skip to main content
research-article

Synthesis and evaluation of linear motion transitions

Published:20 March 2008Publication History
Skip Abstract Section

Abstract

This article develops methods for determining visually appealing motion transitions using linear blending. Motion transitions are segues between two sequences of animation, and are important components for generating compelling animation streams in virtual environments and computer games. Methods involving linear blending are studied because of their efficiency, computational speed, and widespread use. Two methods of transition specification are detailed, center-aligned and start-end transitions. First, we compute a set of optimal weights for an underlying cost metric used to determine the transition points. We then evaluate the optimally weighted cost metric for generalizability, appeal, and robustness through a cross-validation and user study. Next, we develop methods for computing visually appealing blend lengths for two broad categories of motion. We empirically evaluate these results through user studies. Finally, we assess the importance of these techniques by determining the minimum sensitivity of viewers to transition durations, the just noticeable difference, for both center-aligned and start-end specifications.

References

  1. Alias. Toronto, Canada. http://www.alias.com.Google ScholarGoogle Scholar
  2. Arikan, O. and Forsyth, D. A. 2002. Interactive motion generation from examples. ACM Trans. Graph. 21, 3 (July), 483--490. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Arikan, O., Forsyth, D. A., and O'Brien, J. F. 2003. Motion synthesis from annotations. ACM Trans. Graph. 22, 3 (July), 402--408. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Arikan, O., Forsyth, D. A., and O'Brien, J. F. 2005. Pushing people around. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, K. Anjyo and P. Faloutsos, Eds. 59--66. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bruderlin, A. and Williams, L. 1995. Motion signal processing. In Comput. Graph. 97--104. In Proceedings of SIGGRAPH 95. Los Angeles, CA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. CMU Motion Capture Database. Carnegie-mellon motion capture database. http://mocap.cs.cmu.edu.Google ScholarGoogle Scholar
  7. Duda, R. O., Hart, P. E., and Stork, D. G. 2001. Pattern Classification, 2nd Ed. John Wiley and Sons. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Gill, P. E., Murray, W., and Wright, M. H. 1981. Practical Optimization. Academic Press.Google ScholarGoogle Scholar
  9. Gleicher, M. 2001. Comparing constraint-based motion editing methods. Graphic. Models 63, 2 (March). Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Gleicher, M., Shin, H. J., Kovar, L., and Jepsen, A. 2003. Snap-together motion: Assembling run-time animation. ACM Trans. Graph. 22, 3 (July), 702--702. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Grassia, F. S. 2000. Believable automatically synthesized motion by knowledge-enhanced motion transformation. Ph.D. thesis, CMU-CS-00-163. Carnegie Mellon University. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Green, D. M. and Swets, J. A. 1966. Signal Detection Theory and Psychophysics. John Wiley and Sons, New York, NY.Google ScholarGoogle Scholar
  13. Harrison, J., Rensink, R. A., and van de Panne, M. 2004. Obscuring length changes during animated motion. ACM Trans. Graph. 23, 3 (Aug.), 569--573. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Hodgins, J. K., O'Brien, J. F., and Tumblin, J. F. 1998. Judgments of human motion with different geometric models. IEEE Trans. Visualiz. Comput. Graph. 4, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Johansson, G. 1973. Visual perception of biological motion and a model for its analysis. Percep. Psychophys. 14, 201--211.Google ScholarGoogle ScholarCross RefCross Ref
  16. Kovar, L. and Gleicher, M. 2003. Flexible automatic motion blending with registration curves. In Proceedings of the Symposium on Computer Animation, D. Breen and M. Lin, Eds., ACM SIGGRAPH/Eurographics, San Diego, CA, 214--224. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Kovar, L., Gleicher, M., and Pighin, F. 2002. Motion graphs. ACM Trans. Graph. 21, 3 (July), 473--482. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Kovar, L., Schreiner, J., and Gleicher, M. 2002. Footskate cleanup for motion capture editing. In Proceedings of the ACM SIGGRAPH Symposium on Computer Animation. 97--104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Kozlowski, L. T. and Cutting, J. E. 1977. Recognizing the gender of walkers from dynamic point-light displays. Percept. Psychophys. 21, 575--580.Google ScholarGoogle ScholarCross RefCross Ref
  20. Lamouret, A. and van de Panne, M. 1996. Motion synthesis by example. In Proceedings of the 7th International Eurographics Workshop on Computer Animation and Simulation. {EGCAS}. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Lee, J., Chai, J., Reitsma, P. S. A., Hodgins, J. K., and Pollard, N. S. 2002. Interactive control of avatars animated with human motion data. ACM Trans. Graph. 21, 3 (July), 491--500. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Lehmann, E. L. and D'Abrera, H. J. M. 1988. Noparametrics: Statistical Methods Based on Ranks. McGraw-Hill.Google ScholarGoogle Scholar
  23. MacMillan, N. A. and Creelman, C. D. 2004. Detection Theory: A User's Guide, 2nd Ed. Lawrence Erlbaum Associates.Google ScholarGoogle ScholarCross RefCross Ref
  24. McCall, R. B. 2001. Fundamental Statistics for Behavioral Sciences, 8th Ed. Wadsworth, Stamford, CT.Google ScholarGoogle Scholar
