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Abstract

We present a new approach for constructing and verifying higher-
order, imperative programs using the Coq proof assistant. We build
on the past work on the Ynot system, which is based on Hoare
Type Theory. That original system was a proof of concept, where
every program verification was accomplished via laborious man-
ual proofs, with much code devoted to uninteresting low-level de-
tails. In this paper, we present a re-implementation of Ynot which
makes it possible to implement fully-verified, higher-order impera-
tive programs with reasonable proof burden. At the same time, our
new system is implemented entirely in Coq source files, showcas-
ing the versatility of that proof assistant as a platform for research
on language design and verification.

Both versions of the system have been evaluated with case stud-
ies in the verification of imperative data structures, such as hash ta-
bles with higher-order iterators. The verification burden in our new
system is reduced by at least an order of magnitude compared to the
old system, by replacing manual proof with automation. The core
of the automation is a simplification procedure for implications in
higher-order separation logic, with hooks that allow programmers
to add domain-specific simplification rules.

We argue for the effectiveness of our infrastructure by verifying
a number of data structures and a packrat parser, and we compare
to similar efforts within other projects. Compared to competing
approaches to data structure verification, our system includes much
less code that must be trusted; namely, about a hundred lines of Coq
code defining a program logic. All of our theorems and decision
procedures have or build machine-checkable correctness proofs
from first principles, removing opportunities for tool bugs to create
faulty verifications.

Categories and Subject Descriptors F.3.1 [Logics and meanings
of programs]: Mechanical verification; D.2.4 [Software Engineer-
ing]: Correctness proofs, formal methods, reliability

General Terms Languages, Verification

Keywords functional programming, interactive proof assistants,
dependent types, separation logic
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1. Introduction

A key goal of type systems is to prevent “bad states” from arising
in the execution of programs. However, today’s widely-used type
systems lack the expressiveness needed to catch language-level
errors, such as a null-pointer dereference or an out-of-bounds array
index, let alone library- and application-specific errors such as
removing an element from an empty queue, failing to maintain
the invariants of a balanced tree, or forgetting to release a critical
resource such as a database connection. For safety- and security-
critical code, a type system should ideally let the programmer
assign types to libraries such that client code cannot suffer from
these problems, and, in the limit, the type system should make it
possible for programmers to verify that their code is correct.

There are many recent attempts to extend the scope of type
systems to address a wider range of safety properties. Represen-
tative examples include ESC/Java (Flanagan et al. 2002), Epi-
gram (McBride and McKinna 2004), Spec# (Barnett et al. 2004),
ATS (Chen and Xi 2005), Concoqtion (Pasalic et al. 2007), Sage (Gron-
ski et al. 2006), Agda (Norell 2007), and Ynot (Nanevski et al.
2008). Each of these systems integrates some form of specification
logic into the type system in order to rule out a wider range of truly
bad states.

However, in the case of ESC/Java, Spec#, and Sage, the program
logic is too weak to support full verification because these systems
rely completely upon provers to discharge verification conditions
automatically. While there have been great advances in the perfor-
mance of automated provers, in practice, they can only handle rel-
atively shallow fragments of first-order logic. Thus, programmers
are frustrated when correct code is rejected by the type-checker. For
example, none of these systems is able to prove that an array index
is in bounds when the constraints step outside quantifier-free linear
arithmetic.

In contrast, Agda, ATS, Concoqtion, Epigram, and Ynot use
powerful, higher-order logics that support a much wider range of
policies including (partial) correctness. Furthermore, in the case
of Ynot, programmers can define and use connectives in the style
of separation logic (Reynolds 2002) to achieve simple, modular
specifications of higher-order imperative programs. For example,
a recent paper (Nanevski et al. 2008) coauthored by some of the
present authors describes how Ynot was used to construct fully-
verified implementations of data structures such as queues, hash
tables, and splay trees, including support for higher-order iterators
that take effectful functions as arguments.

The price paid for these more powerful type systems is that, in
general, programmers must provide explicit proofs to convince the
type-checker that code is correct. Unfortunately, explicit proofs can
be quite large when compared to the code. For example, in the Ynot
code implementing dequeue for imperative queues, only 7 lines



of program code are required, whereas the proof of correctness is
about 70 lines.

This paper reports our experience re-designing and re-implementing
Ynot to dramatically reduce the burden of writing and maintaining
the necessary proofs for full verification. Like the original Ynot,
our system is based on the ideas of Hoare Type Theory (Nanevski
et al. 2006) and is realized as an axiomatic extension of the Coq
proof assistant (Bertot and Castéran 2004). This allows us to in-
herit the full power of Coq’s dependent types for writing code,
specifications, and proofs, and it allows us to use Coq’s facility for
extraction to executable ML code. However, unlike in the previous
version, we have taken advantage of Coq’s tactic language, Ltac,
to implement a set of parameterized procedures for automatically
discharging, or at least simplifying, the separation logic-style ver-
ification conditions. The careful design of these procedures makes
it possible for programmers to teach the prover about new domains
as they arise.

We describe this new implementation of Ynot and report on
our experience implementing and verifying various imperative data
structures including stacks, queues, hash tables, binomial trees, and
binary search trees. When compared with the previous version of
Ynot, we observe roughly an order of magnitude reduction in proof
size. In most cases, to realize automation, programmers need only
prove key lemmas regarding the abstractions used in their interfaces
and plug these lemmas into our extensible tactics. Additionally, we
show that the tactics used to generate the proofs are robust to small
changes in the code or specifications.

In the next section, we introduce the new Ynot in tutorial style.
Next, we describe the automation tactics that we built, report on
further evaluation of our system via case studies, compare with
related work, and conclude.

1.1 Coq as an Extensible Automated Theorem Prover

Almost everyone familiar with Coq associates it with a particu-
lar style of proof development, which might be called the “video
game” approach, after a comment by Xavier Leroy. A theorem is
proved in many steps of manual interaction, where Coq tells the
user which goals remain to be proved, the user enters a short com-
mand that simplifies the current goal somewhat, and the process
repeats until no goals remain. One of our ancillary aims in this pa-
per is to expose a broad audience to a more effective proof style.
Coq provides very good support for fully automatic proving, via
its domain-specific programming language Ltac (Delahaye 2000).
This support can be mixed-and-matched with more manual prov-
ing, and it is usually the case that a well-written development starts
out more manual and gradually transforms to a final form where no
sequential proof steps are spelled out beyond which induction prin-
ciple to use. Proof scripts of that kind often adapt without change
to alterations in specifications and implementations.

We believe that awareness of this style is one of the crucial
missing pieces blocking widespread use of proof assistants. We
hope that the reader will agree that some of the examples that
follow provide evidence that, for programmers with a few years
of training using proof assistants, imperative programming with
correctness verification need not be much harder than programming
in Haskell.

2. The Ynot Programming Environment

To a first approximation, Coq can be thought of as a functional
programing language like Haskell or ML, but with support for
dependent types. For instance, one can have operations with types
such as:

div : nat -> forall n : nat, n <> 0 -> nat

which uses dependency to capture the fact that div can only be
called when a proof can be supplied that the second argument is
non-zero. One can also write functions such as:

Definition avg (x:list nat) : nat :=
let sum := fold plus 0 x in
let len := length x in
match eq_nat_dec len 0 with

| inl(pf1: len = 0) => 0
| inr(pf2: len <> 0) => div sum len pf2

end.

This function averages the values in a list of natural numbers. It
has a normal type like you might find in ML, and its implementa-
tion begins in an ML-like way, using a higher-order fold function.
The interesting part is the match expression. Wematch on the result
of a call to eq nat dec, a dependently-typed natural number com-
parison function. This function returns a sum type with an equality
proof in one branch and an inequality proof in the other. We bind a
name for each proof explicitly in the pattern for each match case.
The proof that len is not zero is passed to div to justify the safety
of the operation.

