Ultra Low-Cost Defect Protection for Microprocessor Pipelines

Smitha Shyam
Valeria Bertacco

Kypros Constantinides

Sujay Phadke
Todd Austin

Advanced Computer Architecture Lab
University of Michigan, Ann Arbor, MI 48109

{smithash, kypros, sphadke, valeria, austin}@umich.edu

Abstract

The sustained push toward smaller and smaller technology sizes
has reached a point where device reliability has moved to the
forefront of concerns for next-generation designs. Silicon failure
mechanisms, such as transistor wearout and manufacturing defects,
are a growing challenge that threatens the yield and product life-
time of future systems. In this paper we introduce the BulletProof
pipeline, the first ultra low-cost mechanism to protect a micropro-
cessor pipeline and on-chip memory system from silicon defects.
To achieve this goal we combine area-frugal on-line testing tech-
niques and system-level checkpointing to provide the same guar-
antees of reliability found in traditional solutions, but at much
lower cost. Our approach utilizes a microarchitectural checkpoint-
ing mechanism which creates coarse-grained epochs of execution,
during which distributed on-line built in self-test (BIST) mecha-
nisms validate the integrity of the underlying hardware. In case a
failure is detected, we rely on the natural redundancy of instruction-
level parallel processors to repair the system so that it can still op-
erate in a degraded performance mode. Using detailed circuit-level
and architectural simulation, we find that our approach provides
very high coverage of silicon defects (89%) with little area cost
(5.8%). In addition, when a defect occurs, the subsequent degraded
mode of operation was found to have only moderate performance
impacts, (from 4% to 18% slowdown).

Categories and Subject Descriptors B.8.1 [Hardware]: Perfor-
mance and Reliability—Reliability, Testing, and Fault-Tolerance

General Terms  Reliability, Design
Keywords Reliability, Defect-Protection, Low-Cost, Pipelines

1. Introduction

As silicon technologies move into the nanometer regime, there is
growing concern for the reliability of transistor devices. Leading
technology experts have begun to warn designers that device reli-
ability will wane in the 45nm regime and beyond [7, 6]. In fact,
device scaling aggravates a number of long standing silicon failure
mechanisms, and it introduces a number of new non-trivial fail-
ure modes. Unless these reliability concerns are addressed, either
through on-line detection and correction, or with the introduction
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of more robust devices, component yield and lifetime will soon be
compromised. In this paper, we introduce a low-cost mechanism
for tolerating a small number of silicon failures that occur in the
field, i.e., while the device is in operation.

1.1 The (Bumpy) Road Ahead

The following list highlights the types of silicon failures addressed
by the reliable solution presented in this work. Each of these failure
mechanisms have received significant attention in the process tech-
nology literature, and each has been identified as a growing concern
for deep-submicron silicon.

Device Wear-out. Metal electro-migration and hot carrier
degradation are traditional mechanisms that lead to eventual device
failure [28]. While these mechanisms continue to be a problem for
deep-submicron silicon, new concerns arise due to the extremely
thin gate oxides utilized in current and future process technologies,
which lead to gate oxide wear-out (or Time Dependent Dielectric
Breakdown, TDDB). Over time, gate oxides can break and become
conductive, essentially shorting the transistor and rendering it use-
less. Fast clocks, high temperatures, and voltage scaling limitations
are well-established architectural trends that conspire to aggravate
this failure mode [33].

Transistor Infant Mortality. Extreme device scaling also ex-
acerbates early transistor failures, due to weak transistors that es-
cape post-manufacturing testing. These weak transistors work ini-
tially, but they have dimensional and doping deficiencies that sub-
ject them to much higher stress than normal. Quickly (within days
to months from component deployment) they break down and ren-
der the device unusable. Traditionally, early transistor failures have
been addressed with aggressive burn-in testing, where, before be-
ing placed in the field, devices are subjected to high voltage and
temperature testing, to accelerate the failure of weak transistors
[4]. Those transistors that survive this grueling birth are likely to
be robust devices, thereby ensuring a long product lifetime. In the
deep-submicron regime, burn-in becomes less effective as devices
are subject to thermal run-away effects, where increased tempera-
ture leads to increased leakage current, which in turn leads to yet
higher temperatures and further increases in leakage current [23].
The end result is that aggressive burn-in can destroy even robust
devices. Manufacturers are forced to either sacrifice yield with an
aggressive burn-in or experience more frequent early transistor fail-
ures in the field.

Manufacturing Defects that Escape Testing. Optical proxim-
ity effects, airborne impurities, and processing material defects can
all lead to the manufacturing of faulty transistors and interconnect
[28]. Moreover, deep-submicron gate oxides have become so thin
that manufacturing variation can lead to currents penetrating the
gate, rendering it unusable [30]. In current 90nm devices these ox-
ides are only about 20 atoms of thickness. In 45nm technology,
this thickness is expected to reduce below 10 atoms. This prob-



lem is compounded by the immense complexity of current designs,
which makes it more difficult to test for defects during manufactur-
ing. Vendors are forced to either spend more time with parts on the
tester, or risk having untested defects escape into the field.

1.2 Contributions of This Paper

While there is no consensus on the absolute rate of defects in future
technologies, or as to when these problems will potentially derail
the silicon manufacturing industry, there is, however, broad agree-
ment that device reliability will begin to wane in the 45nm regime
and beyond [13, 33, 17]. In this paper, we introduce the Bullet-
Proof pipeline. It is the first ultra low-cost defect protection mecha-
nism for microprocessor pipelines and on-chip cache memories. In
this work, we target specifically low in-field defect rates. The us-
age mode we envision for our technology is that it will be installed
into a microprocessor product. The technology will continuously
monitor the system’s health until the first defect is encountered.
At that point, the system will stay operative but at a lower perfor-
mance level. The user (and/or system controller) will be notified
and will have to choose to either: i) live with the degraded mode
performance, or ii) repair the system. And above all, our goal is
to provide all of these capabilities for a minimal cost. Specifically,
this research paper makes the following contributions to the area of
reliable microarchitecture design:

e We present the first low-cost reliable system design approach
which provides fine-grained detection, diagnosis, recovery, and
repair of silicon defects that occur while the system is in oper-
ation in the field. While traditional approaches require at least
100% overhead due to duplication of critical resources, our on-
line testing-based approach provides the same level of protec-
tion with an overhead of 5.8%.

