
ktefinement ‘1’ypes tor ML

Frank Pfenning

fp@cs.cmu.edu

Tim Freeman

tsf@cs.cmu.edu

School of Computer Science School of Computer Science

Carnegie Mellon University

Pittsburgh, Pennsylvania 15213-3890

Abstract

T$’e describe a refinement of ML’s type system allow-

ing the specification of recursively defined subtypes of

user-defined datatypes. The resulting system of rejirze-

meni f,ypes preserves desirable properties of ML such as

decidability of type inference, while at the same time

allowing more errors to be detected at compile-time.

The type system combines abstract interpretation with

ideas from the intersection type discipline, but remains

closely tied to ML in that refinement types are given

only to programs which are already well-typed in ML.

1 Introduction

Standard ML [MTH90] is a practical programming lan-

guage with higher-order functions, polymorphic types,

and a well-developed module system. It is a statically

typed language, which allows the compiler to detect

many kinds of errors at compile time, thus leading to

more reliable programs. Type inference is decidable and

every well-typed expression has a principal type, which

means that the programmer is free to omit type decla-

rations (almost) anywhere in a program.

In this paper we summarize the design of a system

of subtypes for ML which preserves the desirable prop-

erties listed above, while at the same time providing

for specification and inference of significantly more pre-

cise type information. We call the resulting types re-

finement types, as they can be thought of as refining

user-defined data types of ML. In particular, we do

not extend the language of programs for ML (only the

language of types) and, furthermore, we provide refined

type information only for programs which are already

Permission to copy without fee all or part of this material is granted

provided that the copies are not made or distributed for direct commercial

edvantage, the ACM copyright notice and the title of the publication and

its date appear, and notice is given that copying ia by permission of the

Association for Computing Machinery. To copy otherwise, or to

republish, requires a fee and/or specific permission.

@ 1991 ACM o-~9791-428-7/91 /ooo5/026~ooo$l .50

Carnegie Mellon University

Pittsburgh, Pennsylvania 15213-3890

well-typed in ML. In this preliminary report we only

deal with an extension of Mini-ML [CDDK86], but we

believe that the ideas described here can be further ex-

tended to the full Standard ML language.

To see the opportunity to improve ML’s type system,

consider the following function which returns the last

cons cell in a list:

datatype cr list = nil I cons of a * a list

fun lastcons (last as cons (hd, nil)) = last

I lastcons (cons (hd, tl)) = lastcons tl

We know that this function will be undefined when

called on an empty list, so we would like to obtain a

type error at compile-time when last cons is called with

an argument of nil. Using refinement types this can be

achieved, thus preventing runtime errors which could be

caught at compile-time. Similarly, we would like to be

able to write code such as

case lastcons y of

cons(x, nil) => print x

without getting a compiler warning. However, the ML

type system does not distinguish singleton lists from

lists in general, so when compiling this case statement

ML compilers. will issue a warning because it does not

handle all possible forms of lists. Here, refinement types

allow us to eliminate unreachable cases.

Attempting to take such refined type information into

account at compile time can very quickly lead to un-

decidable problems. The key idea which allows us to

circumvent undecidability is that subtype distinctions

(such as singleton lists as a subtype of arbitrary lists)

must be made explicitly by the programmer in the form

of recursive type declarations. In the example above,

vie can declare the refinement type of singleton lists as

datatype Q list = nil \ cons of a * a list

rectype a singleton = cons (a, nil)

This rectype declaration instructs the type checker to

distinguish singleton lists from other lists. The datatype

Proceedings of the ACM SIGPLAN ’91 Conference on

Programming Language Deeign and Implementation.
Toronto, Ontario, Canada, June 26-28, 1991.

268

http://crossmark.crossref.org/dialog/?doi=10.1145%2F113445.113468&domain=pdf&date_stamp=1991-05-01

constructor names cons and nil in the right-hand side

of the rect ype declaration stand for subtypes which

one can think of as subsets. At any type cr the type

expression nil can be interpreted as the set {nil} and

cons (x, y) stands for {1 I 1 = cons(z, y) A z c X A y c

Y}.

