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Abstract

We prove and extend a conjecture of Kempe, Kleinberg, andoEsiKKT) on the spread of influence
in social networks.

A social network can be represented by a directed graph wheraodes are individuals and the
edges indicate a form of social relationship. A simple wayntadel the diffusion of ideas, innovative
behavior, or “word-of-mouth” effects on such a graph is tagider an increasing process of “infected”
(or active) nodes: each node becomes infected once an tawiifanction of the set of its infected
neighbors crosses a certain threshold value. Such a modeintvaduced by KKT in[[7[8] where
the authors also impose several natural assumptions: tashibld values are (uniformly) random to
account for our lack of knowledge of the true values; and tttevaion functions are monotone and
submodular, i.e. have “diminishing returns.” The monotdgicondition indicates that a node is more
likely to become active if more of its neighbors are activijleithe submodularity condition, indicates
that the marginal effect of each neighbor is decreasing wiheset of active neighbors increases.

For an initial set of active nodeS, let o(S) denote the expected number of active nodes at ter-
mination. Here we prove a conjecture of KKT: we show that tinecfiono(.S) is submodular under
the assumptions above. We prove the same result for the texpealue of any monotone, submodular
function of the set of active nodes at termination.

In other words, our results demonstrate that “local” subuhaxdity is preserved “globally” under
diffusion processes. This is of natural computationalggg as many optimization problems have good
approximation algorithms for submodular functions. Intigaitar, our results coupled with an argument
in [7] imply that a greedy algorithm gives gi — 1/e — ¢)-approximation algorithm for maximizing
o(S) among all sets of a given size. This result has important practical impiaas for many social
network analysis problems, notably viral marketing.
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1 Introduction

Social Networks. In recent years, diffusion processes on social networke baen the focus of intense
study. While traditionally such processes have been of miajerest in epidemiology where they model the
spread of diseases and immunization, see e./ 12,19 1053, rhuch of the recent interest has resulted
from applications in sociology, economics, and enginegr{See e.gl]7] for references.)

In computer science, a strong motivation for analyzingugithn processes has recently emanated from
the study of viral marketing strategies in data mining, veherious novel algorithmic problems have been
considered[[2,13,17,18]. Roughly speakingtal marketing—unlike conventional marketing—takes into
account the “network value” of potential customers, i.eeiks to target a set of individuals whose influence
on their social network through work-of-mouth effects ighhi (For more background on viral marketing,
seel[2 3 17,18].)

Commonly-used heuristics to identify influential nodesanial networks include picking individuals of
high degree—so-called degree centrality heuristics—okipg individuals with short average distance to
the rest of the network—so-called distance centrality iséins [14]. Here we prove a structural conjecture
of Kempe, Kleinberg and Tardos (KKT)I[[7, 8], which can be rolygstated as follows: if a diffusion model
is locally submodular, i.e. the influence of an individualitneighbors in the network has “diminishing
returns,” then the process is globally submodular. Thilsvant here because, under the submodularity
property, optimization problems, such as the viral manggfroblem, are known that have good approxi-
mation algorithms([13]. In particular, in][7], greedy alghms based on the above conjecture were shown
to achieve significantly better performances in practies tidely-used network analysis heuristics.

General Threshold Model. In [7], KKT introduced thegeneral threshold modea broad generalization
of a variety of natural diffusion models on networks, inghglthe influentiallinear threshold modebf
Granovetter in sociology [6]. Given an initial set of infedtor active individuals on a network, the process
grows in the following way. (See Sectién 1.1 for a formal digdion.) Each individual, say, has an
activation function which measures the effect of its ne@klbonv and a threshold value. At any time, if
the set of previously infected neighborswofs such that its activation function crosses its threshalde,
thenv becomes infected. This processi®gressive—an active node stays active forever. KKT consider
the following natural assumptions:

- Thethreshold valuesrerandom This is to account for our lack of knowledge of the exact$hrid
value of each individual.

- The activation functionsare monotone increasing This corresponds to the intuition that a node is
more likely to become infected if a larger set of its neiglshisrinfected.

- Theactivation function@resubmodular This corresponds to the fact that the marginal effect ofieac
neighbor ofv decreases as the set of active nodes increases.