We provide a physical-level analysis of coverage and perfor-
mance impact of our technique, in the context of a low-cost
embedded VLIW processor design. We chose this target design
because it is i) an important target due to its high reliability
needs for safety-critical applications, and ii) a challenging en-
vironment to implement defect tolerance due to its high cost
sensitivity. Moreover, it should be noted that very few relia-
bility solutions in the computer architecture literature quantify
the corresponding fault coverage. In contrast, we evaluate the
coverage of our solution through a physical-level analysis (syn-
thesized gate-level netlist) and find that it provides coverage
against 89% of potential defect locations.

Our approach to defect detection is markedly different than pre-
vious solutions utilizing spatially or temporally redundant compu-
tation. We leverage instead a combination of on-line distributed
testing with microarchitectural checkpointing to efficiently iden-
tify defects, and recover from their impact. The microarchitectural
checkpointing mechanism provides a computational epoch, which
is a period of computation over which the processor’s hardware is
checked. During a computational epoch, on-line distributed built-
in self-testing (BIST) techniques exploit idle cycles to completely
verify the functional integrity of the underlying hardware. When
the on-line testing completes without finding faults, the underly-
ing hardware is known to be free of silicon defects and the epoch’s
computation is allowed to safely retire to non-speculative state. By
contrast, if the underlying hardware is found to be faulty, the results
of the computational epoch are thrown away, and the system’s state
is restored to the last known-good machine state at the start of the
epoch. Before continuing execution from this point, the defective
component is disabled and the system continues in a performance
degraded mode without the broken resource.

Relying on on-line testing, rather than traditional redundancy
techniques, allows us to achieve dramatically lower overhead
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Figure 1. BulleProof pipeline architecture. Part a) shows
how we equip a microprocessor pipeline for defect protection:
Component-specific hardware testing blocks are associated with
each design component to implement test generation and check-
ing mechanisms. When a failure occurs, it is possible that results
computed in the microprocessor core are incorrect. However, the
speculative “epoch”-based execution guarantees that the computa-
tion can always be reversed to the last known-correct state. Part b)
shows three possible epoch scenarios.

than previous proposed techniques. Redundant approaches such
as triple-modular redundancy [31] and N-version hardware [31]
utilize redundant hardware on a cycle-by-cycle basis to detect and
correct errant computation resulting from silicon defects. For each
of these previous techniques, redundant hardware is used to ver-
ify the integrity of computation on the baseline hardware com-
ponent, resulting in cost overheads of 100% or more [11]. An
on-line testing-based approach, in contrast, is much less expen-
sive because the hardware necessary to verify integrity and provide
checkpoint/recovery is quite modest. Our entire facility only adds
5.8% additional hardware to a 4-wide VLIW processor with 32-
KBytes of instruction and data cache.

The remainder of this paper introduces our approach to defect
tolerance and evaluates its impacts on design cost and performance.
In Section 2 we describe in detail how on-line testing can be com-
bined with checkpoint recovery to provide high-levels of defect tol-
erance at low cost. Section 3 presents a detailed simulation-based
evaluation of the approach, using physical design analysis to gauge
area costs and architectural simulation to judge performance im-
pacts. Section 4 details previous work in the areas of defect tol-
erant microarchitecture design, on-line defect testing, and microar-
chitectural checkpoint recovery techniques. Finally, Section 5 gives
conclusions and suggests future directions.

2. Testing and Recovery

Figure 1 illustrates the high-level system architecture of our de-
fect tolerance approach, and it shows a timeline of execution that
demonstrates its operation. At the base of our approach is a mi-
croarchitectural checkpoint and recovery mechanism that creates
computational epochs. A computational epoch is a protected re-



gion of computation, typically at least 1000’s of cycles in length,
during which the occurrence of any erroneous computation, in
this case due to the use of a defective device, can be undone by
rolling the computation back to the beginning of the computational
epoch. During the computational epoch, on-line distributed BIST-
style tests are performed in the background, checking the integrity
of all system components. Ideally, this checking will occur while
functional units, decoders, and other microprocessor components
are idle, as is often the case in a processor with parallel resources.
By the end of the computational epoch, there are three possible sce-
narios that the control logic will handle. The first scenario (shown
in the first epoch of Figure 1b) is when the checking completes
before the end of the computational epoch. In this scenario, the
hardware is known to be free of defects, thus, the results of the
computational epoch are known to be free of defect-induced errors,
and it can be safely retired to non-speculative storage.

In the second scenario (shown in the second epoch of Figure
1b), the computational epoch ends before the on-line testing infras-
tructure could complete the testing of all of the underlying hard-
ware components. This scenario can occur because our microarchi-
tectural checkpointing mechanism has only a finite amount of stor-
age into which speculative state can be stored — once this space is
exhausted, the computational epoch must end. I/O requests can also
force early termination of a computational epoch. In this event, test-
ing will be the only activity allowed on the processor, and it will run
to completion while the processor pipeline is stalled. If at the end
of testing the hardware is still deemed free of defects, the epoch’s
speculative state can safely retire to non-speculative storage.

Finally, the third scenario, depicted in the third epoch of Figure
1b, is when the on-line testing infrastructure encounters a defect in
an underlying component, due to a transistor wearout, early transis-
tor failure, or manifestation of an untested manufacturing defect. In
this event, the execution from the start of the computational epoch
to the point where the defect was detected cannot be trusted as cor-
rect, because this unchecked computation may have used the faulty
component. Consequently, the results of the computed during the
epoch are discarded, and the underlying hardware must be repaired.
We do so by disabling the defective component. In a processor
with instruction-level parallelism (ILP), there are typically multi-
ple copies of virtually all components. Once a component is dis-
abled the processor will continue to run in a performance-degraded
mode. Additionally, a software interrupt is generated which notifies
the system that the underlying hardware has been degraded, so the
user can optionally replace the processor.

2.1 On-line Testing Techniques

The on-line testing infrastructure is responsible for fully verifying
the integrity of the underlying hardware components. Our testing
techniques are adopted from built-in self-test (BIST) [25], although
we have tailored our designs to minimize the area of the testing
hardware, and hence the area of our defect-protection infrastruc-
ture. For each of the pipeline components, we store a high quality
input vector set in an on-chip ROM, which is fed into the modules
during idle cycles. A checker is also associated with each compo-
nent to detect any defect in the system. The primary techniques we
utilize to verify the integrity of the underlying hardware are illus-
trated in Figure 2 and described below.