We can think of the refinement type inference al-

gorithm as performing abstract interpretation over a

programmer-specified finite lattice of refinements of

each ML type. Finiteness is important, since it is nec-

essary for the decidability of refinement type inference

in our system. Since type inference can only know

that a list has one element if its tail is nil, it also needs

to create a type for the empty list; suppose the name

of this type is ?nil. With this notation our abstract

interpretation works over the following lattice:

a list

a singleton V ~ ?nil

/\
a singleton a ?nil

\/
-L

To perform the abstract interpretation, the type sys-

tem needs to know the behavior of datatype construc-

tors on these abstract domains. This can be expressed

through refinement types given to each constructor. For

example, cons applied to anything of type a and nil

will return a singleton list:

cons : (a * a ?nil) --+ 0 singleton

The constructor cons also has other types, such as:

cons : (a* a singleton) -+ a list

cons : (a* a list) ~ CYlist

In our refinement type system, we express the principal

type for cons by using the intersection operator “A” to

combine all these types, resulting in:

cons : (a* a ?nil) + a singleton A

(CY* cr singleton) -+ @ list A

(CY * a list) + a list

This type for cons can be generated automatically from

the rectype declaration for singleton above.

We borrow the operator A from the intersection type

discipline [RDR88], though we use it in a very restricted

way here (we can only intersect types which are refine-

ments of the same ML type). Type inference for inter-

section types, however, is in general undecidable. Thus,

for them to be useful in a programming language, some

explicit type annotations are required, as, for exam-

ple, in Forsythe [Rey88]. Here we avoid explicit typing,

while still retaining decidability, by allowing only the in-

tersection of types which are subtypes of a common ML

type. It is also this restriction which makes the combi-

nation of polymorphism and intersection types simple

and direct (see [Pie89] for an investigation in a more

general context).

As we will see later, we also require a form of union

types so we can assign more accurate types to case

statements. The inspiration for this and for the subtyp-

ing rules for function types (sketched in Section 4) are

due to Benjamin Pierce [Pie90].

In many examples, subtypes which could be specified

explicitly as refinement types are implicit in current ML

programs. For example, when we consider bitstrings to

represent natural numbers, we have in mind a “stan-

dard form” of representation without leading zeros, and

we would like to guarantee that functions such as ad-

dition and multiplication return standard forms when

given standard forms. As another example, consider the

representation of terms in a ~-calculus. Some natural

manipulations of these terms will only work on terms

in head normal form—a property which can easily be

described via a refinement type.

Thus, using refinement types, the programmer is en-

couraged to make explicit the distinctions which cur-

rently must remain implicit or informal in code com-

ments (such as standard form or head normal form in

the examples above). Moreover, type errors can be de-

scribed in a meaningful way if the type checker deals

with the same quantities that the programmer under-

stands. Thus, refinement types can increase the benefits

of compile-time type checking and inference as already

present in ML, without forcing the programmer to take

advantage of them (any legal ML program continues to

be legal if no refinements are specified). Finally, the

fact that we tightly control the lattices making up the

abstract domains makes type inference more practical

and efficient.

Two examples of subtypes which cannot be speci-

fied as refinement types in our system are lists with-

out repeated elements (to efficiently represent sets), and

closed terms in a A-calculus. Intuitively, this is because

these sets cannot be described by regular expressions.

In fact, our rect ype declarations (with the proper re-

strictions, see Section 3) have a close connection to reg-

ular expressions since our declarations specify so-called

regular tree sets for which many well-understood algo-

rithms exist [G S84]. Regular tree sets have also shown

themselves to be useful in the context of typed logic

programming [Mis84, YFS91].

One interesting aspect of our proposal is that it

269

merges two views which are traditionally considered

as opposites: should recursive types be generative (as

the ML datatype construct), or should they be non-

generative (as, for example, in Quest [Car89] in func-

tional programming or in typed HiLog [YFS91] in logic

programming). Our conclusion is that generative types

should be the principal notion, but that non-generative

recursively defined subtypes can make a type system sig-

nificantly more powerful and useful.

The remainder of the paper is organized as follows.

In Section 2 we introduce the syntax of our language,

following the presentation of Mini-ML [cDDK86]. In

Section 3 we show how recursive refinement type decla-

rations can be used to generate finite lattices defining

the domain of abstract interpretation for type inference,

These lattices of values induce subtype relationships on

the function types, as we describe in Section 4. Poly-

morphism in ML requires a similar polymorphism for

refinement types which we discuss in Section 5. We

then present the type inference algorithm in form of

some inference rules in Section 6. Finally, in Section 7

we discuss some aspects of implementation and future

work.