The Influence Maximization Problem. Since the diffusion process defined above is increasingyt t
minates after a finite number of steps. For a given initialdeictive nodesS we defines(S) to be the
expected size of the set of active nodes at the end of the ggode thelnfluence Maximization Problem
we aim to find a se$' of a fixed size maximizing (.5).

The Influence Maximization Problem is a natural problem tasider in the context of viral marketing.
Given a social network, it is desired to find a small set ofgédit individuals so as to maximize the number
of customers who will eventually purchase a product follmyvihe effects of “word-of-mouth’[]2,13]. The
same problem may also be of interest in epidemiology whetirfgnthe setS of a fixed size maximizing
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o(9S) is a natural problem both in terms of bounding the spread edeade and in terms of maximizing the
effect of immunization.

In [[7] it was shown that the Influence Maximization ProblenNi&-hard to approximate within a factor
1 —1/e+eforalle > 0. (The problem is in fach!~¢ hard to approximate without the submodularity
condition.) On the other hand, it was shownlih [8] that forzalt 0 it is possible find a sef' of fixed size
that is a(1 — 1/e — ¢)-approximation of the maximum in random polynomial timehétset functior is
itself submodular, which leads to the following conjecture.

Conjecture 1 ([7,[8]) The functions is submodular.

While the result of[[7, B] showed thatis submodular in special cases and related models (see)helow
the general case was open prior to our work, as highlightedratent invited talk of J. Kleinberg at FOCS
2006. In this paper we prove Conjectlfe 1 and extend it todke wherer(S) is the expected value of any
monotone, submodular function of the final active set. Thisga(l — 1/e — )-approximation algorithm
for finding a setS of fixed size maximizingr(S).

1.1 Model
In this section, we define formally thgeneral threshold model
Definition 1 A social networks given by:

- Aground sel/ with |[V| =n

- A collection ofactivation functions” = (f,).cv, Wheref, : 2V — [0,1] is a [0, 1]-valued set
function onV.

Typically, we think of V' as the individuals of a social netwotk = (V, E') where eacthf, measures the
effect ofv’s neighborsN (v) onw. In particularf, depends only on neighbofé(v) affectingv, so f,(S) =
fo(N(v) N .S) for all S. However, the specification of the graph will not be needdavine

Definition 2 The functionf : 2" — R is monotoneif f,(S) < f,(T)forall SC T C V.

Definition 3 The functionf : 2V — R is submodulaif for all S,7 C V/
FS)+ F(T) = fF(SNT) + f(SUT).

The monotonicity condition corresponds to the fact thatefiiect of a larger set on is stronger than the
effect of a smaller set. The submodularity condition is eagjeint to the fact that it C 7" andv € V then:

AT U{v}) = F(T) < fF(SU{v}) = f(9),
so the effect of each individual is decreasing when the setases.

Assumption 1.1 Throughout, we assume th#t(()) = 0 and that f,, is monotone and submodular for all
velV.

We will consider the following diffusion process.

Definition 4 For a givenF, consider the following process = (St),?z‘ol started atS C V:
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1. Associate to each nodean independent random variab#e uniform in[0, 1] ;
2. SetSp =95,
3. Attimet > 1, initialize S; = S;_; and add taS; the set of nodes il \ S;_; such thatf,(S;—1) > 6,.

Clearly the process stops on or before time- 1. We denote b »(.S) the distribution ofS when started
at S and writeS ~ 9Qx(S), where we will drop the subscript whéhis clear from the context.

Definition 5 For a weight functions : 2V — R, we define the influeneg, (S) of S C V as
Uw(S) = ES[w(Sn—l)]a

whereEg is the expectation unde®z(S).

1.2 Previous Results

Conjecturé 11 was previously verified in several specialcasel related models.

Linear Threshold Model [7]. This is the general threshold model with of the form
fU(S) - Z bv,un
weS

for nonnegative constants ,,. The proof uses a representation in terms of a related @ei@olmodel.
See|[7] for details.

“Normalized” Submodular Threshold Model [8].  This is the general threshold model wifhsatisfying
the so-called “normalized” submodularity property:

fv(SU {Z}) — fv(S) > fv(TU {Z}) — fv(T)
l_fv(s) N l_fv(T) 7

for all S C T. Note that this is stronger than submodularity. The prokéseadvantage of an equivalence
with thedecreasing cascade modske below).