  25. Menache, A. 1999. Understanding Motion Capture for Computer Animation and Video Games. Morgan Kaufmann. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Ménardais, S., Kulpa, R., Multon, F., and Arnaldi, B. 2004. Synchronization for dynamic blending of motions. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 325--335. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Michaels, C. F. and de Vries, M. M. 1998. Higher order and lower order variables in the visual perception of relative pulling force. J. Exper. Psych. Hum. Percep. Perform. 24, 2, 526--546.Google ScholarGoogle ScholarCross RefCross Ref
  28. Mizuguchi, M., Buchanan, J., and Calvert, T. 2001. Data driven motion transitions for interactive games. Eurographics Short Presentations.Google ScholarGoogle Scholar
  29. Oesker, M., Hecht, H., and Jung, B. 2000. Psychological evidence for unconscious processing of detail in real-time animation of multiple characters. J. Visualiz. Comput. Anim. 11, 2 (June), 105--112.Google ScholarGoogle Scholar
  30. O'Sullivan, C., Dingliana, J., Giang, T., and Kaiser, M. K. 2003. Evaluating the visual fidelity of physically based animations. ACM Trans. Graph. 22, 3 (July), 527--536. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Park, F. C. and Ravani, B. 1997. Smooth invariant interpolation of rotations. ACM Trans. Graph. 16, 3 (July), 277--295. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Park, S. I., Shin, H. J., and Shin, S. Y. 2002. On-line locomotion generation based on motion blending. In Proceedings of the ACM SIGGRAPH Symposium on Computer Animation. 105--112. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Perlin, K. 1995. Real time responsive animation with personality. IEEE Trans. Visualiz. Comput. Graph. 1, 1 (March), 5--15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Pollick, F., Paterson, H. M., Bruderlin, A., and Sanford, A. J. 2001. Perceiving affect from arm movement. Cognition 82, 2, B51--B61.Google ScholarGoogle ScholarCross RefCross Ref
  35. Popović, J., Seitz, S. M., Erdmann, M., Popović, Z., and Witkin, A. 2000. Interactive manipulation of rigid body simulations. In Proceedings of ACM SIGGRAPH, New Orleans, LA. 209--218. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Pullen, K. and Bregler, C. 2002. Motion capture assisted animation: Texturing and synthesis. ACM Trans. Graph. 21, 3 (July), 501--508. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Reitsma, P. S. A. and Pollard, N. S. 2003. Perceptual metrics for character animation: Sensitivity to errors in ballistic motion. ACM Trans. Graph. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Rose, C., Cohen, M., and Bodenheimer, B. 1998. Verbs and adverbs: Multidimensional motion interpolation. IEEE Comput. Graph. Appl. 18, 5, 32--40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Rose, C. F., Guenter, B., Bodenheimer, B., and Cohen, M. F. 1996. Efficient generation of motion transitions using spacetime constraints. In Proceedings of SIGGRAPH Computer Graphics. Annual Conference Series. New Orleans, LA. 147--154. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Safonova, A. and Hodgins, J. K. 2005. Analyzing the physical correctness of interpolated human motion. In Proceedings of the ACM/Eurographics SIGGRAPH Symposium on Computer Animation. 171--180. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Schödl, A., Szeliski, R., Salesin, D. H., and Essa, I. 2000. Video textures. In Proceedings of ACM SIGGRAPH. Computer Graphics. Annual Conference Series. 489--498. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Sidenbladh, H., Black, M. J., and Sigal, L. 2002. Implicit probabilistic models of human motion for synthesis and tracking. In Computer Vistion---ECCV 2002 (1), A. Heyden, G. Sparr, M. Nielsen, and P. Johansen, Eds. Lecture Notes in Computer Science. Springer-Verlag, 784--800. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Sogon, S. and Izard, C. B. 1987. Sex differences in emotion recognition by observing body movements. Psychol. Res. 29, 89--93.Google ScholarGoogle Scholar
  44. Wang, J. and Bodenheimer, B. 2003. An evaluation of a cost metric for selecting transitions between motion segments. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 232--238. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Wang, J. and Bodenheimer, B. 2004. Computing the duration of motion transitions: an empirical approach. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 335--344. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Wetherill, C. B. and Levitt, H. 1965. Sequential estimation of points on a psychometric function. British J. Mathe. Statist. Psychol. 18, 1--10.Google ScholarGoogle ScholarCross RefCross Ref
  47. Witkin, A. P. and Popović, Z. 1995. Motion warping. In Proceedings of SIGGRAPH. Computer Graphics. Annual Conference Series. 105--108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Zordan, V. B., Majkowska, A., Chiu, B., and Fast, M. 2005. Dynamic response for motion capture animation. ACM Trans. Graph. 24, 3 (July), 697--701. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Synthesis and evaluation of linear motion transitions

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 27, Issue 1
      March 2008
      135 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/1330511
      Issue’s Table of Contents

      Copyright © 2008 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 20 March 2008
      • Accepted: 1 September 2007
      • Revised: 1 May 2007
      • Received: 1 July 2006
      Published in tog Volume 27, Issue 1

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader