. CONCLUSIONS AND FUTURE WORK
We presented a cost comparison of various data center net-

work architectures spanning from switch-only to server-only
designs. Based on our results, hybrid designs achieve lower
costs with current prices, but the margins are not overwhelm-
ing. The results also depend on the assumptions regarding
the application workload: an elastic workload that is able
to reuse CPU cores for traditional computing when not for-
warding packets would favor server-heavy designs, while an
inelastic workload would favor switch-heavy designs.

In the near future, however, given the various announce-
ments of very low-cost switches, switch based designs are
likely to obtain a cost advantage over server-only or hy-
brid designs. To be competitive, server-based architectures
would need to ensure that CPU cores can be dynamically
shared by both computing and networking tasks. An alter-
native would be to include specific on-die features or het-
erogeneous cores that perform high speed packet switching,
effectively bypassing CPU cores.

However, we believe that there are several other techni-
cal and non-technical factors that need to be taken into ac-
count, and these may favor or penalize some of the designs.
For example, servers often exhibit lower MBTF compared
to switches, which may reduce the desirability of hybrid
and server-based designs. Also, a server-based architecture
would represent such a radical shift from traditional network
designs that it may encounter resistance as an “untested” op-
tion. To overcome these concerns, server-based architectures
should exhibit a significant advantage on dimensions other
than cost.

We believe one of the possible dimensions could be man-
ageability. Indeed, a potential advantage of server-only ar-
chitectures is that the data center could be managed by a
single engineering team. One of the well known inefficien-
cies in current data center operations is that multiple engi-
neering teams are required,e.g.,one team for networking
management, one for server/application management,etc.
Maintaining multiple engineering teams often results in re-
duced levels of productivity because of the need to cross
team boundaries in order to troubleshoot common problems.
We consider examining the management costs of the various
architectures an interesting direction for future research. An-
other interesting research direction opened by server-centric
network designs is the ability to implement more powerful
network services such as in-network aggregation, caching,
TCP optimization or routing enhancements, as recently in-
vestigated by [14].
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