Decoder Checker: The decoders are validated by sending the
same test vector to multiple decoders, and then comparing their
outputs. The decoder test harness is illustrated in Figure 2a. In
the event that the outputs do not match, one of the decoders has
experienced a defect-related failure. In addition, it is important to
determine which of the decoders has failed. Consequently, three
decoders are sent the test vector, and a majority operator is used
to identify which of the decoders has failed. Admittedly, it is rare

that three decoders are not used within a single cycle, however,
fully testing one of the decoders for stuck-at-0 and stuck-at-1 faults
requires only 63 carefully selected vectors. In the case that the
architecture has more than three decoders, each can be tested by
including it in a battery of tests with any two other decoders.

Register File Checker: Register file integrity is checked using
a four phase split-transaction test procedure, as illustrated in Figure
2b. The register file is unchanged from the original design, except
that it has two address decoders (one for read and one for write),
which allows testing of address decoder faults. In the first phase,
a register file entry is read from the register file and stored in
the replacement register. Testing of that register may now proceed
whenever free read/write ports are available. If the register under
test is read or written by the processor, the value is supplied by the
replacement register. This same register is used to repair a broken
entry, as described later. In the second phase, a random vector
(generated with a linear feedback shift register, LESR) is written
into the register being tested, and in the third phase it is read back
out and compared to the original vector. Finally, in the last phase
the register entry (previously copied into the replacement register
during the first phase) is written back into the appropriate register.

This process effectively tests both the register storage as well
as the address decoders in the register file. The register storage is
tested by writing and reading a value from the register. The address
decoders are tested by virtue of the fact that the value written and
read is fairly unique (i.e, it is randomly generated), thus if either
the read or write address decoder incurs a defect, some other (likely
another register value) value will incorrectly appear during the read
phase of the register file testing. Because the value stored in the
register entry under test is available at all times from the replace-
ment register, the testing process can be implemented as a series of
split transactions. Consequently, different phases can be executed
in non-subsequent cycles, whenever a free port is available on the
register file. This facet of the approach greatly contains the per-
formance impact, as shown in Section 3. The register file testing
procedure is repeated until all of the registers have been validated.
For our test processor with 32 registers, we can fully test the reg-
ister file with 128 cycles, spread out over an entire computational
epoch in cycles when the register file is not in use.

ALU and Multiplier Checker: The ALU is checked using a
9-bit mini-ALU, as shown in Figure 2c. During each cycle a test
vector from the BIST unit is given to the ALU and compared with
the output of the mini-ALU. It takes four cycles for the mini-ALU
to test the full output of the main ALU. We use a 9-bit ALU to
validate the carry out of each 8th bit in the 32-bit output. The
same type of ALU checker is also used to verify the output of
the address generation logic. Using the mini-ALU checker, it is
possible to fully verify that the ALU circuitry is free of stuck-at-0
and stuck-at-1 faults with only 20 carefully selected test vectors.! A
similar approach is used to validate the multiplier, which employs
arithmetic residue checks [3]. Given an n-bit operand z, the residue
x, with respect to r is the result of the operation x%r. When
applied to multiplication, residue codes adhere to the following
property: (zr * y») = (x * y)r. When the value of r = 2% — 1
for some a, the residue operations are much simpler to implement
in hardware [3]. The resulting multiplication checker requires only
a shifter and simple custom logic.

Residue codes can detect most of the faults in a multiplier
except those that manifest as multiples of the residue, a small class
of faults where a single fault at an internal node could manifest as a

't should be noted that our testing approach is in contrast to traditional
BIST-style testing techniques that store both the input and output vectors,
with the output vectors being compared to the output of the ALU. We found
that by computing the output vector on a smaller adder, we could produce a
tester that was significantly smaller.
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Figure 2. Component-specific on-line testing techniques. The decoders use a majority vote, as shown in part a). In part b) the register file
tests one register at a time, by swapping to a replacement register. Part ¢) shows functional units exploiting arithmetic checkers. In part d)
caches are equipped with a parity bit, a ’volatile” bit to indicate the speculative state of the data stored in a line and bits to track a faulty

cache line. Part e) shows the early clock edge for checker logic.

multiple of the correct value on the output. The errors missed by the
residue checker are caught by a few additional carefully selected
test vectors, against which the exact output is matched. Using this
approach, the multiplier can be fully tested for stuck-at-0 and stuck-
at-1 faults with a total of only 55 test vectors.

Cache Line Checker: Cache line integrity is maintained, as
illustrated in Figure 2d, through the use of cache line parity. A
single parity bit is associated with each line, holding the parity
of the entire cache line plus the tag, valid bit, and LRU state for
the line. When cache lines are written to the cache, the parity for
the line is generated and stored. Subsequently, when the cache
line is read, the parity is recomputed to verify the contents. In the
event that the parity is correct, notwithstanding a multi-bit failure,
which is beyond the scope of our single bit failure model, the
cache line is known to be correct. In the event that a cache line
parity check fails, a defect has been detected within the storage
of the cache, consequently, the line must be disabled from further
use and execution is rolled back to the last checkpointed epoch.
Cache lines are disabled by setting a two bit field in the LRU
state table, which indicates which line in the current set has been
disabled. The disable bits in the LRU table are periodically reset
to avoid soft errors in caches being interpreted as hard errors and
rendering the cache lines unusable for the rest of the design’s
lifetime. Furthermore, at the end of each computational epoch, dirty
cache lines are checked and written back to the next level of the
memory hierarchy to guarantee recoverability in the presence of
cache silicon defects. This approach is area-efficient, but it can only
support a single failed line per set of a cache. Additional failed lines
could be supported within a single set if more disable bits were to
be included in the LRU logic.