All Coq functions have to be pure – terminating without side ef-
fects. This is necessary to ensure that proofs really are proofs, with
no spurious invalid “proofs by infinite loop.” Ynot extends Coq
with support for side-effecting computations. Similarly to Haskell,
we introduce a monadic type constructor ST T which describes
computations that might diverge and that might have side effects,
but that, if they do return, return values of type T. The ST type fam-
ily provides a safe way to keep the effectful computations separate
from the pure computations.

Unlike Haskell’s IO monad, the ST type family is parameter-
ized by a pre- and post-condition, which can be used to describe
the effects of the computation on a mutable store. Alternatively,
one can think of the axiomatic base of Ynot as a fairly standard
Hoare logic. The main difference of our logic from usual presen-
tations is that it is designed to integrate well with Coq’s functional
programming language. Therefore, instead of defining a language
of commands, we formalize a language of expressions in the style
of the IO monad. A program derivation is of the form {P} e {Q},
where P is a pre-condition predicate over heaps, and Q is a post-
condition predicate over an initial heap, the value that results from
evaluating e, and a final heap. For instance, where we write sel
and upd for the heap selection and update operations used in the
ESC tools (Flanagan et al. 2002), we can derive the following facts,
where p1 and p2 are pointer variables bound outside of the com-
mands that we are verifying.

{λ . ⊤} return(1) {λh, v, h
′

. h
′ = h ∧ v = 1}

and

{λh.sel(h, p1) = p2}
x← !p1; x := 1

{λh, , h′. sel(h, p1) = p2 ∧ h′ = upd(h, p2, 1)}

Unlike other systems, Ynot does not distinguish between pro-
grams and derivations. Rather, the two are combined into one de-
pendent type family, whose indices give the specifications of pro-
grams. For instance, the type of the “return” example would be:

ST (fun _ => True) (fun h v h’ => h’ = h /\ v = 1)

Heaps are represented as functions from pointers to dynamically-
typed packages, which are easy to implement in Coq with an in-
ductive type definition. The pointer read rule enforces that the heap
value being read has the type that the code expects. The original
Ynot paper (Nanevski et al. 2008) contains further details of the
base program logic.



{emp} return(v) {λv′. [v = v′]}

{P1} e1 {Q1} (∀x, {P2(x)} e2 {Q2}) (∀x,Q1(x)⇒ P2(x))

{P1} x← e1; e2 {Q2}

{emp} new(v) {λp. p 7→ v} {∃v, p 7→ v} free(p) {λ . emp}

{∃v, p 7→ v ∗ P (v)} !p {λv. p 7→ v ∗ P (v)} {∃v, p 7→ v} p := v′ {λ . p 7→ v′}

P ⇒ P ′ {P ′} e {Q′} Q′ ⇒ Q

{P} e {Q}

{P} e {Q}

{P ∗R} e {Q ∗R}

Figure 1. The main rules of the derived separation logic

2.1 A Derived Separation Logic

Direct reasoning about heaps leads to very cumbersome proof obli-
gations, with many sub-proofs that pairs of pointers are not equal.
Separation logic (Reynolds 2002) is the standard tool for reducing
that complexity. The previous Ynot system built a separation logic
on top of the axiomatic foundation, and we do the same here. We
introduce no new inductive type of separation logic formulas. In-
stead, we define functions that operate on arbitrary predicates over
heaps, with the intention that we will only apply these functions on
separation-style formulas. Nonetheless, it can be helpful to think of
our assertion language as defined by:

P ::= [φ] | x 7→ y | P ∗ P | ∃x, P

For any pure Coq proposition φ, [φ] is the heap predicate that
asserts that φ is true and the heap is empty. We write emp as an
abbreviation for [True], which asserts only that the heap is empty.
x 7→ y asserts that the heap contains only a mapping from x to y.
P1 ∗ P2 asserts that the heap can be broken into two heaps h1 and
h2 with disjoint domains, such that h1 satisfies P1 and h2 satisfies
P2. The final clause provides existential quantification.

The embedding in Coq provides much more expressive formu-
las than in most systems based on separation logic. Not only can
any pure proposition be injected with [·], but we can also use ar-
bitrary Coq computation to build impure assertions. For instance,
we can model deterministic disjunction with pattern-matching on
values of algebraic datatypes, and we can include calls to cus-
tom recursive functions that return assertions. We need no special
support in the assertion language to accommodate this, and Coq’s
theorem-proving support for reasoning about pattern-matching re-
cursive functions can be used without modification.

If we had defined an inductive type of specifications, we would
have needed to encode most of the relevant Coq features explic-
itly. For instance, to allow pattern matching that produces specifi-
cations, our inductive type would need a constructor standing for
dependent pattern matching, which is quite a tall order on its own.

Perhaps surprisingly, we have met with general success in im-
plementing realistic examples using just these connectives. Stan-
dard uses of other connectives can often be replaced by uses of
higher-order features, and the connectives that we do use are par-
ticularly amenable to automation. In Section 2.2, we try to give a
flavor of how to encode disjunction, in the context of a particular
example. Fully-automated systems like Smallfoot (Berdine et al.
2005) build in restrictions similar to ours, but it surprised us that
we needed little more to do full correctness verification.

2.1.1 The Importance of Computational Irrelevance

What we have described so far is the same as in the original Ynot
work. The primary departure of our new system is that we use a

more standard separation logic. The old Ynot separation logic used
binary post-conditions that may refer to both the initial and final
heaps. (In both systems, specifications may refer to computation
result values, so we avoid counting those in distinguishing between
“unary” and “binary” post-conditions.) This is in stark contrast to
traditional separation logics, where all assertions are separation for-
mulas over a single heap, and all verification proof obligations are
implications between such assertions. The utility of this formalism
has been born out in the wealth of tools that have used separation
logic for automated verification. In contrast, proofs of the binary
post-conditions in the old Ynot tended to involve at least tens of
steps of manual proof per line of program code. Today, even pencil-
and-paper proofs about relationships between multiple heaps can
draw on no logical formalism that comes close to separation logic
in crispness or extent of empirical validation. While binary post-
conditions are strictly more expressive than unary post-conditions,
the separation logic community has developed standard techniques
for mitigating the problem.

To make up for this lost expressiveness, we need, in effect,
to move to a richer base logic. The key addition that lets us use
a more standard formulation is the feature of computationally-
irrelevant variables, which correspond to specification variables
(also known as “ghost variables”) in standard separation logic.
Such variables may be mentioned in assertions and proofs only, and
an implementation must enforce that they are not used in actual
computation. Coq∗, a system based on the Implicit Calculus of
Constructions (Barras and Bernardo 2008), supports this feature
natively. From a theoretical standpoint, it would be cleanest to
implement Ynot as a Coq∗ library. However, in implementing the
original Ynot system, we hesitated to switch to this nonstandard
branch of the Coq development tree. In designing the new system,
we felt the same trepidation, since we might encounter difficulties
using libraries written for the standard Coq system, and the users
of our library would need to install an unusual version of Coq. We
hope that, in the long term, the new Coq∗ features will become part
of the standard Coq distribution.

For now, we use an encoding of computationally-irrelevant vari-
ables that is effective in standard Coq, modulo some caveats that we
discuss below. Our reimplementation employs the trick of repre-
senting specification variables in types that are marked as “proofs”
instead of “programs,” such that we can take advantage of Coq’s
standard restrictions on “information flow” from proofs to pro-
grams. Concretely, the Coq standard library has for some time con-
tained a type family called inhabited, defined by:

Inductive inhabited (A:Type) : Prop :=
inhabits : A -> inhabited A.