2 The Language

In this section we define our extension to the language

of types as present in ML and give some examples. The

next three sections will then discuss the refinement type

system and the problems of type checking and inference

in more detail.

While we hope to eventually be able to extend all of

Standard ML by rectype declarations, we confine our-

selves in this paper to the functional portion of Standard

ML. Moreover, for the purpose of this presentation we

ignore product types and multi- arity type constructors.

They can be added to the language in a straightforward

way and, moreover, are not crucial in this context since

functions with multiple arguments can be curried. In

order to keep the examples in this paper intuitive and

close to ML, we generally follow ML syntax. In order to

give a manageable description of type inference in Sec-

tion 6 we restrict ourselves there to a much simpler ex-

pression language which can be thought of as the result

of “desugaring” the ML syntax used in the examples.

2.1 Rectype Declarations

The grammar for rectype declarations is:

rectype ::=

rectypedecl ::=

recursively :;=

rectype rectypedecl

< mltyvar > reftyname = recursively

< and rectypedecl >

(recwsivety / recursively) I

mlty --+ recursively I

constructor recursivetyseq I mltyvar I

< mltyvar > refiyname

In this grammar (and other ones appearing in this pa-

per), optional items are enclosed in “< >“, and the dif-

ferent productions for each nonterminal are separated

by “1”. Note that the first occurrence of “I” in this

grammar is part of the object language. The suffix

seq added to a syntactic class name means either a

nonempty, parenthesized list of elements of that syn-

tactic class, or empty.

The syntactic classes used by the above grammar that

are not defined there are

constructor

mlty

mltyname

mltyvar

Each rectype

Constructors, such as cons.

ML types, such as a list or int.

Datatype constructors, such as

list or bool.

ML type variables, such as a.

declaration must be consistent with

the ML datatype it refines. For example, with

the usual definition of lists, we could not accept

rectype a bad = nil(nil) because nil does not take

arguments.

To limit interactions of refinements types with poly-

morphism, we also require that when defining a recur-

sive type, any uses of it within its own definition must

have the same type variable argument that it has on the

left hand side of the declaration.

2.2 Refinement Types

General refinement types can be built up from the usual

ML types and from recursive types by the ML type con-

structor ~{--+”, and the new operations of intersection

“A” and union “V”. Intuitively, an expression has type

u A T if it has both type c and type ~. Similarly, an ex-

pression has type CTVr if it has type CTor type r, though

we may not be able to predict at compile time which one

(such union types arise, for example, from the different

branches of an if expression). Refinement types will be

inferred and printed by type inference, or can be used by

the programmer to annotate expressions, and, in an ex-

tension beyond the scope of this paper, they can appear

in signatures.

270

The grammar for refinement types is:

refly ::= refly A refty I refly V

refty+rej%ylll

< refty > mltyname 1

< refty > reftyname]

reftyvar :: mltyvar

The syntactic classes used in this grammar that are not

defined there are

reflyvar Refinement type variables, written as

TCY, T~, etC.

reftyname Refinements of datatypes, like singleton.

Every refinement type variable is bounded by an ML

type variable and thus ranges only over the refinements

of an ML type. This is necessary to prevent undesirable

interactions between polymorphism and subtypes (see

Section 5 for further discussion). In contexts where the

bound is obvious, we omit it.

Refinement type names are either declared explicitly

(via rectype) or implicitly (as ?nil was in the example

in the intro dtiction). See Section 3 for a discussion.

2.3 An Example

As a simple example consider the representation of nat-

ural numbers in binary, as in the ordinary ML datatype

declaration

datatype bitstr =

e I z of bitstr I o of bitstr

Here the constructor e makes an empty bitstring, z ap-

pends a zero as the least significant digit, and o appends

a one as the least significant digit.

When we write functions to manipulate bitstrings, we

would like to guarantee at compile time that a bitstring

does not have a zero in the most significant place. We

call this “standard form” (st d). The declaration of this

refinement type requites that we also introduce the type

of positive natural numbers in standard form (st dpos):

rectype std = e I stdpos

and stdpos = o(e) I z(stdpos) I o(stdpos)

For example, the bitstring z (e) represents zero, but is

not in standard form. The bitstring z (o (e)) represents

two, and is iti standard form.