The Test Clock: An important consideration in the testing of
hardware components is the timing of the test vector samples. Since
many transistor wearout-related failures manifest as progressively

slower devices [13], the failure of the device may occur in a way
where timing is no longer met for the component’s critical path.
Figure 2e shows how we address the issue by utilizing a slightly
shorter clock cycle for sampling test vector outputs. The clock fre-
quency safety margins in current microprocessors (e.g. to mitigate
process variation) permits the use of this slightly shorter cycle test-
ing clock with a negligible amount of false positives. This ensures
that if a device is failing by showing slower response, it can be
detected long before it affects any processor computation, which
operates on the main clock cycle, longer than the testing cycle.

2.2 Micro-architectural Checkpointing

We rely on a microarchitectural rollback mechanism to restore cor-
rect program state in the event of a defect detection. The mecha-
nism we employ is similar to the one described in [22]. During the
execution of a computational epoch, the processor makes register
and memory updates which would need to be discarded if a fault
is detected. To prevent any memory updates with corrupted data,
such updates are buffered in speculative state within the processor,
until when the hardware is checked and certified to be functionally
correct. It is worth noting that the same level of fault coverage is
not feasible by simply stopping the computation and running the
built-in tests on a regular basis, without any checkpointing, and re-
configuring the pipeline if a fault is found. In fact, with this ap-
proach it would not be possible to ensure that a detected fault had
not corrupted earlier computation. In contrast, with the microarchi-
tectural checkpointing facility, we can always roll back the state of
the machine to the point when we last completed an on-line testing
pass successfully (a point in the computation known to be correct).
In addition, once the hardware is repaired, we can safely restart the
program from this checkpoint.

As shown in Figure 3, register state is preserved by backing
up the register file into a dedicated single-port SRAM at the begin-
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ning of each computational epoch. The register backup can be done
lazily by tagging the registers and copying them only before they
get overwritten, so that there is no associated performance penalty.
To support long epochs, memory updates are buffered within the lo-
cal cache hierarchy. To implement in-cache speculative state, each
cache line is augmented with a volatile bit. At the beginning of
an epoch, all volatile bits are reset. When a value is stored to the
cache, the volatile bit of the target cache line is set to indicate that
the contents are speculative in the current epoch. The end of an
epoch is determined by the ability of the local cache hierarchy to
buffer the memory updates issued during the epoch. Therefore, it
is designated by a cache miss on a cache set in which all of the
cache lines are already marked as volatile. In this event, all specu-
lative state resources have been exhausted and the processor must
stall until the testing sweep is complete. Once the underlying hard-
ware is determined to be defect-free, an epoch may end. At this
point, all volatile bits from the cache lines are cleared, moving all
formerly speculative state to non-speculative. To minimize perfor-
mance costs of starting epochs (i.e, copying the register file and
clearing volatile bits), we extend each epoch as long as possible, un-
til when speculative state resources are exhausted or a high-priority
I/O request is generated, as discussed in Section 2.6. To provide
even longer epochs, we introduce a small fully associative victim
cache for volatile cache lines, so that the end of an epoch is now
designated by a cache miss on a cache set with all lines marked
as volatile, and while the victim cache is full of volatile lines. In
this work we assume a uni-processor environment; hence, delaying
the commit of stores to non-speculative storage has no effects on
the system’s performance. Similar microarchitectural checkpoint-
ing techniques that take into account the performance penalty of
delayed stores in shared-memory multi-processor environments are
described in [18].

2.3 Two-Phase Commit

Unfortunately, if only one checkpoint of the microprocessor’s ar-
chitectural state is preserved, there is a chance that errant computa-
tion from a new defect manifestation could be missed. The potential
problem is illustrated in Figure 4: If a hardware check completes
before a fault manifests, it becomes possible for an errant com-
putation to be generated later in the same computational epoch.
In this event, corrupted state updates would be committed to non-
speculative state at the end of the epoch. The manifested fault will
eventually be detected in the next epoch, but not before erroneous
computation had a chance to be committed to non-speculative stor-
age. We can solve this conundrum by adopting a two-phase com-
mit procedure, which maintains two checkpoints of the processor’s
state. To implement this two-phase commit, we use an additional bit
for each L1 data cache line. We also use an extra backup register file
so that the processor’s architectural state can be stored alternatively
to one or the other of the two backup register files. This enables
us to keep backups of the microprocessor’s state for the last two
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Figure 4. Incorrect recovery scenario. During the execution of
epoch A, a fault manifests after the testing sweep is complete.
The fault causes memory updates with corrupted data, which are
committed at the end of the epoch. In epoch B, the fault is detected
and recovery occurs. However, this happens too late to revert the
corrupted memory updates.

epochs. Lines in the L1 data cache will be marked (using the two
volatile bits) as being either non-speculative, in the previous epoch,
or in the current epoch. At the end of each epoch, the volatile bits
of the previous epoch are cleared, and the tags of the current epoch
are updated to indicate that they refer to the previous epoch. Dur-
ing the new epoch, any access to the previous epoch’s state must be
first copied into the current epoch before being written, so that we
do not corrupt the previous epoch’s state. A similar technique for
providing a sliding rollback window is described in [34].

2.4 Fault Recovery

In presence of a fault, recovery to a correct microprocessor archi-
tectural state is accomplished by flushing the pipeline and copy-
ing the architectural registers from the backup register file. The
memory system is protected against possible corrupted updates is-
sued after the fault manifestation by invalidating all the cache lines
marked as volatile in the local cache hierarchy. Therefore, the pres-
ence of the fault is transparent to the application’s correct execu-
tion. To provide forward progress the defective module must be
disabled via hardware reconfiguration.

2.5 Repairing the Pipeline

In the event of a fault manifestation, the microarchitectural check-
pointing mechanism will restore correct program state. However,
before execution can safely continue, the underlying hardware must
be repaired. We rely on the natural redundancy of ILP proces-
sors to reduce the cost of repair. Faulty components are removed
from future operations, and the pipeline can keep running in a
performance-degraded mode. To implement pipeline repair, the fol-
lowing facilities are included in the design:

1) Faulty functional units, such as ALUs, multipliers and decoders
are disabled from further use. Consequently, further execution must
limit the extent of parallelism allowed.

2) Faulty register file entries are repaired using the replacement reg-
ister, as shown in Figure 2b. The replacement register overrides a
single entry of the register file, thus, any value read or written to
the defective register is now serviced by the replacement register.
3) Faulty cache lines are excluded using a two-bit register in the
LRU logic. Upon detecting a faulty line, the LRU state register is
updated to indicate that the defective line is no longer eligible as a
candidate line during replacement.