(1)

Independent Cascade Model[7]. This is a related model where each edggw) has an associated prob-
ability p, ., of beinglive, independently of all other edges. Infected nodes are thaseected to the initial
set through dive path The proof of Conjecturgl 1 in this case also uses a percolatigument.

Decreasing Cascade Mode[[8]. A natural generalization of the previous model consistsefinihg for
eachwv, each neighbot of v and each subset of neighba¥sof v a success probability, (w, S) which
is the probability that node will succeed in activating given that nodes ity are active and have failed
to activatev. Each nodev gets only one chance to activate each of its neighbors. KKdose a natural
order-independenceondition on the success probabilities, i.e. the overaltess probability of activating
v does not depend on the order in which the active neighbordrgfto activate it. This model—called the
general cascade modl [7]—turns out to be equivalent to tlgeneral threshold modeinder the maps

fv(SU {w}) - fU(S)
1_fv(5) ’

po(w, S) =
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and

Fo(8) =1 =T = polwi, Si-1)),
=1
whereS = {wy,...,w,} andS; = {wy,...,w;}. When

pv(w,S) > pv(w>T) (2)

for all S C T and allv, w, the model is called thdecreasing cascade modé# is easy to check that this is
equivalent to[(lL) under the mapping above. The proof of tigecdure under this decreasing cascade model
works by coupling the processes started @and7” with S C 7" and then adding in a second phase where
condition [2) is used.

In [[7], it also shown that these results carry over to tlem-progressivecase wherd, is resampled
independently at each time step andyemeral marketing strategieshere one can use several marketing
actions simultaneously. Se€ [7] for details.

1.3 Main Result

Theorem 1 (Main Result) Consider the process defined in Definitidn 4 wh&randw are monotone and
submodular, thenr,, is monotone and submodular. In particular, this is true whers the cardinality
function.

Corollary 1 Consider the process defined in Definitldn 4 whé&r@and w are monotone and submodular.
Then there exists a (greedy) — 1/e — ¢)-approximation algorithm for maximizing,, (.S) among all sets
S of sizek [8]. In particular, this is true whenw is the cardinality function.

The corollary follows from Theorefd 1 and Theorem 2[of [8]. KKGreedy Approximation Algorithm is a
simple variant of the standard greedy algorithm where sagjs used to estimate,,.

Our proof.  Similarly to [8], a natural idea is to run the process in stagdere we use three phases: we
first grow A N B, thenA \ B, and finally B \ A. See Figur&ll for an illustration. The key difference is in
the execution of the last phase. To do away with the “norradlizubmodularity condition of [8], we use

e a careful combination of cascade and threshold models,hwhécall the need-to-know representa-
tion;

e and, more importantly, a novel “antisense” coupling teghribased on the intuition that coupling the
processes started at arbitrary sétand B by usingf,, and1 — 6,, respectively, in a way, “maximizes
their union” (note that — 6,, is also uniform in[0, 1]); this has to be implemented carefully to also
control the intersection; see Sectidn 2 for details; sed&lf for a general reference on the coupling
method.

2 Proof

Throughout we fixF and w monotone, submodular. We also fix two arbitrary sé¢ts3 C V and let
C =AnBandD = AU B. The idea of the proof is to couple the four processes



in such a way that
Cn—l C An—l N Bn—17 (3)

and
Dn—l - An—l U Bn—l- (4)

Indeed, we then have the following lemma.
Lemma 1 Suppose there exists a coupling®dfB, C andD satisfying [(B),[(#). Then
ow(A) + 0w(B) > 0u(AN B) + 0,(AU B). (5)
Proof: Indeed, we have by monotonicity and submodularity
w(Ap—1) + w(Bp—1) > w(Ap—1 N Bp_1) + w(Ap—1U Bp_1) > w(Cp_1) + w(Dy_1), (6)

and therefore, taking expectation we dét @).

Our coupling is based on the following ideas:

- Antisense coupling.The obvious coupling is to use the safhés for all processes. It is easy to see
that such a coupling does not satigfy (4). It does howevesfgd8). Intuitively, using the same, for
A andB “maximizes their intersection” while using, for A and(1 — 6,) for B “maximizes their
union.” We call this last coupling, thentisense couplingTo dominate both the intersection and the
union simultaneously, we combine these two couplings.

- Piecemeal growth.The growth of the four processes can be divided in severgéstavhere we add
the initial sets progressively. Roughly, the coupling bektarts by growingd N B, thenA \ B and
finally B \ A. Following our previous comment, the last phase uses thsemse coupling to allow
the proces® to dominateD in that phase.