Using this rectype declaration, our type checking al-

gorithm can check that

funaddem=m

Iaddne=n

i add (z n) (z m) = z(add n m)

I add (o n) (z m) = o(add n m)

i add (z n) (o m) = o(add n m)

I add (o n) (o m) = z(add (add (o e) n) m)

maps standard form bitstrings to standard form bit-

strings. More generally, it can infer that add has this

somewhat unwieldy type:

f’e + ye + ?e A
?e - stdpos 4 stdpos A
ye * std * std A
?e -+ bitstr --+ bitstr A

stdpos --+ ?e -+ stdpos A

stdpos -+ stdpos 4 stdpos A

stdpos ---+ std - stdpos A

stdpos * bitstr d bitstr A

std + ye 4 std A

std + stdpos ~ stdpos A

std -+ std + std A

std -+ bitstr - bitstx A

bitstr --+ ?e --i bitstr A

bitstr + stdpos --+ bitstr A

bitstr * std --+ bitstr A

bitstr -i bitstr --+ bitstr

In this type we use ?e to represent the type containing

just the empty bitstring. This type has one conjunct

for each nonempty refinement type we can assign to the

arguments of add.

3 From Rectype Declarations to

Datatype Lattices

A datatype declaration in ML introduces datatype con-

structors and declares their type. For the purpose of

this exposition, we also assume that it implicitly de-

fines a new constant CASE_ datatype which can be used

to simultaneously discriminate and destruct elements

of the datatype (see example below), A recursive type

declaration for a given datatype introduces at least one

refinement type name, but many other refinement types

can be formed by intersection, union, function type for-

mation, etc.

Many of these refinement types will be equivalent,

For example, a A IT k always equivalent to a, and, in

the example above, ?e V stdpos is the same as std.

A type checking or inference algorithm needs to under-

stand these equivalences, and we will introduce the nec-

essary structure in two steps. In this section we show

how a rectype declaration induces a lattice of subtypes

of a given ML datatype with the operations of A and V,

understood as meet and join. In the following section we

show how this information can be lifted to refinement

types including the function type constructor -+.

Our rectype declarations are essentially regular tree

grammars and they almost define regular tree sets as

discussed in Thee Automata by G6cseg and Steinby

[GS84]. The only change is that we have functions in

271

our trees, but since we require our rectype declarations

to have an ML type on the left-hand side of any ---+, this

extension turns out to be benign. We do not know of

any useful examples which would be ruled out by this re-

striction. Algorithms for dealing with such declarations

in Subtyping Recursive Types by Amadio and Cardelli

[AC90] do not appear to apply directly to our situation.

Let us return to the declaration of bitstrings in stan-

dard form discussed above.

datatype bitstr =

e I z of bitstr I o of bitstr

rectype std = e I stdpos

and stdpos = o(e) I z(stdpos) I o(stdpos)

Because weneed to assign arefinement type to each con-

structor, we need to consider a lattice with more types

than just std and stdpos. For instance, this rectype

declaration requires the constructor o to map stdpos’s

to stdpos’s, and e’s to stdpos’s. We can only express

this as a refinement type if we create a refinement type

containing just e, which we shall call ?e. After creating

this new refinement type, we can give this type for O:

0 : ?e -) stdpos A stdpos + stdpos

Thus the refinement types of bitstr are bitstr, std,

stdpos, and ?e. Using straightforward generalizations

of the algorithms for manipulating regular tree gram-

mars, we can infer that these four refinement types (plus

1) are closed under intersection and union, and they

form this lattice:

bitstr

std

/
\

\
?e stdpos

In general, closure under intersection and union may

add many new elements to the lattice—a fact which,

in an implementation, must be addressed through com-

pact representation methods such as those described in

“Graph-Based Algorithms for Boolean Function Manip-

ulation” by Bryant [Bry86].

The types for the constructors in this example are

calculated as

e:?e

o: ?e~ S%dpos ~ stdpos ~ stdpos

z : stdpos - stdpos

Note that, even though e also has type std, we do not

need to write e : ?e A std, since ?e A std is equivalent

to ?e.