Given enough silicon defects, it may be no longer possible to
tolerate an additional defect in a particular subcomponent. The de-
gree to which defects can be tolerated is dictated by the number of
redundant components available. In general, with N components,
it is possible to tolerate N-1 defects. Once the N-1-th component



fails, the hardware should generate a signal to the operating system
to indicate that the system is no longer protected against defects.
Finally, it should be noted that if the failure is the result of a transis-
tor slowdown, e.g., due to gate oxide wearout or to a negative-bias
temperature instability (NBTI), it may be possible to recover the
failing component by slowing down the system clock or increasing
the component’s voltage. Specifics on how to accomplish this is be-
yond the scope of this paper; we will be exploring this possibility
in future research.

2.6 Handling Input/Output Requests

Instructions that perform input and output requests require special
handling in our defect tolerant microprocessor design. Since I/O
operations are typically non-speculative, they can only be executed
at the end of a computational epoch. To accommodate them effi-
ciently, we introduce three flavors of I/O requests into our design:
high-priority, low-priority, and speculative (the type of I/O request
is associated with the memory address, and it is specified in the
corresponding page table entry).

High priority 1/0 requests are deemed extremely time sensitive,
thus, they force the end of a computational epoch, which may
force the processor to stall to complete the testing sweep. After
this, the I/O request executes safely, and another epoch can start
immediately after it.

Low priority 1/0O requests are less time sensitive. Hence, they
are held in a small queue where they age until the end of the
current epoch, at which point they are all serviced. To prevent
I/O starvation in programs with long computational epochs, low-
priority I/O requests are only allowed to age for a small fixed
period of time (about one psec in our design). In addition, the
computational epoch must end when any attempt is made to insert
a low-priority request into a full I/O queue.

Speculative I/0O requests are 1/0 requests that are either insuffi-
ciently important to care about the impacts of unlikely defects (e.g.,
writes to video RAM, which could be easily fixed in the next frame
update), or they are idempotent (€.g., the reading of a data packet
from a network interface buffer). Such requests are allowed to ex-
ecute speculatively before the end of a computational epoch. If a
defect is encountered during the epoch in which they execute, they
will just be re-executed in the following epoch, once the defective
component has been disabled.

2.7 Assumptions and Limitations

While our approach to providing defect protection for a micropro-
cessor pipeline and on-chip memory system provides low cost with
very limited performance impact, it does have a a number of error
model assumptions and usage limitations which we detail below in
this subsection.

First, we assume a fairly treacherous error model for this work.
Specifically, we assume that devices can suffer from catastrophic
failures at any time, which can be successfully detected with our
online functional tests. In addition, transistors can suffer gradual
slowdown, for example from gate oxide wearout or negative-bias
temperature instability (NBTI), in which case transistors gradually
slow down until they do not meet frequency requirements. In this
case, the aggressive online testing clock will detect this condition
before it affects computation.

The primary limitation of this approach in its current form is
that it cannot be used to detect and correct transient faults. This is
because the design assumes that if a computation is corrupted, the
defect that led to that corruption is observable forever. We made
a design choice to implement defect tolerance without transient
error tolerance, as there are already emerging low-cost solutions in
this latter domain. Examples are techniques using time-borrowing
(e.g., Razor [2]) or time-redundancy (e.g., microarchitecture-based

introspection [27]). Consequently, any cost-competitive technique
to correct permanent silicon defects must be either i) a single
low-cost technology that corrects both defects and soft errors, or
ii) a technology complementary to existing soft error tolerance
techniques with comparably low cost. Our approach targets this
second group. In addition, to our knowledge, no solution is yet
available in the former one.

Finally, the use of our approach places a few restrictions on
the pipeline and on-chip cache organizations. In particular, the
approach of disabling defective functional units requires multiple
units of each class, otherwise, a single defect in a critical non-
replicated unit could render the processor broken. Given the abun-
dance of resources in most modern ILP processors, this limitation
is not a significant drawback for most designs. Additionally, the
cache organization must be set-associative to accommodate both
speculative and non-speculative state.

3. Experimental Evaluation

In this section we present a detailed physical design of a 4-wide
VLIW processor including instruction and data cache and enhanced
with our technology. We analyze the performance of the design, us-
ing both circuit timing simulation and architectural simulation and
gauge the impacts of defect protection, both during normal opera-
tion and after a component has been disabled. Finally, we examine
the cost of the defect protection technology by measuring area over-
head of the testing logic (e.g., vector generation and checkers). We
also evaluate the coverage of our approach, i.e., what fraction of
defects randomly placed are protected, by carefully measuring the
portion of silicon area protected.

3.1 Experimental Framework

Below we detail the infrastructure used for our studies.

Circuit-Level Evaluation: The 4-wide VLIW prototype was
specified in Verilog, and synthesized for minimum delay using Syn-
opsys Design Compiler. This produces a structural Verilog netlist
of the processor mapped to Artisan standard cell logic using the
TSMC 0.18um fabrication technology. The design was then placed
and routed using Cadence Sedsm, which in turn yields a physical
design with wire capacitances and individual component areas. Fi-
nally, we back annotated the design to obtain a more accurate delay
profile, and simulated it with Synposys’ PrimeTime to verify its
timing and functional correctness.

We verified, for each component and test vector set, that all
stuck-at-0 and stuck-at-1 faults are detected. In general, test vector
sets were identified using carefully hand-selected vectors, or by
randomly cycling through random vector sets until a small group
of effective vectors was located. Test vector coverage is verified by
inserting a hard fault at each net of the design and then determining
if a change in the output is observable for the current input test
vector set. For a test vector set to provide full coverage, there must
be at least one vector that identifies a hard fault in all nets of the
design. Once the test vector set is identified, it is encoded into a
on-chip ROM storage unit, created using Synopsys design tools.

Architectural Evaluation was done using the Trimaran tool
set, a re-targetable compiler framework for VLIW/EPIC processors
[35], and the Dinero IV cache simulator [16]. The simulator was
configured to model the VLIW baseline configuration and memory
hierarchy as detailed in the following section. We chose to evalu-
ate our designs using benchmarks from SPECint2000, MediaBench
[21] and MiBench [14] benchmark suites. These benchmarks cover
a wide range of potential applications, including desktop applica-
tions, server workloads, and embedded codes.