This code demonstrates Coq’s standard syntax for inductive
type definitions, which is quite similar to the syntax for algebraic
datatype definitions in ML and Haskell. This type family has one
parameter A of type Type, which can be thought of as the type
of all types1. The constructor inhabits lets us inject any value
into inhabited. While the original value may have an arbitrary
type, the inhabited package has a type in the universe Prop,
the universe of logical propositions. Terms whose types are in this
universe are considered to be proofs and are erased by program
extraction.

We will see in the following examples how this encoding neces-
sitates some mildly cumbersome notation around uses of irrelevant
variables. Further, to reason effectively about irrelevant variables,
we need to assert without proof an axiom stating that the construc-
tor inhabits is injective.

Axiom pack_injective : forall (T : Set) (x y : T),
inhabits x = inhabits y -> x = y.

Our library additionally assumes the standard axiom of function
extensionality (“functions are equal if they agree at all inputs”)
and the very technical “unicity of equality proofs” axiom that is
included in Coq’s standard library. This pair of axioms has been
proved consistent for Coq’s logic, and we could avoid appealing
to extensionality at the cost of more proving work in the library,
by formalizing heaps as lists instead of functions. Such a change
would be invisible to most users of the library, who only need to
use standard theorems proved about the heap model.

However, the pack injectivity axiom contradicts the axiom of
proof irrelevance (which we do not use in any of our developments,
but which is popular among Coq users), and it is an open question
in the Coq community whether this axiom is consistent with Coq’s
logic even by itself. Past work built a denotational model for Ynot
minus this feature (Petersen et al. 2008), and the architects of that
model are now considering how to add irrelevance, which would
complete the foundational story for the framework that we use in
this paper. We hope that the experiences we report here can help to
justify the inclusion of irrelevance as a core Coq feature.

2.1.2 The Rules of the Separation Logic

Figure 1 presents the main rules of our separation logic. The no-
table divergence from common formulations is in the use of ex-
istential quantifiers in the rules for freeing, reading, and writing.
These differences make sense because Ynot is implemented within
a constructive logic. Coq’s constructivity is inspired by the Curry-
Howard isomorphism, where programs and proofs can be encoded
in the same syntactic class. A more standard, classical separation
logic would probably require that, in the rule for free, the value v
pointed to by p be provided as an argument to the proof rule. In con-
structive logic, such a value can only be produced when it can be
computed by an algorithm, just as a functional program may only
refer to a value that it has said how to compute. Additionally, we
would not be able to use any facts implied by the current heap as-
sertion to build one of these rule witnesses, and perhaps the witness
can only be proved to exist using such facts. The explicit existential
quantifier frees us to reason inside the assertion language in finding
the witness.

Because it uses quantification in this way, the “read” rule must
also take a kind of explicit framing condition. This condition is
parameterized by the value being read from the heap, making it a
kind of description of the neighborhood around that value in the
heap. More standard separation logics force the exact value being

1To avoid the standard soundness problems with including a type of all
types, actual Coq type-checking infers numerical indices for all occurrences
of Type.

Module Type STACK.
Parameter t : Set -> Set.
Parameter rep (T : Set) : t T -> list T -> hprop.

Parameter new T :
Cmd emp (fun s : t T => rep s nil).

Parameter free T (s : t T) :
Cmd (rep s nil) (fun _ : unit => emp).

Parameter push T (s : t T) (x : T)
(ls : [list T]) :
Cmd (ls ~~ rep s ls)

(fun _ : unit => ls ~~ rep s (x :: ls)).
Parameter pop T (s : t T) (ls : [list T]) :

Cmd (ls ~~ rep s ls)
(fun xo : option T => ls ~~
match xo with

| None => [ls = nil] * rep s ls
| Some x => Exists ls’ :@ list T,

[ls = x :: ls’]
* rep s ls’

end).
End STACK.

Figure 2. The signature of an imperative stack module

read to be presented as an argument to the proof rule, but here we
want to allow verification of programs where the exact value to read
cannot be computed from the pieces of pure data that are in scope.

We want to emphasize that the changes we have made in the
Ynot separation logic have no effect on the theory behind the sys-
tems. In both the old and new systems, a separation logic is defined
on top of the base Hoare logic with binary post-conditions, intro-
ducing no new axioms. Here, we use the same base logic as in the
past work, so the past investigations into its metatheory (Petersen
et al. 2008) continue to apply. The sole metatheoretical wrinkle is
the one which we discussed above, involving computational irrele-
vance, which is orthogonal to program logic rules.

In the rest of this section, we will introduce the Ynot program-
ming environment more concretely, via several examples of verified
data structure implementations.

2.2 Verifying an Implementation of Imperative Stacks

Figure 2 shows the signature of a Ynot implementation of the
stack ADT. The signature is expressed in Coq’s ML-like module
system. Each implementation contains a type family t, where, for
any type T, a value of t(T) represents a stack storing elements
of T. The rep component of the interface relates an imperative
stack s to a functional list ls in a particular state. Thus, rep
s ls is a predicate on heaps (hprop) which can be read as “s
represents the list ls” in the current state. Just as abstraction over
the type family t allows an implementation to choose different data
structures to encode the stack, abstraction over the assertion rep
allows an implementation to choose different invariants connecting
the concrete representation to an idealized model.

In Section 2.1, we gave a grammar for our “specification lan-
guage.” In contrast to most work on separation logic, our real im-
plementation has no such specification language. Rather, we define
the type hprop as heap -> Prop, so that specifications and in-
variants are arbitrary predicates over heaps. In Figure 2, we see
notations involving emp, asserting that the heap is empty; [...],
for injecting pure propositions; *, for the standard separating con-
junction; and Exists, for standard typed existential quantification.



Not shown in this figure is the binary “points-to” operator -->.
The relative parsing precedences of the operators place --> high-
est, followed by * and Exists. We only need to use funny symbols
for syntax like Exists x :@ T, P (meaning “there exists x of
type T such that P”) to avoid confusing the LL(1) parser that is at
the heart of Coq’s syntax extension facilities. Our library defines
hprop-valued functions implementing these usual separation logic
connectives, but users can define their own “connectives” just as
easily. For example, here is how we define Exists:

Definition hprop_ex (T : Type) (p : T -> hprop) :=
fun h : heap => exists v : T, p v h.

Here is how we add a syntax extension (or “macro”) that lets us
write existential quantification in the way seen in Figure 2:

Notation "’Exists’ v :@ T , p" :=
(hprop_ex T (fun v : T => p)).

By reading the types of the methods exposed in the STACK sig-
nature, we can determine the contract that each method adheres
to. The Cmd type family is our parameterized monad of compu-
tations with separation logic specifications; the two arguments to
Cmd give preconditions and postconditions. Cmd is defined in terms
of the more primitive ST parameterized monad, in the same way
as in our past work (Nanevski et al. 2008)2. Our specifications fol-
low the algebraic approach to proofs about data abstraction (as in
Liskov and Zilles (1975)), where an abstract notion of state is re-
lated to concrete states. Each operation needs a proof that it pre-
serves the relation properly. In Ynot developments, abstract states
are manipulated by standard, purely-functional Coq programs, and
method specifications include explicit calls to these state transfor-
mation functions. Each post-condition requires that the new con-
crete, imperative state be related to the abstract state obtained by
transforming the initial abstract state.