The case statements for elements of the datatype

bitstr will look like

case E of

e => El

\ o(m) => E2

I z(m) => E3

which we will treat as the following function call:

CASE-bitstr E

(fn () => El)

(fn (m) => E2)

(fn (m) => E3)

The algorithm which analyzes recursive type decla-

rations assigns the type appearing in Figure 1 to

CASE_bitstr. For an explanation of the type quanti-

fiers in this figure, see Section 5.

4 From Datatype Lattices to

Function Types

The datatype lattice is a representation of the subtype

relationship and the behavior of intersection and union

of refinements of an ML datatype. Next we need to

consider function types. More specifically we will deal

with how the subtype relationships, intersection, and

union behave on the more general class of refinement

types including “--+”.

The basic principle underlying most subtype systems

allowing higher-order functions is that of ‘(contravari-

ance”: al -i 71 ~ uz 7T2 if~l ~ T2 and uz < u1. If we

think of crl + rl as a set of functions and ~ as subset,

we can see why: a function accepting al as type-correct

input can certainly be given any element from a subtype

of al, and since it then produces a value in T1 this value

will also be in 72. We say the type constructor “-” is

contra~ariant in its first argument and covariant in its

second argument,

Defined datatype constructors may also be covariant

or contravariant in their arguments, and our subtyping

algorithm keeps track of this information in order to

determine, for example, that stdpos list is a subtype

of std list. In the rare case that the constructors for a

datatype are neither all covariant nor all contravariant

no useful subtyping information can be calculated by

our algorithm. An example of this is the declaration

datatype a mixed = Cl of a I C2 of a + bool

For defining subtype relations arising fiut of these ba-

sic observations and for the presentation of the type

272

CASE-bit str:Vcr.VTcrl ::a.yrcrz ::cY. vTcr3 ::a.
?e + (unit --+ mI) -+ (bitstr + Ta2) -+ (bitstr+ 7w3) +~al A

stdpos-+ (unit -i ml) + ((?e V stdpos)--+ mz) + (stdpos+ 7ZK3) -+(?w2 V 7YY3) A

std -+ (unit + mul) + ((?e V stdpos)--+ 7c22) + (stdpos+ 7w3) +(?wl V rcr2 V TIa3) A

bitstr--i (unit + ml) --i (bitstr --+ m22) -+ (bitstr-+ 7w3) +(?wl V mz V mx3)

Figure 1: Type for CASE_bitstr.

inference algorithm in the next section, it is convenient

to convert types to a normal form. We can do this

by rewriting the type according to the following rewrite

rules for any refinement types p, C, and r:

pA(a VT)a(PAa)V (PAT)

(P Va)+T5(p+T)A(a+r)

Thinking of function types as sets of functions provides

some insights about why these are valid transforma-

tions. Also, for any refinements of data types p, a, and

r such that p = u V T, we rewrite p to u V r. After we

apply these rewrites, the refinement types will fit the

grammar

unf ::= inf I unf V unf

inf ::= < unf > reftyname I inf A inf \

inf -+ unf I reftyvar :: mlt yvar

where unf stands for union normal form and inf for

intersection normal form.

We now define the subtype ordering u < T for unf

refinement types c and T where u and r are refinements

of the same ML type. We have two cases, either their

common ML type is a datatype or it is a function type.

If the bounding ML type is a datatype, the subtype

relationship is determined by the partial order of the

lattice.

If the bounding ML type is a function type, the unf

refinement types have the form of a union of inf refine-

ment types Ui and a;, and we have the rule

rlvuzv. ..vun<;vo v;-; v.. .vr~
if for each u; there is a U; such that Ui < uj.

which leaves us with the problem of comparing inf re-

finements of functional types.

Given inf refinements for a function and its argument,

we can compute a refinement type for the value of the

function application: if the function has type u = (pl --+

Tl)A(p24n) A... A (pm -+ T.) and the argument
has type p, then the type of their application (written

apptype(~, P)) is

{ilP<P.}

where A stands for intersection of a set of types.

We can use this to solve the subtype problem for inf

refinements of functional types. Suppose we are trying

to solve the problem u < cr’, where

C7=(p1+ T1)A(p2+T2)A. .. A(pn+Tn),

and

a’=(p; +T;)A(p\+Tj)A. .. A(P~+T~).

In this case we define a < u’ to mean, for all p h

{Pl , P2 >pn. P{, Pj, .4.1 PA},

apptype(a, p) < apptype(cr’, p).