Coverage Analysis: We implement coverage analysis by inject-
ing faults into a logic timing level simulation of the detailed VLIW
processor physical design. Since characterization of silicon defects



\e/

IF/ID ID/ EX/ MEM
stage o EX MEM wB
stage stage stage
DEC
i DEC ’

32KB pddress REGISTER
ddres: File MU

data

I - CACHE DEC

\E/

T

D - CACHE

=
-

T

4write/8read MU

=
-

4-wide 32-bit VLIW processor
ALU FUs: 2 units

Five stage pipeline: IF - ID - EX - MEM - WB
LSM FUs: 2 units L1 I-cache: 32KB - 4-way assoc.
(Load/Store/Multiply) L1 D-cache (WB): 32KB - 4-way assoc.
L1 miss penalty: 10 cycles

L2 unified cache (WB): 1MB - 8-way assoc.

ALU latency: 1 cycle LSM latency: 3 cycles
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in nanometer-sized technologies is still an open research problem
[12], we opted for a stuck-at-0 and stuck-at-1 fault model. Defects
are injected into a placed-and-routed implementation of the design.
Faults are assigned to gates and wires so that the probability of a
device X becoming defective pge fect is equal to: Paefect o Az * Az
where A, is the area of the device and )\, is the average estimated
activity of the device. As such, large devices with high activity rates
are most apt to failure, while small components or components with
little activity are at lower risk.

Baseline Architecture: Our baseline architecture, which we en-
hanced with our low-cost defect protection technology, is a 4-wide
VLIW architecture, with a 32-KByte instruction and data caches.
‘We chose this architecture for our evaluation because it represents a
mainstream embedded target, often used in applications where cost
and reliability are paramount concerns. An overview of the archi-
tecture and details of its components are shown in in Figure 5. The
baseline pipeline is a 4-wide VLIW processor with 32-bit fixed-
point datapaths. The instruction set of the processor is loosely based
on Alpha instruction set. Each VLIW instruction bundle is 128-bit
long, consisting of 4 independent 32-bit instructions. The processor
pipeline has five stages. The instruction fetch (IF) stage is respon-
sible for fetching the 128-bit VLIW instruction from the 32-KByte
instruction cache. The instruction decode (ID) stage decodes 4 in-
dependent instructions per cycle and fetches register operands from
a register file with 8 read ports and 4 write ports. The execute (EX)
stage performs arithmetic operations, multiplications, and address
generation. The memory (MEM) stage accesses the 32-KByte data
cache and main memory. Finally, the writeback (WB) stage retires
instruction results to the register file.

3.2 Testing Performance and Design Coverage

In this section we examine the cost of on-line testing. In particular,
we examine the bandwidth requirements for on-line testing each
component (i.e, number of vectors required to fully test a com-
ponent), the area costs of our test harnesses, and we compute the
overall design defect coverage.

On-line Testing Bandwidth Requirements: The bandwidth
requirements of testing are the number of vectors needed to fully
test components for stuck-at-0 and stuck-at-1 faults. Table 1 lists
the number of vectors to fully test each component, showing that
few vectors are required to test each unit. Considering that the
length of a computational epoch will typically be 1000’s of cycles,
it is quite promising that testing can be completed using only
occasional idle cycles. The caches are not listed in Table 1 because
the use of parity bits allow for the continuous detection of defects.

Test Harness Area Overheads and Design Coverage: The
addition of test vector ROMs, where test vectors are stored, plus

Component | Test vectors (or cycles)
ALU 20
MUL 55
Decoder 63
RegFile 128

Table 1. Test vectors. Number of test vectors to achieve 100%
coverage for stuck-at-0 and stuck-at-1 faults.

Design Total area | Checker area % of Protected % of
block (umz) (umz) tot. area | area (uml) tot. area

IF 131323 4523 3.4 118190 90.0

ID 278396 22776 8.2 237726 85.4

RF 2698213 133213 4.9 2501787 92.7

EX 2140100 375580 17.5 1740486 81.3

WB 394673 4763 1.2 250165 63.4

Overall Core 5642705 540855 9.6 4848354 85.9

I-cache 32KB 2037062 13012 0.6 1881416 92.4

D-cache 32KB 2047472 13012 0.6 1891826 92.4

Overall System | 9727239 566879 5.83 8621596 88.6

Table 2. Area costs of individual design components and of
the overall system. The table reports the total area of each design
block, the area dedicated to checkers, and the portion of the overall
area that is protected as a result of the specific solution.

the checkers and checkpointing infrastructure bears a cost on the
overall size of the design. Table 2 lists the total area of the defect
tolerant component (Total area), the defect protection infrastructure
area (Checker area), and the area that is covered by the test harness
(Protected area). The coverage of the component is also shown as
a percentage, this is the total fraction of the final design in which
a defect that occurs will be detected and repaired. This metric can
also be thought of as the probability that a defect in the component
would be detected, given a random occurrence of a defect.

As shown in Table 2, area overheads for defect protection are
quite modest, with most overheads less than 10%. The overheads
within the caches are even lower, less than 1% for the prototype.
Consequently, the overall overhead for defect protection is quite
low. Adding support for defect protection increased the total area
of the design by only 5.83%. The defect coverage is also quite
good, with most components in the 80 and 90 percentiles. The
overall coverage of the design, i.e., the total area of the final defect
tolerant design in which a defect could be detected and corrected, is
88.6%. In other words, 9 out of 10 randomly placed defects would
be detected and corrected by our prototype design.

Analysis of coverage results indicates a number of opportuni-
ties to improve coverage in future work, without significantly in-
creasing protection overheads. Examination of the design indicates
that currently 89% of the area is protected from defects. Conse-
quently, devising protection schemes for the remaining fraction of
the design, even if very expensive, would not incur a significant
area cost. The unprotected area of the design mainly consists of re-
sources that do not exhibit inherent redundancy in the design. Such
resources include interconnection and control logic. Currently, we
are developing techniques to provide defect tolerance for these re-
sources, such as system-level protection solutions, that periodically
check the resources. Based on our preliminary studies, we estimate
that such techniques will not contribute significantly to the total
area cost of the protection mechanism, while pushing the total pro-
tection coverage closer to 100%.