The type of the new operation tells us that it expects an empty
heap on input, and on output the heap contains just whatever map-
pings are needed to satisfy the representation invariant between the
function return value and the empty list. The free operation takes
a stack s as an argument, and it expects the heap to satisfy rep
on s and the empty list. The post state shows that all heap values
associated with s are freed.

The specification for push says that it expects any valid stack
as input and modifies the heap so that the same stack that stood
for some list l beforehand now stands for the list x :: l, where x
is the appropriate function argument. We see an argument ls with
type [list T]. The brackets are a notation defined by the Ynot
library, standing for computational irrelevance. The syntax [T]
expands to inhabited T. To review our discussion from Section
2.1.1, this means that the type-checker should enforce that the value
of ls is not needed to execute the function. Rather, such values
may only be used in stating specifications and discharging proof
obligations. We use Coq’s notation scope mechanism to overload
brackets for writing irrelevant types and lifted pure propositions.

For an assertion P that mentions the irrelevant variable v, the
notation v ~~ P must be used to unpack v explicitly. The type
of the unpack operation is such that it may only be applied to
assertions and may not be used to allow an irrelevant variable’s
value to leak into the computational part of a program. Unpacking
has no “logical” meaning; it is only used to satisfy the type-checker
in the absence of native support for irrelevance. The notation is
defined by this equation, where we write “[v’/v]” informally to
denote the substitution of variable v’ for variable v in a Coq term.

v ~~ P = (exists v’, v = inhabits v’ /\ P[v’/v])

2The derived monad is called “STsep” in that past work.

The type of pop showcases how we avoid the disjunctive con-
nectives of separation logic. The function returns an optional T
value, which will be None when the stack is empty and will be
Some x when x is at the top of the stack. We use a Coq match
expression to give a different post-condition for each case.

We can implement a module satisfying this signature. With the
type T as a local variable, we can define the type of nodes of
the linked lists that we will use. We use the abstract type ptr of
untyped pointers from the Ynot library.

Record node : Set := Node {
data : T;
next : option ptr

}.

To define the representation invariant, we want a recursive func-
tion specifying what it means for a possibly-null pointer to repre-
sent a functional list. Our code contains a struct annotation that
gives a termination argument for the function.

Fixpoint listRep (ls : list T) (hd : option ptr)
{struct ls} : hprop :=

match ls with
| nil => [hd = None]
| h :: t => match hd with

| None => [False]
| Some hd => Exists p :@ option ptr,

hd --> Node h p * listRep t p
end

end.

We can represent stacks as untyped pointers to the heads of
linked lists built from Nodes.

Definition stack := ptr.

We achieve type safety through the representation invariant.

Definition rep (s : stack) (ls : list T) : hprop :=
Exists po :@ option ptr, s --> po * listRep ls po.

Before we start implementing the ADT methods, we should
set up some proof automation machinery. Systems like Small-
foot (Berdine et al. 2005) have hardcoded support for particular
heap predicates like acyclic linked list-ness, cyclic linked list-ness,
and so on. These systems perform simplifications on formulas that
mention the predicates that they understand. In Ynot, on the other
hand, the programmer can define his own new predicates, as we
have just done. Not only that, but he can also prove lemmas that
correspond to the simplification rules built into automated tools,
and he can plug his lemmas into a general separation logic solver.
All of this is done with no risk that a mistake by the programmer
will lead to a faulty verification; every lemma must be proved from
first principles.

In a real proof, of course, the human proof architect only learns
which automation will be effective in the course of verifying his
program. Ynot supports this kind of incremental automation very
well, as we hope to demonstrate in the rest of the section, using
sample interactive Coq sessions. Due to space constraints, we must
skip some steps and go straight to the right answers, but we have
tried to include enough iteration to give a flavor for Ynot develop-
ment.

As we progress through the methods, we will be improving a
custom tactic, or proof procedure, that we will design specifically
for this data structure, and we will call that tactic tac. We begin
with a version of tac that delegates all work to the separation logic
simplifier sep that is included with Ynot.



Ltac tac := sep fail auto.

We will explain each of the two parameters to sep as we find a
use for it. We implement each stack method by stating its type as a
proof search goal, using tactics to realize the goal step by step. The
first method to implement is new, and we do so using the syntax
New for the new(·) operation from Figure 1.

Definition new : Cmd emp
(fun s : stack => rep s nil).

refine {{New None}}; tac.

A simple two-step proof script should suffice. We first use the
refine tactic to provide a template for the implementation. The
template may have holes in it, and each hole is added as a subgoal.
We chain our tac tactic with the semicolon operator, so that tac is
applied to each subgoal generated from a hole.

Here, we see no proof holes to be filled in, but some are nonethe-
less there, hidden by the notation {{...}}, which we define in a
Coq source file in our library, using Coq’s syntax extension mech-
anism:

Notation "{{ st }}" :=
(SepWeaken _ (SepStrengthen _ st _) _).

This rule requests that every use of the double braces be expanded
using the template on the second line, leaving four holes to be filled.
The SepWeaken and SepStrengthen functions are for weaken-
ing post-conditions and strengthening pre-conditions, and the four
holes, in order, are to be filled by a new post-condition, a new pre-
condition, a proof that the new pre-condition implies the old, and
a proof that the old post-condition implies the new. In the case of
the new method, the new specifications are determined by standard
type inference, while the two proofs must be added as new goals.
With the proof script we have used so far, one proof goal remains
in the definition of new and is shown to the user:

v --> None ==> rep v nil

The syntax ==> is for implication between heap assertions, and
it has lower parsing precedence than any of the other operators that
we use. We see that it is important to unfold the definition of the
representation predicate, so we modify our tactic definition, and
now the proof completes automatically.

Ltac tac := unfold rep; sep fail auto.

The definitions of free and push are not much more compli-
cated. We use some new notations, including a Haskell-inspired
monadic bind syntax, and all are defined in our library with “Coq
macros,” as in the example of double braces above.

Definition free (s : stack) : Cmd (rep s nil)
(fun _ : unit => emp).

refine (fun s => {{Free s}}); tac.
Qed.

Definition push (s : stack) (x : T) (ls : [list T])
: Cmd (ls ~~ rep s ls)
(fun _ : unit => ls ~~ rep s (x :: ls)).

refine (fun s x ls => hd <- !s;
nd <- New (Node x hd);
{{s ::= Some nd}}

); tac.
Qed.

The implementation of pop uses another syntax extension,
which provides an IfNull expression form. The option-typed ar-
gument to IfNull is checked for nullness (i.e., equality to None).
In an Else branch, where the pointer is known to be non-null, that
fact is added as a usable proof hypothesis, and the variable being

tested is rebound with a non-option type. We use ;; instead of
; after imperative commands that do not bind variables, because
attempts to do otherwise confuse Coq’s finicky LL(1) parser.

Definition pop (s : stack) (ls : [list T]) :
Cmd (ls ~~ rep s ls) (fun xo : option t => ls ~~

match xo with
| None => [ls = nil] * rep s ls
| Some x => Exists ls’ :@ list T,

[ls = x :: ls’] * rep s ls’
end).

refine (fun s ls => hd <- !s;
IfNull hd Then
{{Return None}}

Else
nd <- !hd;
Free hd;;
s ::= next nd;;
{{Return (Some (data nd))}}); tac.

Several unproved subgoals are returned, this one among them,
containing a unification variable ?1960:

s --> Some hd0 * listRep x (Some hd0)
==> hd0 --> ?1960 * hd0 --> ?1960

We can tell that something has probably gone wrong, since the
conclusion of the implication contains an unsatisfiable separation
formula that mentions the same pointer twice. Our automated sep-
aration simplification is quite aggressive and often simplifies satis-
fiable formulas to unsatisfiable forms, but the results of this process
tend to provide hints about which facts would have been useful. In
this case, we see a use of listRep where the pointer is known to
be non-null. We can prove a lemma that would help simplify such
formulas.