The correctness of this definition in general is implied

by the theorem stated in Section 6: if an expression of

type a evaluates to a value v, then v will also have type

u. On the other hand, it is quite possible that more

subtype relationships hold than can be established with

the rules above, which means that the types inferred for

higher-order functions may not be as accurate as pos-

sible. This is another case where decidability must be

balanced with the desire for accuracy in type checking.

5 Polymorphism

The interaction between polymorphism and subtypes

is potentially problematic, The main mechanism con-

sidered so far in the literature is bounded quantifica-

tion [CCH089, CW85], where the domain of a type

variable is restricted to range over subtypes of a given

bound. In this paper we continue the separation of the

ML types and refinement types and obtain a restricted

form of bounded quantification. We define refinement

type schemes by the following grammar:

refly scheme ::= inf \

Va . reftyscheme I

Vra :: a . refly scheme

The first case in this grammar refers to types in inter-

section normal form, which we have already discussed.

The second case is quantification over an ML type

variable, which is very similar to quantification over ML

273

type variables as used in ML. This can be regarded as an

infinite intersection; for instance, the identity function

valid =fnx=>x

has the ML type

vCY. CY--+a’

which we can loosely regard as the intersection of

for all ML types a, although in practice we do not rep-

resent ML types this way.

The third case quantifies over a refinement type vari-

able, and we also regard this as an intersection. How-

ever, once we instantiate the ML type variable with an

ML type, there are only finitely many refinements of

that ML type, so there are only finitely many types

in the intersection. When we instantiate a refinement

type, we perform this expansion. For example, the re-

finement type for the identity function id is

‘d(Y, VI’CY ;: cl!. TCY+ Tcl

If we instantiate a to stdpos and instantiate the refine-

ment type quantifier, we get the refinement type

bitstr--+bitstr A

stdpos--+stdpos A

stcl + std A
?e+?c, A

14 J-

With this notion of instantiation, the refinements of

ML type variables are exactly the refinement type vari-

ables. This notion is already implicit in the earlier

examples: a singleton is a refinement of a list, but

neither bool singleton nor std list are refinements

of CY list. A relaxation of this notion could quickly

lead to undecidable type inference problems, as in the

Milner-Mycroft calculus [KTU89, MYC84]. On the other

hand, this restriction entails some loss of accuracy in

determining refinement type information in some cases.

Refinement type schemes are considered during type in-

ference when analyzing a let expression and when in-

stantiating the type of a polymorphic variable or con-

stant.

6 The Type Inference Algo-

rit hm

This section will present a type inference algorithm for

refinement types as a deductive system. Just as the de-

ductive system for ML types leads to type inference by

unification, our deductive system, too, can be given an

operational interpretation which first performs an ML

type inference pass and then a refinement type inference

pass using abstract interpretation. Space unfortunately

does not permit a more detailed discussion of the infer-

ence rules or their operational reading.

We infer refinement types for the program by infer-

ence system in Figure 2. The characters are used as

follows in the inference rules:

e, e’

x> f

c

D

L

r

s

are expressions,

are ML variables,

is a refinement type in inf,

is a refinement type in unf,

is an ML type,

is an environment mapping variables to

refinement type schemes, and

is a refinement type scheme.

The grammar for the language fragment used in this

section is

eql ::= variabte \ ezp ezp]

A variable, ezp I

exp : Tefty I

let variable = ezp in ezp I

fix variable. exp

The notation 17 \ e : D :: L means that in the type

environment I’, the expression e has refinement type D

which is a refinement of the ML type L.

If we take this inference system and eliminate all of

the refinement types, leaving just the expressions and

the ML types, we get a conventional inference system

for Mini-ML.

The rules in Figure 2 use the auxiliary judgment

LOOP to compute successive approximations to the re-

finement type of recursive functions until a fixpoint is

reached. This is guaranteed to terminate because there

are only finitely many refinement types below a given

ML type (which our algorithm computes first). The ex-

pression “close(I’, C :: L)” generalizes over the free type

variables in (7 and L which are not free in I’ and returns

the resulting refinement type scheme,

Now we shall state a theorem that the typing rules

stated above are sound, This is sometimes paraphrased

as welt-typed programs cannot go wrong, that is, if an

expression has refinement type u, and evaluation of that

expression terminates, then the value of the expression

will also have the type u. The operational semantics is

very close to the one given for Mini-ML [C DDK86] and

we omit it here.