- Need-to-know representation.Finally, to help carry out the previous remarks, we note ihiatnot
necessary to pick thé,’s at the beginning of the process. Instead, at each stepnemvar as little
information as possible aboé. This is related to the cascade modelldf [8] although hereseean
explicit combination of cascade and threshold models.

We explain these ideas next. The proof of Theokém 1 followSeatior 2.B.

2.1 Piecemeal growth

We first describe an equivalent representation of the psosdere the initial set is added in stages. We
denote byQ(S | #) the proces®(S) conditioned ord = (6,).,cy. For a partitions) ... S of S (we
allow some of thes*)’s to be empty), consider the proceEs= (T;)%! ~ Q(SM, ..., SF)) where

1. For eachy € V pick 6, uniformly in [0, 1] and sefl’_; = 0);

2. Forl < k < K, we set(T})"" kl T(k—1yn—1 U S™)|0); in other words, we add the)’s
one at a time and use the saé@és for aII stages

It is easy to see that the procesg6S) andQ(S™, ..., S¥)) have the same distribution. This result
actually follows from a more general discussion[in [8], bt @ie a proof here for completeness.



Lemma 2 (Piecemeal Growth) Let 5™, ..., S be a partition ofS C V. Let
S = (S1)i% ~ Q(9),

and
T = (I,)K% 1 ~ o(sW,...,50),

ThensS,,_1 andTk,,_1 have the same distribution.
Proof: Pick 6, uniformly in [0, 1] for eachw € V and let
S = (S0izy ~ Q(S|0),

and
T = ()K" ~ 9(sM,..., 55 |g).

Moreover, let
T = (T2 ~ Q(S,0,...,016),

and
T = (T ~ 9(0,...,0,516).

By monotonicity, 77, | € Tkn—1 < T},_, (by induction on theK stages). But clearlyf}., | =

T;én—l =S5,_1sothatS,,_| = Tk,_1. R

2.2 Antisense phase and need-to-know representation

To implement the antisense coupling, we define the followiaigant of the process.

Definition 6 LetS(M), ..., S(5) be a partition ofS and letT" C V' \ S. We define the process

T = (1) ~ 0 (s, s 7),

where
1. For eachw € V pick 8, uniformly in|0, 1];
2. LetT = (T ~ 9(SW,..., S5 9);
3. Setlxy, =Tkn-1UT;
4. AttimeKn+1 <t < (K + 1)n— 1, initialize T; = T;_1, and add tdl; the set of nodes iir \ T}

such thatfv(Tt—l) - fU(TKn—l) >1- 91} .
Lemma 3 (Antisense PhaseAssumesV) ..., (%) is a partition of S andT C V' \ S. Let
S = (S)E I v (s, L. 5 1),

and
T = (1) ~ 0 (s, s%) ).

Then,S(k 11yn—1 andT(k 1 1y,—1 have the same distribution.



Proof: As was discussed at the beginning of Secfibn 2, rather thekingi thed,’s at the beginning of the
process, it is useful to think of them as being progressivelgovered on a need-to-know basis. Consider
only thefirst stage of the proces$for the time being. Lef_; = (). Suppose that, at time> 1, v ¢ S;_;.
Then we have that, € [f,(S;—2), 1] and all we need to know to deciderifis added taS; is whether or not

0, € [fo(St—2), fu(St—1)]. In other words, was the increase finbetween tim¢ — 2 andt¢ — 1 enough to

hit 6,? Note that, given the evefif, (S;—2) < 6,}, 6, is uniformly distributed irf,,(S;—2), 1] and we have
thatf, is in [f,(Si—2), fu(S:—1)] with probability

fo(St-1) = fu(Si-2)
1= fo(Si—2)

Therefore, we can describe the proc(aS;s)?:‘o1 equivalently as follows. We first s¢t | = 0, Sy = S.
Then, at steg <t <n — 1, we initialize S; = S;_; and for eachv € V' \ S;_;:

- With probability
fo(Se=1) = fo(Si—2)
1- fv(St—2) ’
we addv to Sy and pickd, uniformly in [f,(S:—2), fu(Si=1)];

(7)

- Otherwise, we do nothing.