Theorem listRep_Some :
forall (ls : list T) (hd : ptr),
listRep ls (Some hd) ==> Exists h :@ T,

Exists t :@ list T, Exists p :@ option ptr,
[ls = h :: t] * hd --> Node h p * listRep t p.

destruct ls; sep fail ltac:(try discriminate).
Qed.

We prove that a functional list related to a non-null pointer de-
composes in the expected way. All it takes is for us to request a
case analysis on the variable ls, followed by a call to the sep-
aration solver. Here we put to use the second parameter to sep,
which gives a tactic to try applying throughout proof search. The
discriminate tactic solves goals whose premises include incon-
sistent equalities over values of datatypes, like nil = x :: ls;
and adding try in front prevents discriminate from signaling an
error if no such equality exists.

We can modify our tac tactic to take listRep Some into ac-
count. First, we define another procedure for simplifying an impli-
cation.

Ltac simp_prem := simpl_IfNull;
simpl_prem ltac:(apply listRep_Some).

Our tactic first calls a simplification procedure associated with
the IfNull syntax extension. Next, our procedure calls a tactic
simpl prem from the Ynot library, for simplifying premises of
implications. The argument to simpl prem gives a procedure to
attempt on each premise, until no further progress can be made.

We can redefine tac to use simp prem, by passing that new
procedure as the first argument to sep. That first argument is used
by sep to simplify a goal before beginning the main proof search.



let pop s =
sepBind (sepStrengthen (sepRead s)) (fun hd ->

match hd with
| Some v ->

sepBind (sepStrengthen (sepRead v))
(fun nd ->
sepSeq (sepStrengthen (sepFrame

(sepFree v)))
(sepSeq (sepStrengthen (sepFrame

(sepWrite s (next nd))))
(sepWeaken
(sepStrengthen (sepFrame

(sepReturn (Some
(data nd))))))))

| None -> sepWeaken (sepStrengthen (sepFrame
(sepReturn None))))

Figure 3. Sample OCaml code extracted from the stack example

We also suggest to sep that try discriminate may be useful
throughout proof search.

Ltac tac := unfold rep; sep simp_prem
ltac:(try discriminate).

When we rerun the definition of pop, we have made progress.
Only one goal remains to prove:

emp ==> [x = nil]

We see that this goal probably has to do with a case where we
know that the list being modeled is nil. We were successful at using
simpl prem to deal with the case where we know the list is non-nil,
and we can continue with that strategy by proving another lemma.

Theorem listRep_None : forall ls : list T,
listRep ls None ==> [ls = nil].
destruct ls; sep fail idtac.

Qed.

Now our verification of pop completes, after we modify the
definition of simp prem:

Ltac simp_prem := simpl_IfNull;
simpl_prem ltac:(apply listRep_None

|| apply listRep_Some).

We complete the implementation of the stack ADT with a trivial
definition of the type family t, relying on the representation invari-
ant to ensure proper use.

Definition t (_ : Set) := stack.

For our modest efforts, we can now extract an executable
OCaml version of our module. Figure 3 shows part of the result
of running Coq’s automatic extraction command on our Stack
module.

In the implementation of pop, we see invocations of functions
whose names begin with sep. These come from the Ynot library,
and we must provide their OCaml implementations. Any Ynot
program that returns a type T may be represented in unit -> T
in OCaml, regardless of the specification appearing in the original
Coq type. This makes it easy to implement the basic functions, in
the spirit of how the Haskell IO monad is implemented. We see
calls to explicit weakening, strengthening, and framing rules in the
extracted code. In OCaml, these can be implemented as no-ops and
erased by an optimizer.

Notice that all specification variables and proofs are eliminated
automatically by the Coq extractor. With the erasure of weakening
and related operations, we arrive at exactly the kind of monadic
code that is standard fare for Haskell, such that the compilation
techniques developed for Haskell can be put to immediate use in
creating an efficient compilation pipeline for Ynot.

It is also worth pointing out that the sort of tactic construction
effort demonstrated here is generally per data structure, not per pro-
gram. We can verify a wide variety of other list-manipulating pro-
grams using the same tac tactic that we developed here. Usually,
the tactic work for a new data structure centers on identifying the
kind of unfolding lemmas that we proved above.

2.3 Verifying Imperative Queues

It is not much harder to implement and verify a queue structure.
We define an alternate list representation, parameterized by head
and tail pointers.

Fixpoint listRep (ls : list T) (hd tl : ptr)
{struct ls} : hprop :=

match ls with
| nil => [hd = tl]
| h :: t => Exists p :@ ptr,

hd --> Node h (Some p)
* listRep t p tl

end.

Record queue : Set := Queue {
front : ptr;
back : ptr

}.

Definition rep’ (ls : list T) (fr ba : option ptr) :=
match fr, ba with

| None, None => [ls = nil]
| Some fr, Some ba => Exists ls’ :@ list T,

Exists x :@ T, [ls = ls’ ++ x :: nil]
* listRep ls’ fr ba * ba --> Node x None

| _, _ => [False]
end.

Definition rep (q : queue) (ls : list T) :=
Exists fr :@ option ptr, Exists ba :@ option ptr,

front q --> fr * back q --> ba * rep’ ls fr ba.

For this representation, we prove similar unfolding lemmas to
those we proved for stacks, with comparable effort. We also need a
new lemma for unfolding a queue from the back.

Lemma rep’_back : forall (ls : list T) (fr ba : ptr),
rep’ ls (Some fr) ba
==> Exists nd :@ node, fr --> nd

* Exists ls’ :@ list T, [ls = data nd :: ls’]
* match next nd with

| None => [ls’ = nil]
| Some fr’ => rep’ ls’ (Some fr’) ba

end.

The proof of the lemma relies on some lemmas about pure
functional lists. With those available, we prove rep’ back in under
20 lines. When we plug this and the two other unfolding lemmas
into the sep procedure, we arrive at quite a robust proof procedure
for separation assertions about lists that may be modified at either
end.

Again, in our final queue implementation, every proof obliga-
tion is proved by a tac tactic built from sep. We write under 10
lines of new tactic hints to be applied during proof search, and we



must prove one key lemma by induction. We discover the impor-
tance of this lemma while trying to verify an implementation of
enqueueing.

Definition enqueue :
forall (q : queue) (x : T) (ls : [list T]),
Cmd (ls ~~ rep q ls)
(fun _ : unit => ls ~~ rep q (ls ++ x :: nil)).

refine (fun q x ls => ba <- !back q;
nd <- New (Node x None);
back q ::= Some nd;;
IfNull ba Then
{{front q ::= Some nd}}

Else
ban <- !ba;
ba ::= Node (data ban) (Some nd);;
{{Return tt}}); tac.

Coq returns a single unproved goal:

listRep v2 v4 p * p --> Node v3 (Some nd)
==> listRep (v2 ++ v3 :: nil) v4 nd

Considering this goal, we see that the problem is that it can
only be proved by induction. In general, we must be explicit about
induction everywhere we need it, so we need to prove a lemma
about this case. The lemma itself is quite easy to automate, when
we add one hint from the Ynot library about the commutativity of
separating conjunction.

Lemma push_listRep : forall (ba : ptr) (x : T)
(nd : ptr) (ls : list T) (fr : ptr),
ba --> Node x (Some nd) * listRep ls fr ba
==> listRep (ls ++ x :: nil) fr nd.
Hint Resolve himp_comm_prem.
induction ls; tac.

Qed.

To get the original verification to go through, we only need to
add this lemma to the hint database, using a built-in Coq command.

Hint Immediate push_listRep.

2.4 Loops

Like with many semi-automated verification systems, we require
annotations that are equivalent to loop invariants. Since Coq’s pro-
gramming language is functional, it is more natural to write loops
as recursive functions, and the loop invariants become the pre- and
post-conditions of these functions.

We support general recursion with a primitive fixpoint operator
in the base program logic, and it is easy to build a separation logic
version on top of that. We can also build multiple-argument recur-
sive and mutually-recursive function forms on top of the single-
argument form, without needing to introduce new primitive combi-
nators.

An example is a getElements function, defined in terms of the
list invariant that we wrote for the stack example. This operation
returns the functional equivalent of an imperative list. The task is
not so trivial as it may look at first, because the computational irrel-
evance of the function’s second argument prohibits its use to influ-
ence the return value. This means that we are not allowed to name
the irrelevant argument as one that decreases on each recursive call,
which prevents us from using Coq’s native recursive function def-
initions, where every function must be proved to terminate using
simple syntactic criteria. Nonetheless, the definition is easy using
the general recursion combinators supported by Ynot.

Definition getElements (hd : option ptr)
(ls : [list A]) :

Module Type MEMO.
Parameter T : Set.
Parameter t : forall (T’ : T -> Set),

hprop
-> (forall x, T’ x -> Prop)
-> Set.

Parameter rep : forall (T’ : T -> Set)
(inv : hprop) (fpost : forall x, T’ x -> Prop),
t inv fpost -> hprop.

Parameter create : forall (T’ : T -> Set)
(inv : hprop) (fpost : forall x, T’ x -> Prop),
(forall x, Cmd inv
(fun y : T’ x => [fpost _ y] * inv))

-> Cmd emp (fun m : t inv fpost => rep m).
Parameter funcOf : forall (T’ : T -> Set)

(inv : hprop) (fpost : forall x, T’ x -> Prop)
(m : t inv fpost),
forall (x : T), Cmd (rep m * inv)
(fun y : T’ x => rep m * [fpost _ y] * inv).

End MEMO.

Figure 4. Signature of a memoization module

Cmd (ls ~~ listRep ls hd)
(fun res : list A => ls ~~ [res = ls]

* listRep ls hd).
refine (Fix2

(fun hd ls => ls ~~ listRep ls hd)
(fun hd ls res => ls ~~ [res = ls]

* listRep ls hd)
(fun self hd ls =>
IfNull hd Then

{{Return nil}}
Else

fn <- !hd;
rest <- self (next fn)

(ls ~~~ tail ls) <@> _;
{{Return (data fn :: rest)}})); tac.

Qed.

The code demonstrates a use of one of the derived fixpoint com-
binators, Fix2. Of the three arguments that we pass, the first two
give the pre-condition and post-condition in terms of the two “real”
arguments (and, for the post-condition, the return value). The third
argument is the function body. It takes a recursive self-reference
as its first argument, followed by the two “real” arguments. Native
Coq recursive function definitions must often include annotations
explaining why they terminate, but Ynot deals only with partial
correctness, so no such annotations are required for our fixpoint
combinators.

The notation x ~~~ e is for building a new computationally-
irrelevant value out of an old one. The notation e <@> P is explicit
invocation of the frame rule. With the current system, one usually
wants to invoke that rule at each function call. The framing asser-
tion can be written as an underscore to ask that it be inferred.

2.5 A Dependently-Typed Memoizing Function

As far as we have been able to determine, all previous tools for data
structure verification lack either aggressive automation or support
for higher-order features. The original Ynot supported easy inte-
gration of higher-order functions and dependent types, but the very
manual proof style became even more onerous for such uses. Our
reimplemented Ynot maintains the original’s higher-order features,



and our proof automation integrates very naturally with them. This
is a defining advantage of our new framework over all alternatives.

For instance, it is easy to define a module supporting memo-
ization of imperative functions. Figure 4 gives the signature of our
implementation, which is actually an ML-style functor that pro-
duces implementations of this signature when passed appropriate
input modules. The type T is the domain of memoizable functions,
and types like t inv fpost stand for memo tables. The argument
inv is an assertion giving an invariant that the memoized function
maintains, and the pure assertion fpost gives a relation between
inputs and outputs of the function. The rep predicate captures the
heap invariants associated with a memo table. The create func-
tion produces a memo table when passed an imperative function
with the proper specification. Finally, the funcOf function maps a
memo table to a function that consults the table to avoid recompu-
tation.

We can implement a MEMO functor in 50 lines when we use
a memo table that only caches the most recent input-output pair.
Like in the previous examples, we build a specialized automation
procedure with a one-line instantiation of library tactics. We give
a 7-line definition of rep, give one one-liner proof of a lemma to
use in proof search, and include two lines of annotations within
the definition of funcOf. All of the rest of the development is no
longer or more complicated than in ML. Compared to ML, we have
the great benefit of using types to control the behavior of functions
to be memoized. A function could easily thwart an ML memoizer
by producing unexpected computational effects.

3. Tactic Support

The examples from the last two sections show how much of the
gory details of proofs can be hidden from programmers. In actual-
ity, every command triggers the addition of one or more proof obli-
gations that cannot be discharged effectively by any of the built-in
Coq automation tactics. Not only is it hard to prove the obligations,
but it is also hard to infer the right intermediate specifications. Our
separation logic formulas range well outside the propositional frag-
ment that automated tools tend to handle; specification inference
and proving must deal with higher-order features.

Here is an example of the proof obligations generated for the
code we gave earlier for the stack push method. Numbers prefixed
with question marks are unification variables, whose values the sep
tactic must infer.

ls ~~ rep s ls ==>
Exists v :@ option ptr, s --> v * ?200 v

forall v : option ptr, s --> v * ?200 v ==> ?192 v

?192 hd ==> ?217 * emp

forall v : ptr, ?217 * v --> Node x hd ==> ?206 v

?206 nd ==> ?234 * (Exists v’ :@ ?231, s --> v’)

?234 * s --> Some nd ==> ls ~~ rep s (x :: ls)

We can see that each goal, compared to the previous goals, has
at most one new unification variable standing for a specification; of
the two new variables appearing in the second last line, one stands
for a type, which will be easy to infer by standard unification, once
the values of prior variables are known. Also, each new specifi-
cation variable has its value determined by the value of the new
variable from the previous goal. This is no accident; we designed
our combinators and notations to have this property.

The effective range of specifications is too large to be solvable
by any particular “magic bullet” tactic. Nonetheless, we have found
that, in practice, a specific parameterized proof strategy can dis-
charge most obligations. In contrast to the situation with classical
verification tools that are backed by automated first-order theorem-
provers, when any proof strategy fails in Coq, the user can always
program his own new strategy or even move to mostly-manual
proof. However, our experience suggests to us that most goals about
data structures can be solved by the procedure that we present in
this section.

That procedure is implemented as the sep tactic that we used
in our examples. We do not have space to include the literal Coq
code implementing it; we will outline the basic procedure instead.
The implementation is in Coq’s Ltac language (Delahaye 2000),
a domain-specific, dynamically-typed language for writing proof-
generating proof search procedures. All of the proof scripts we have
seen so far are really Ltac programs. The full language includes
recursive function definitions, which, along with pattern-matching
on proof goals, makes it possible to code a wide variety of proof
manipulation procedures.

As our examples have illustrated, sep takes two arguments,
which we will call unfolder and solver. The task of unfolder is
to simplify goals before specification inference, usually by unfold-
ing definitions of recursive predicates, based on known facts about
their arguments. The task of solver is to solve all of the goals that
remain after generic separation logic reasoning is applied.