Theorem: For all valid type environments I’ and ex-

pressions e, if e evaluates to v and r + e : D :: L then

171-v: D’::Lforsome D’ <D.

274

INST:I’!-a:C::.L if z : S is in 17 and C :: L is an instance of S.

I’, z: C{:: LIFe:.Di::L2
ABS:

for each Ci that is a refinement of L1

I’1-k. e : Ai(Ci + Di) :: L1 + .L2

I’t-el:Vi Ci::L1
LET:

(1’, z : (close (17, Ci :: Ll)) k e2 : Di :: L2) for each Ci

I’t-let z=eline2:Vi Di::L2

17ke:D::L
RESTRICT:

D<D’

r 1- (e: D’) : D’ :: L

FIX1:
I’1- LOOP(~, ly. e, l,L)

~1x2: I’ k LOOP(~, ~y. e, Cl, L) I’, f: C1::Lk Jy. e: C2::L

I’ 1- LOOP(f, Au. e, C2, L)

~1x3: 17 t- LOOP(f, ~Y. e, C,L) l?, f: C:: LkAy. e: C::L

I’1-fixf. Ay. e: C::L

Figure 2: Rules for type inference system

We omit the proof, which proceeds by induction

the structure of the definition of the “evaluates to”

lation.

7 Future Work

on

re-

We currently have a naive prototype implementation

of the type inference algorithm as shown above. This

prototype takes the lattice for each datatype, the types

for the constructors, and the types for the case state-

ments as inputs. The main implementation problem ap-

pears to be to deal efficiently with refinements of types

of higher-order functions, as the number of such refine-

ment types can become large very quickly. For example,

since there are five refinements of the ML type stdpos

used in the examples earlier, there are 55 functions map-

ping refinement types of stdpos to refinement types of

stdpos, A naive representation of the refinement types

of stdpos + stdpos would list all of these functions.

Compact representations of refinement types, for exam-

ple through an appropriate generalization of Binary De-

cision Diagrams [Bry86, BCM+ 90] to deal with function

types, seem promising. Since finding a type error in a

program with refinement types will require looking at

representations of refinement types, we will have to find

a reasonably concise way to print these types.

The more refinements we consider ofa given datatype,

the slower type checking will be. This problem is al-

leviated when more distinct datatype declarations are

made even if the datatypes present would be sufficient

to encode the information we need to represent. In ML,

this technique is good programming style in any case, as

it enhances program readability and allows more type

errors to be detected at compile-time. We also need

to consider embedded refinement type declarations (as

in let rectype . . . in . . . end) which naturally ex-

tends ML datatype declarations and also limits the vis-

ibility of refinements, thus cutting down on the size of

the refinement type lattice.

The refinement types proposed here address only a

subset of Standard ML [MTH90]. We need to carefully

examine the interaction of refinement types with other

features of the ML type system, such as imperative type

variables and equality types, since we would like to ex-

tend our proposal to encompass all of Standard ML.

Although Standard ML does not provide primitives for

manipulating the current continuation, some dialects

of ML do, so we would like to be able to deal with

callcc also. Despite some potential problems which

may lead to a loss of accuracy of refinement type in-

formation across modules, refinement types open the

possibility of communicating some information about

275

functions between modules without violating the pri-

vacy of the modules. This appears to be much more

difficult, if not impossible, in approaches using general

set constraints as, for example, in [HJ 90], or abstract

interpretation which is not tied to the type system.

We also would like to explore the possibility of refin-

ing predefine types, such as int, which are not given

as dat at ype declarations. There are no conceptual dif-

ficulties as long as the appropriate subtype structure

forms a lattice. For example, we could distinguish the

positive integers, the negative integers, and zero by giv-

ing appropriate types to constants appearing in the pro-

gram and to the arithmetic operators. We would have to

devise some notation for doing this other than rectype

declarations because we do not have constructors for the

integers.

In some cases the refinement type information can be

used for program optimization during compilation. We

would like to explore this possibility further, though our

primary motivation remains static detection of program

errors which currently elude the ML type-checker.