3.3 Run-time Performance

In this section we examine the impact of our defect protection
mechanism on the performance of programs running on the defect
tolerant prototype design. The primary source of potential slow-
down occurs when a computational epoch is too small (or the test-
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Figure 6. Performance degradation. The graph shows the performance of a variety of prototype processor pipelines that have been impaired
through reconfiguration. A configuration with Nn-ALU/M-LSM indicates that the prototype processor pipeline has n ALUs and m address

generation/multiplier units.

Benchmark | AVg. epoch Datall [ Avg.ALU [ Avg.LSM [ Avg.Dec. | Avg.reg.
size (cycles) missrate util. (%) util. (%) util. (%) rwicycle
175.vpr 50499 3.10 69.71 18.41 59.00 4.72
181.mcf 120936 3.54 36.89 10.70 67.00 5.36
197.parser 106380 2.10 54.22 19.71 52.25 4.18
256.bzip2 162508 8.88 5591 33.93 73.50 5.88
unepic 33604 17.16 68.70 14.29 55.50 4.44
epic 196211 6.60 72.80 8.28 29.25 2.34
mpeg2dec 1135142 0.59 55.81 54.55 46.25 3.70
pegwitdec 169617 10.42 62.15 45.06 62.50 5.00
pegwitenc 304310 12.81 69.09 42.19 63.75 5.10
FFT 23145 1.49 56.88 43.95 33.50 2.68
patricia 139952 1.19 55.20 37.69 57.75 4.62
gsort 1184756 2.55 20.08 18.74 32.25 2.58
Average 302254 5.87 56.45 28.96 52.71 4.22

Table 3. Epoch statistics for the baseline configuration. Listed
is the average epoch size in cycles along with L1 data cache miss
rates and statistics regarding the utilization of ALUs, L1 data cache
memory ports (LSM), decoders, and register file ports.

ing requirements too great) to allow testing to complete within the
time speculative state resources are exhausted.

Performance Impact of Defect Testing: Table 3 lists statis-
tics about computational epochs for a variety of programs while
running on the baseline VLIW processor with a 32 KByte 4-way
set-associate data cache and an eight entry fully associative volatile
victim cache. Listed is the average epoch size in cycles along with
the L1 data cache miss rate. Also shown are statistics regarding
the utilization of ALUs, L1 data cache memory ports (LSM), de-
coders, and register file ports. It is clear from this table that the
performance overhead of defect testing is quite low. For the pro-
gram with the shortest average epoch length (FFT), the number of
test cycles is at most 0.5% of the total number of cycles within the
epoch. For this program, even if we could not complete the testing
during idle cycles, the performance impact would be negligible. We
do not graph the performance impacts directly because there sim-
ply were none! All programs were able to complete testing within
each epoch without delaying the start of the next.

It should be noted that there is a useful correlation between
epoch length and average component utilization. For many of the
programs with short epoch lengths (e.g., FFT and unepic), there
are correspondingly low functional unit utilizations. This is to be
expected because a program with a short epoch length would have
a large amount of cache turnover, which in turn would lead to many
pipeline stalls and low functional unit utilization — and plenty of
time for defect testing. While programs with long epochs tend to
have higher component utilization, they do provide more time for

the test harness to complete its task. In addition, we examined the
effect of different cache geometries on average epoch size, and we
found that there is little performance impact for defect testing for a
wide range of cache geometries.

Performance Impact of Degraded Mode Execution: Once a
defect has been located, the processor must be reconfigured by dis-
abling the defective component. This reconfiguration will not al-
low as much parallelism as previously afforded in the unbroken
pipeline, resulting in a performance degradation. Figure 6 graphs
the performance of a variety of prototype processor pipelines that
have been impaired through reconfiguration. In the experiments, n-
ALU/M-LSM indicates that the experiment was run with n ALUSs
and m address generation units/multipliers. The number of re-
sources is varied from one to four. As shown in Figure 6, losing
an ALU in a 2ALU/2LSM machine configuration renders an av-
erage of 18% performance degradation. The average performance
degradation is limited to only 4% when losing an address gener-
ation/multiplier unit in the same machine configuration. Machine
configurations with more resources can exhibit even lower perfor-
mance degradation after being impaired through resource reconfig-
uration. For example, machine configurations with four and three
ALUs loosing one ALU results in an average performance degra-
dation of 3% and 8% respectively.

4, Related Work

To date, only a few efforts have explored techniques to provide de-
fect tolerance for microprocessor pipelines. In [29], the authors
propose to use hardware redundancy and reconfiguration to im-
prove yield and increase defect tolerance of future systems. The
paper suggests that hardware redundancy use should not be limited
only to memories but that inherent redundancy should be exploited
in both uni-processors and multi-processors. The authors identify
three primary types of redundancy that can be used in a system:
component level redundancy (replicated functional units etc.), ar-
ray redundancy (spare rows and columns in bit arrays), and dy-
namic queue redundancy (spare queue entries).

In [11], we explored the design space of defect-tolerant chip
multiprocessor switch designs and the resulting tradeoff between
defect tolerance and area overhead. We compared traditional de-
fect tolerant mechanisms such as triple modular redundancy and er-
ror corrections codes with domain-specific techniques that include
end-to-end error detection, resource sparing, and iterative diagno-



sis and reconfiguration and we concluded that such techniques are
more effective and that designs are attainable to tolerate a larger
number of defects with less overhead than traditional techniques.
Further, we studied the tradeoff between the area overhead and the
reliability provided for different granularities of applying the pro-
tection mechanisms and we proposed a technique for decomposing
the design into modest-sized clusters for providing higher reliabil-
ity with less area overhead.

In the NanoBox project [19], error detection and correction is
distributed at the lower levels of logic blocks, and a self-correcting
logic block consisting of a lookup table is proposed with appro-
priate error detection and correction entries. In order to provide
adequate fault tolerance triple modular redundancy and informa-
tion coding implementations of the NanoBox are used. However,
these approaches have unrealistically high area (49x-181x) and de-
lay (7x-8x) overheads over conventional implementations.

Both the Teramac [1] and the Phoenix [15] projects, proposed
the creation of an external circuitry fabricated from reliable devices
for periodically surveying the design and reconfiguring faulty parts.
However, periodic design checking has a high performance over-
head, and it is not scalable as the design size grows.