Coq comes with the standard tactic tauto, for proving proposi-
tional tautologies. There is a more general version of tauto called
intuition, which will apply a user-supplied tactic to finish off
sub-proofs, while taking responsibility for handling propositional
structure on its own. The intuition tactic also exhibits the help-
ful behavior of leaving for the user any subgoals that it could not
establish. sep is meant to be an analogue of intuition for separa-
tion logic. We also want it to handle easy instantiation of existential
quantifiers, since they appear so often in our specifications.

We can divide the operation of sep into five main phases. We
will sketch the workings of each phase separately.

3.1 Simple Constraint Solving

It is trivial to determine the proper value for any unification variable
appearing alone on one side of the implication. For instance, given
the goal

p --> x * q --> y ==> ?123

we simply set ?123 to p --> x * q --> y. Given the slightly
more complicated goal

p --> x * q --> y ==> ?123 x

we abstract over x in the premise to produce fun x’ => p -->
x’ * q --> y.

3.2 Intermediate Constraint Solving

When the trivial unification rules are not sufficient, we need to do
more work. We introduce names for all existential quantifiers and
computationally-irrelevant variables in the premise. For instance,
starting with

m ~~ Exists v :@ T, p --> v * rep m v
==> ?123 * Exists x :@ T, p --> x

we introduce names to simplify the premise, leading to this goal:

p --> v’ * rep m’ v’
==> ?123 * Exists x :@ T, p --> x

Now we run the user’s unfolder tactic, which might simplify
some use of a definition. Let us assume that no such simplification



occurs for this example. We notice that the points-to fact on the
right mentions the same pointer as a fact on the left, so these
two facts may be unified, implying x = v’. Canceling this known
information, we are left with

rep m’ v’ ==> ?123

which is resolvable almost trivially. We cannot give ?123 a value
that mentions the variables m’ and v’, since we introduced them
with elimination rules within our proof. These variables are not in
scope at the point in the original program where the specification
must be inserted. Instead, we remember how each local variable
was introduced and re-quantify at the end, like this:

m ~~ Exists v :@ T, rep m v ==> ?123

Now the trivial unification is valid. The crucial part of this process
was the matching of the two points-two facts. We have special-
case rules for matching conclusion facts under quantifiers, for con-
clusions that match the pre-conditions of the read, write, and free
rules. Beyond that, we apply cancellation of identical terms on the
two sides of the implication, when those terms do not fall under
the scopes of quantifiers. These simple rules seem to serve well in
practice.

3.3 Premise Simplification

After specification inference, the next step is to simplify the
premise of the implication. Any emp in the premise may be re-
moved, and any lifted pure formula [φ] may be removed from the
implication and added instead to the normal proof context. We also
remove existential quantifiers and irrelevant variable unpackings in
the same way as in the previous phase.

3.4 Conclusion Simplification

The main sep loop is focused on dealing with parts of the conclu-
sion. We remove occurrences of emp, and we remove any pure
formula [φ] that the user’s solver tactic is able to prove. An ex-
istential formula Exists x :@ T, P(x) in the conclusion is re-
placed by P(?456), for a fresh unification variable ?456. When no
more of these rules apply, we look for a pair of unifiable subformu-
las on the sides of the implication. All such pairs are unified and
crossed out. This may determine the value of a variable introduced
for an existential quantifier.

For instance, say we begin with this goal.

[m < 17] * p --> m
==> Exists x :@ nat, p --> x * [x < 42]

Premise simplification would move the initial impure fact into
the normal proof context, leaving us with this.

p --> m ==> Exists x :@ nat, p --> x * [x < 42]

Conclusion simplification would introduce a name for the
existentially-bound variable.

p --> m ==> p --> ?789 * [?789 < 42]

Next, conclusion simplification would match the two p points-to
facts, since their pointers unify trivially.

emp ==> [m < 42]

This goal can be reduced to emp ==> emp by using the normal
proof context to deduce the fact inside the brackets.

3.5 Standard Coq Automation

When sep has run out of rules to apply, the remaining subgoal is
subjected to standard Coq automation. Propositional structure and
calls to recursive functions are simplified where possible. sep ends
by running a loop over those simplifications and the simplifications

performed by the user’s solver tactic, until no further progress can
be made. Finally, sep discharges all goals of the form P ==> P, by
reflexivity.

Every step of the overall process is implemented in Ltac, so that
only a bug in Coq would allow sep to declare an untrue goal as
true, no matter which customization the programmer provides. By
construction, every step builds an explicit proof term, which can be
validated afterward with an independent checker that is relatively
simple, compared to the operation of all of the decision procedures
that may have contributed to the proof.

4. Evaluation

We have used our environment to implement and verify several data
structures, including the Stack and Queue examples that appeared
in Section 2. We also follow the evaluation of our prior Ynot system
in implementing a generic signature of imperative finite maps. We
built three very different implementations: a trivial implementation
based on pointers to heap-allocated functional association lists, an
implementation based on binary search trees, and an implementa-
tion based on hash tables. Any of the implementations can be used
interchangeably via ML-style functors, and their shared signature
is phrased in terms of dependently-typed maps, where the type of
data associated with a key is calculated from an arbitrary Coq func-
tion over that key. Our largest example, a packrat PEG parser (Ford
2004), uses these finite maps to cache intermediate results.

We also verified one more exotic data structure: binomial trees,
which are tree structures with a non-trivial rule for determining how
many pointers are stored at each node. This data structure is often
applied in implementing priority queues. Our implementation is
interesting in its use of a dependently-typed recursive function to
characterize functional models of such trees.

Finally, we chose representative examples from two competing
data structure verification systems, Smallfoot (Berdine et al. 2005)
and Jahob (Zee et al. 2008), and reimplemented those examples in
our new Ynot.

Figure 5 presents code size statistics for our case studies. “Pro-
gram” code is code that is preserved by extraction. “Specs” are the
pre- and post-conditions of every function defined in the module.
The core of a Ynot module consists of heap representation “rep”
code (e.g., the definitions named rep in our examples), along with
proofs (e.g., push listRep) and tactics (e.g., simp prem) deal-
ing with these representations. The annotations column counts the
number of lines of programmer specified annotations (e.g., <@>).
The total overhead column sums proofs, tactics, and annotations.
We also present type-checking and proving times (in minutes and
seconds), as measured on a 2.8 GHz Pentium D with 1 GB of mem-
ory. So far, we have not optimized our tactics for running time; they
are executed by direct interpretation of programs in a dynamically-
typed language.

Our previous version of Ynot placed a significant interactive
proof burden on the programmer. The previous Ynot hash table, for
instance, required around 320 explicit Coq tactic invocations. Each
tactic invocation (indicated by a terminating “.” in Coq) represents
a manual intervention by the Ynot programmer. These invocations
tended to be low-level steps, like choosing which branch of a
disjunction to prove. As such, these proofs are brittle in the face
of minor changes. In some previous Ynot developments, the ratio
of manual proof to program text is over 10 to 1. For comparison, a
large scale compiler certification effort (Leroy 2006) has reported
a proof-to-code ratio of roughly 6 to 1.