8 Acknowledgements

Thanks to Benjamin Pierce, Dave MacQueen, and John

Reynolds for discussions about refinement types; Ben-

jamin Pierce, Nevin Heintze, and the anonymous refer-

ees for proofreading this paper; and to John Reynolds

for his TeX macros to draw diagrams.

This research was supported by the Defense Advanced

Research Projects Agency (DOD) and monitored by

the Space and Naval Warfare Systems Command under

Contract NOO039-85-C-0163, ARPA Order No. 5167.

References

[AC90]

[BCM+90]

[Bry86]

Roberto M. Amadio and Luca Cardelli. Sub-

typing recursive types. Research Report 62,

Digital Systems Research Center, Palo Alto,

California, August 1990.

J. R. Burch, E. M. Clarke, K. L. McMil-

lan, D. L. Dill, and L. J. Hwang. Sym-

bolic model checking: 1020 states and be-

yond. In Proceedings of the Fifih Annual

IEEE Symposium on Logic in Computer

Science, pages 428-439, Philadelphia, PA,

June 1990. IEEE Computer Society Press.

Randal E. Bryant. Graph-based algorithms

for boolean function manipulation. IEEE

Transactions on Computers, C-35(8):677-

691, August 1986.

[Car89]

[CCH089]

[CDDK86~

[cw85]

[GS84]

[HJ90]

[KTU89]

[Mis84]

[MTH90]

[Myc84]

[Pie89]

Luca Cardelli. Typeful programming. Re-

search Report 45, Digital Equipment Corpo-

ration, Systems Research Center, Palo Alto,

California, February 1989.

Peter Canning, William Cook, Walter Hill,

and Walter Olthoff. F-bounded poly-

morphism for object-oriented programming.

In Functional Programming Languages and

Computer Architecture. ACM, 1989.

Dominique C16ment, Joelle Despeyroux,

Thierry Despeyroux, and Gilles Kahn. A

simple applicative language: Mini-ML. In

Proceedings of the 1986 Conference on LISP

and Functional Programming. ACM Press,

1986.

Luca Cardelli and Peter Wegner. On un-

derstanding types, data abstraction, and

polymorphism. ACM Computing Surveys,

17:471-522, 1985.

Ferenc G6cseg and Magnus Steinby. Tree

Automata. Akad&miai Kiad6, Budapest,

1984.

Nevin Heintze and Joxan Jaffar. A deci-

sion procedure for a class of set constraints.

In Proceedings of the Fifih .4nnual IEEE

Symposium on Logic in Computer Science,

Phzladeiphia. IEEE, June 1990.

A. J. Kfoury, J. Tiuryn, and P. Urzyczyn.

Type-checking in the presence of polymor-

phic recursion. To appear in TOPLAS, Oc-

tober 1989.

Prateek Mishra. Towards a theory of types

in Prolog. In International Symposium on

Logic Programming, pages 289-298. IEEE,

1984.

Robin Milner, Mads Tofte, and Robert

Harper. The Dejimtion of Standard ML.

MIT Press, Cambridge, Massachusetts,

1990.

Alan Mycroft. Polymorphic Type Schemes

and Recursive Definitions, pages 217–228.

International Symposium on Programming.

Springer-1’erlag, New York, 1984. LNCS

167.

Benjamin Pierce. A decision procedure for

the subtype relation on intersection types

with bounded variables. Technical Report

276

CMU-CS-89-169, School of Computer Sci-

ence, Carnegie Mellon University, Pitts-

burgh, Pennsylvania, September 1989.

[Pie90] Benjamin C, Pierce. Preliminary investi-

gation of a calculus with intersection and

union types. Unpublished manuscript, June

1990.

[RDR88] Simone Ronchi Della Rocca. Principal type

scheme and unification for intersection type

discipline. Theoretical Computer Science,

59:181-209, 1988.

[Rey88] John C. Reynolds. Preliminary design of the

programming language Forsythe, Technical

Report CMU-CS-88-159, Carnegie Mellon

University, Pittsburgh, Pennsylvania, June

1988.

[YFS91] Eyal Yardeni, Thorn Fruehwirth, and Ehud

Shapiro. Polymorphically typed logic pro-

grams. In Frank Pfenning, editor, Types in

Logic Programming. MIT Press, Cambridge,

Massachusetts, 1991. To appear.

277