By the discussion above, this new version of the processheasame distribution a@(S™")). We pro-
ceed similarly for the followingK — 1 stages to ge(St),fi%‘l which is then distributed according to
Qs ..., s,

We can clearly choosgl;)X"~1 = (S,)K%~1. Then note that, at time= Kn, for eachv ¢ Sk, =
Tkn—1, we have thab, is uniformly distributed inf, (Sxn-1), 1] = [fo(Txn-1), 1]. For each such, we

now pick®d, uniformly in [f,(Skn-1), 1] and set

0/ :{ 9’!}7 v e SKn—17
v Jo(Skn—1)+1—160,, v & Skn_1.

Finally, let
(S)EEDmY L QS U T 0),

and
(TS ~ QT UT|6).

That is, we run the last stage 8f and T as before, with¥ and ¢’ respectively. It is clear thal' ~
Q_(SW, ..., 85 T) by construction. Moreover, it follows easily th&t1y,—1 and (k1,1 have
the same distribution from the fact that for a uniform valéay, in [f,(Skn—1), 1], the random variables,
andf,(Skn—1) + 1 — 6, have the same distributiolll

2.3 Coupling

We are now ready to prove Theoréin 1. See Figlre 1 for a grdpiejgeesentation of the proof. We will
need the following easy consequence of monotone submdsgtular

Lemma4 Let f : 2 — R, be monotone and submodular. Thewitc S’ C VandT C 7' C V, we
have
FSUT) = f(S) = f(S"UT) — f(S").
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Figure 1: The three phases of the coupling. In each phasdatkeshaded region is the initial set, while the
light shaded region is the final set. The sdtand B are indicated by dashed lines. The thick dashed lines
show that the desired properties are satisfied.



Proof: Note that by monotonicity and submodularity

FSUT) = f(S) = f(SUT) - f(S),
FSU(T\S)) = f(5),
(

(s

f SU(S'\(TUS))U(T\S)) — f(SU(S'\(TUS)),
T) - f(5).

>
>

f
[

Proof: We proceed with our coupling o, B, C, andD. In fact, by Lemmakl1]2, aid 3, it suffices instead
to couple

it ~ QAN B, A\ B,0),

Bt~ Q (AN B,0; A\ B),

Cinst ~ Q(AN B,0,0),

— (D)2 ~ Q (AN B, A\ B, B\ 4),

in such away thatforall <t <3n—1

caQwe
I

Cy C AN By, Dy C Ay U By. (8)

Our coupling is as follows. We pick, uniformly in [0, 1] for all v € V" and use the samgfor all four
processes.

By construction, for alD < ¢t < 2n — 1 we haveB, = C; C A; so thatC; = A; N B;. Similarly for all
0 <t<2n—1wehaveD, = A; sothatD, C A, U B;. Thus [8) is satisfied fob < ¢ < 2n — 1. To see
(8) holds also fo2n < ¢t < 3n — 1, note that by Lemmia 4 for all ¢ Do,

fv(B2n) - fv(B2n—1) Z fU(D2n) - fU(D2TL—1)7

sinceBa,—1 C Doy—1, Bay = Boyp—1 U (T'\ S), and Dy, = Do,—1 U (T \ S). We proceed by induction.
By monotonicity and Lemmia 4, we then have forall < ¢ < 3n — 1

Dy \ Doy—1 C B\ Bap—1,

and
fv(Bt) - fv(B2n—1) Z fv(Dt) - fU(DZn—1)7 Vv ¢ D2n'

This proves the claim since we then have for2all < ¢t < 3n — 1, A, = Dy,—1 andD; \ Dy,—1 C B
which impliesD; C A; U B;. The conditionC; C A; N B, is clear from the constructiol

3 Concluding Remarks

Necessity. It is easy to see that the submodularity assumption in Thedrés necessary in the following
sense: Any functionf which is not submodular admits a network with activationdtion f where the
influence is not submodular. Indeed, fet 2V — R., A, B C V such that

f(A)+ f(B) < f(ANB) + f(AUB).
LetV* =V U{v*} with f,«» = fandf, = 1forallv € V. Itis then immediate to check that:

o(A) +0o(B) = [Al+|B[+ f(A)+ f(B) = |[ANB[+[AUB|+ f(A) + f(B)
< |ANB|+|AUB|+ f(ANB)+ f(AUB) =0(ANB)+0(AUB).
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