In contrast, our new hash table requires only about 70 explicit
tactic invocations. These invocations tend to be high level steps,
like performing induction or invoking the sep tactic. We have



Program Specs Rep Proofs Tactics Annotations Total Overhead Time (m:s)
Stack 14 8 14 7 5 0 12 0:12
Queue 26 12 22 41 25 0 66 1:36

Ref to Functional Finite Map 8 16 2 2 2 0 4 0:05
Hash Table 34 21 6 70 38 34 142 0:45

BST Finite Map 31 16 6 22 8 4 34 1:35
Binomial Tree 19 12 13 0 9 7 16 2:33

Association List 48 34 17 41 51 10 102 3:10
Linked List Segments 84 34 19 91 208 7 306 2:15
Packrat PEG Parser 277 110 15 102 55 5 162 1:20

Figure 5. Breakdown of numbers of lines of different kinds of code in the case studies

observed that such tactic-based proofs are significantly easier to
maintain.

We also made rough comparisons against two verification sys-
tems that do not support reasoning about first-class functions. The
Jahob (Zee et al. 2008) system allows the specification and veri-
fication of recursive, linked data structures in a fragment of Java.
We implemented an association list data structure that is included
as an example in the Jahob distribution. Code-size-wise, the two
implementations are quite similar. For instance, they both require
around twenty lines of heap representation code, and they both re-
quire about a dozen lines of code for the lookup function’s loop in-
variant. Our Ynot implementation uses explicit framing conditions
in places where Jahob does not, but we speculate that we can prob-
ably remove these annotations with additional, custom automation.

Our second comparison is against the Smallfoot (Berdine et al.
2005) system, which does completely automated verification of
memory safety via separation logic. We implemented Ynot ver-
sions of 10 linked list segment functions included with the Small-
foot distribution. In each case, the Ynot and Smallfoot versions dif-
fered by no more than a few lines of annotation burden.

5. Related Work

Considering the two automated systems that we just mentioned,
Smallfoot uses a very limited propositional logic, and Jahob uses
an undecidable higher-order logic. Many interesting program spec-
ifications cannot be written in Smallfoot’s logic and cannot be
proved to hold by Jahob’s automated prover. Neither of these sys-
tems supports higher-order programs, and neither supports custom-
programmed proof procedures, for cases where standard automa-
tion is insufficient.

The ESC/Java (Flanagan et al. 2002) and Spec# (Barnett et al.
2004) systems tackle some related problems within the classical
verification framework. These systems have strictly less support for
modeling data structures than Jahob has, so that it is impractical to
use them to perform full verifications of many data structures.

A number of systems have been proposed recently to support
dependently-typed programming in a setting oriented more towards
traditional software development than Coq is. Agda (Norell 2007)
and Epigram (McBride and McKinna 2004) are designed to in-
crease the convenience of programming in type theory over what
Coq provides, but, out of the box, these systems support neither
imperative programming nor custom proof automation. ATS (Chen
and Xi 2005) includes novel means for dealing with imperative
state, but it includes no proof automation beyond decision proce-
dures for simple base theories like linear arithmetic. This makes it
much harder to write verified data structure implementations than
in Ynot. Concoqtion (Pasalic et al. 2007) allows the use of Coq for
reasoning about segments of general OCaml programs. While those
programs may use imperativity, the Coq reasoning is restricted to
pure index terms. Sage (Gronski et al. 2006) supports hybrid type-

checking, where typing invariants may be specified with boolean-
valued program functions and checked at runtime. This approach
generally does not enable full static correctness verification.

Partly as a way to support imperative programming in type the-
ory, Swierstra and Altenkirch (2007) have studied pure functional
semantics for effectful programming language features, with em-
beddings in Haskell and Agda. Charguéraud and Pottier (2008)
have demonstrated a translation from a calculus of capabilities to
a pure functional language. In each case, the authors stated plans to
do traditional interactive verification on the pure functional mod-
els that they generate. Since such verification is generally done in
logics without general recursion, these translations cannot be used
to verify general recursive programs without introducing an extra
syntactic layer, in contrast to Ynot. Each other approach also intro-
duces restrictions on the shape of the heap, such as the absence of
stored impure functions in the case of Swierstra and Altenkirch’s
work.

Other computer proof assistants are based around pure func-
tional programming languages, with opportunities for encoding and
verifying imperative programs. Nonetheless, we see the elegance of
our approach as depending on the confluence of a number of fea-
tures not found in other mature proof assistants. ACL2 (Kaufmann
and Moore 1997) does not support higher-order logic or higher-
order functional programming. Bulwahn et al. (2008) describe a
system for encoding and verifying impure monadic programs in Is-
abelle/HOL. Their implementation does not support storing func-
tions in the heap. They suggest several avenues for loosening this
restriction, and the approaches that support heap storage of impure
functions involve restricting attention to functions that are construc-
tive or continuous (properties that hold of all Coq functions), neces-
sitating some extra proof burden or syntactic encoding.

There is closely related work in the field of shape analysis. The
TVLA system (Sagiv et al. 2002) models heap shapes with a first-
order logic with a built-in transitive closure operation. With the
right choices of predicates that may appear in inferred specifica-
tions, TVLA is able to verify automatically many programs that
involve both heap shape reasoning and reasoning in particular de-
cidable theories such as arithmetic.

The Xisa system (Chang and Rival 2008) uses an approach sim-
ilar to ours, as Xisa is based on user specification of inductive char-
acterizations of shape invariants. Xisa builds this inductive defini-
tion mechanism into its framework, while we inherit a more gen-
eral mechanism from Coq. Xisa is based on hardcoded algorithms
for analyzing inductive definitions and determining when and how
they should be unfolded. Such heuristics lack theoretical guaran-
tees about how broadly they apply. In the design of our system, we
recognize this barrier and allow users to extend the generic solver
with custom rules for dealing with custom inductive predicates.

In comparing the new Ynot environment to the above systems
and all others that we are aware of, there are a number of com-
mon advantages. No other system supports both highly-automated



proofs based on separation logic (when they work) and highly
human-guided proofs (when they are needed), let alone combina-
tions of the two. None of the systems with significant automation
support the combination of imperative and higher-order features,
like we handle in the example of our higher-order memoizer and
iterators. We also find no automated systems that deal with depen-
dent types in programs. The first of these advantages seems critical
in the verification of imperative programs that would be difficult
to prove correct even if refactored to be purely functional. For in-
stance, it seems plausible that our environment could be used even-
tually to build a verified compiler that uses imperative data struc-
tures for efficient dataflow analysis, unification in type inference,
and so on. None of the purely-automated tools that we have sur-
veyed could be applied to that purpose without drastic redesign.
We are not aware of any previous toolkit for manual proof about
imperative programs in proof assistants that would make the task
manageable; the manual reasoning about state would overwhelm
“the interesting parts” of compiler verification.

6. Conclusions & Future Work

The latest Ynot source distribution, including examples, can be
downloaded from the project web site:

http://ynot.cs.harvard.edu/

Concurrency is a big area for future work on Ynot. Systems
like Smallfoot (Berdine et al. 2005) do automated separation-logic
reasoning about memory safety of concurrent programs. We would
like to extend that work to full correctness verification, by design-
ing a monadic version of concurrent separation logic that fits well
within Coq.

The full potential of the Ynot approach also depends on explicit
handling of other computational effects, such as exceptions and
input-output. Our prior prototype handled the former, and ongoing
work considers supporting the latter.

As with any project in automated theorem proving, there is al-
ways room for improvements to automation and inference. A future
version of Ynot could benefit greatly in usability by incorporating
abstract interpretation to infer specifications, as several automated
separation logic tools already do.

Nonetheless, our current system already fills a crucial niche in
the space of verification tools. We have presented the first tool
that performs well empirically in allowing mixes of manual and
highly-automated reasoning about heap-allocated data structures,
as well as the first tool to provide aggressive automation in proofs
of higher-order, imperative programs. We hope that this will form
a significant step towards full functional verification of imperative
programs with deep correctness theorems.
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