DIVA, an on-line checker component inserted into the retire-
ment stage of a microprocessor pipeline, fully validates all compu-
tation, communication, and control exercised in a complex micro-
processor core [36]. The approach unifies all forms of permanent
and transient faults, making it capable of correcting design faults,
transient errors (like those caused by natural radiation sources), and
even untestable silicon defects. As such, the design is capable of
tolerating silicon defects in the core processor. However, the DIVA
approach corrects each operation after it occurs, but no mechanism
is available for diagnosing problems and repairing the underlying
computation fabric.

In [9], the authors present (SRAS), a Self-Repairing Array
Structures hardware mechanism, for on-line repairing defected mi-
croprocessor array structures such as a reorder buffer and a branch
history table. The proposed mechanism detects faults by employ-
ing dedicated “check rows”. To achieve that, every time an entry is
written to the array structure, the same data is also written into a
check row. Subsequently, both locations are read and their values
are compared which effectively detects any defected rows in the
structure. In the proposed mechanism, when a faulty row is de-
tected, it gets remapped by using a level of indirection. For circular
access structures like the reorder buffer, this is achieved by map-
ping out the faulty rows, while for tabular structures like the branch
history table, accesses to faulty rows are redirected to spare rows.

In [10], a fault-tolerant microprocessor design is presented,
which exploits the existing redundancy in current microprocessors
for providing higher reliability through dynamic hardware recon-
figuration. The proposed microprocessor design uses DIVA check-
ers [36] for system-level error detection. The design also uses a
mechanism for diagnosing hard faults, through tracking the instruc-
tions core structure occupancy from decode until commit. After di-
agnosing a hard fault, the microprocessor deconfigures the faulty
part and continues operation at a gracefully degraded level of per-
formance. However, since the proposed technique was not evalu-
ated at the physical level (gate-level netlist) there are no clear esti-
mates of its area cost and fault coverage.

A number of recent research efforts have utilized microarchi-
tectural checkpointing techniques as a mechanism to recover from
transient faults. The basic approach is to provide continuous com-
putational checking, through redundant execution on idle resources
[27] or dual-modular redundancy (DMR) [32]. Once a computation
error is detected, the system is rolled back to the last state check-
point, after which the system will retry the computation. Because
of the sparseness of SER-related transient faults, it is likely that the

computation will complete successfully on the second attempt. This
earlier work does not discount the novelty of our paper, as our pa-
per corrects for hard silicon defects. Interestingly, these techniques
would likely be quite cost effective when employed in tandem as
both techniques rely on microarchitectural checkpointing to per-
form their correction.

In the context of online testing of processors, various concurrent
error detection schemes (CED) schemes have been proposed [24].
Most schemes incorporate a checker that compares the expected be-
havior with that of the unit under test. Duplication is the most com-
mon way used to detect defects, although some work has suggested
that a diverse implementation of logic is more robust than simple
duplication [24] as it offers protection against some common mode
failures. Another solution proposed in the direction of online test-
ing are Berger codes [5] which can detect all unidirectional errors,
and Bose-Lin codes [8] which can detect ¢ unidirectional errors
(known as t-EC). These codes are suitable for the reliability of sys-
tems that have large occurrence of one type of binary numbers.
However, it is non-trivial using these codes for online testing of
datapaths as they impose constraints on the way the logic block is
designed such that only unidirectional faults occur. Additionally,
parity prediction schemes have long been used for ensuring fault-
secure datapaths [26].

5. Conclusions

In this paper, we presented the BulletProof pipeline, which is the
first ultra low-cost defect protection mechanism for microproces-
sor pipelines and on-chip cache memories. The approach we take is
markedly different from previous techniques that utilize replicated
hardware to validate all computation. We instead use the more area
efficient approach of combining on-line testing with microarchi-
tectural checkpointing. A microarchitectural checkpointing mech-
anism creates speculative computational epochs during which dis-
tributed domain-specific on-line test techniques are used to verify
the integrity of the underlying hardware components. If at the end
of an epoch the hardware is determined to be correct, the specula-
tive computation of the epoch is allowed to commit. Otherwise, the
program state is rolled back to the beginning of the epoch, and the
defective component is disabled thereby allowing the processor to
continue correct execution in a degraded-performance mode.

We presented a detailed design of a prototype 4-wide VLIW
processor, and demonstrated that area overheads due to our defect
protection are quite small, with only a 5.8% increase in total area.
Moreover, the coverage of our approach was also quite good, with
89% of the total area of the prototype design effectively protected
against silicon defects. Additional simulations demonstrated that
sufficient idle pipeline time exists for all programs to allow on-
line defect testing to proceed concurrently with program execution,
with no perceivable impact on program performance. Additionally,
we examine the performance of prototype processors running with
disabled components in a degraded mode. When a 4-wide VLIW
has been impaired through resource reconfiguration after losing one
resource, the performance degradation ranges from 4% to 18%.

We feel that this paper makes a strong case for the use of on-line
testing and microarchitectural checkpointing to implement future
defect tolerant designs. The approach is both efficient, with high
coverage and low performance impacts, and also inexpensive, with
small area overheads.

Looking forward we are working hard to continue to reduce the
area overheads of our testing infrastructure while at the same time
improving coverage. We are examining techniques to further com-
press test vectors using carefully designed finite-state automatons.
In addition, we are developing techniques to provide low-cost de-
fect tolerance for control logic, which constitutes the bulk of the
portion of our prototype design that was not protected. We are also



examining the applicability of our approach to desktop and server
class microprocessors. Our early indications are that this technique
will perform equally well for desktop and server microprocessors,
as the checkpointing mechanism (and overheads) is unchanged, and
the online testing techniques are agnostic to the underlying compo-
nents such that infrastructure overheads stay low-cost for a wide
variety of hardware structures. Finally, there is significant oppor-
tunity to lower realized costs by utilizing the on-line testing sup-
port and microarchitectural checkpointing for other value-added
capabilities. For example, the on-line testing infrastructure could
be used to tune frequency and voltage to eliminate ambient tem-
perature and voltage margins [2]. Similarly, the microarchitectural
checkpoint mechanism could also be used to provide support for
transient fault tolerance or speculative shared memory access [20].
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