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Electronic Structure of Multilayer Graphene

Hongki Min
∗) and Allan H. MacDonald

Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA

We study the electronic structure of multilayer graphene using a π-orbital continuum
model with nearest-neighbor intralayer and interlayer tunneling. Using degenerate state
perturbation theory, we show that the low-energy electronic structure of arbitrarily stacked
graphene multilayers consists of chiral pseudospin doublets with a conserved chirality sum.

§1. Introduction

The recent explosion1), 2) of research on the electronic properties of single layer
and stacked multilayer graphene sheets has been driven by advances in material
preparation methods,3), 4) by the unusual5), 6), 7) electronic properties of these mate-
rials including unusual quantum Hall effects,8), 9) and by hopes that these elegantly
tunable systems might be useful electronic materials.

In this paper,10) we study the electronic structure of arbitrarily stacked multi-
layer graphene using a π-orbital continuum model with only near-neighbor interac-
tions, analyzing its low-energy spectrum using degenerate state perturbation theory.
Here we focus solely on aligned multilayer graphene without rotational stacking
faults.11) Interestingly, we find that the low-energy effective theory of multilayer
graphene is always described by a set of chiral pseudospin doublets with a conserved
chirality sum. We discuss implications of this finding for the quantum Hall effect in
multilayer graphene.

§2. π-orbital continuum model

We consider the π-orbital continuum model for N -layer graphene Hamiltonian
which describes bands near the hexagonal corners of the triangular lattice Brillouin
zone, the K and K ′ points:

H =
∑

p

Ψ †
pH(p)Ψp, (2.1)

where Ψp = (c1,α,p, c1,β,p, · · · , cN,α,p, cN,β,p) and cl,µ,p is an electron annihilation
operator for layer l = 1, · · · , N , sublattice µ = α, β and momentum p measured
from K or K ′ point.

The simplest model for a multilayer graphene system allows only nearest-neighbor
intralayer hopping t and the nearest-neighbor interlayer hopping t⊥. The in-plane

Fermi velocity v is related with t by ~v
a =

√
3
2 t, where a = 2.46 Å is a lattice constant

of monolayer graphene. Although this model is not fully realistic, some aspects of
the electronic structure can be understood by fully analyzing the properties of this
simplified model first and then considering corrections.

∗) E-mail: hongki@physics.utexas.edu
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Fig. 1. (Color online) (a) Energetically favored stacking arrangements for graphene sheets. The

honeycomb lattice of a single sheet has two triangular sublattices, labeled by α and β. Given

a starting graphene sheet, the honeycomb lattice for the next layer is usually positioned by

displacing either α or β sublattice carbon atoms along a honeycomb edge. There are therefore

in three distinct two-dimensional (2D) sheets, labeled by A, B, and C. Representative α and β

sublattice positions in A, B, and C layers are identified in this illustration. It is also possible

to transform between layer types by rotating by ±60◦ about a carbon atom on one of the two

sublattices. (b) Each added layer cycles around this stacking triangle in either the right-handed

or the left-handed sense. Reversals of the sense of this rotation tend to increase the number

of low-energy pseudospin doublets ND. In graphite, Bernal (AB) stacking corresponds to a

reversal at every step and orthorhombic (ABC) stacking corresponds to no reversals.

2.1. Stacking diagrams

When one graphene layer is placed on another, it is energetically favorable12) for
the atoms of either α or β sublattices to be displaced along the honeycomb edges,
as illustrated in Fig. 1. This stacking rule implies the three distinct but equivalent
projections (labeled A, B, and C) of the three-dimensional structure’s honeycomb-
lattice layers onto the x̂-ŷ plane and 2N−2 distinct N -layer stack sequences. When
a B layer is placed on an A layer, a C layer on a B layer, or an A layer on a C layer,
the α sites of the upper layer are above the β sites of the lower layer and therefore
linked by the nearest interlayer neighbor π-orbital hopping amplitude t⊥. For the
corresponding anticyclic stacking choices (A on B, B on C, or C on A), it is the β
sites of the upper layer and the α sites of the lower layer that are linked. All distinct
N = 3, N = 4, and N = 5 layer stacks are illustrated in Fig. 2, in which we have
arbitrarily labeled the first two layers starting from the bottom as A and B.

2.2. Energy band structure

2.2.1. Preliminaries

Before analyzing energy spectrum of multilayer graphene, let us consider the
Hamiltonian of a one-band tight-binding model for a chain of length N with near-
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Fig. 2. (Color online) Stacking sequences and linkage diagrams for N = 3, 4, 5 layer stacks. The

low-energy band and Landau level structures of a graphene stacks with nearest-neighbor hopping

are readily read off these diagrams as explained in the text. Shaded ovals link α and β nearest

interlayer neighbors.

neighbor hopping parameter t⊥:

H =













0 t⊥ 0 0
t⊥ 0 t⊥ 0
0 t⊥ 0 t⊥ · · ·
0 0 t⊥ 0

· · ·













. (2.2)

This Hamiltonian is important for analyzing the role of interlayer hopping as we
explain below.

Let a = (a1, ..., aN ) be an eigenvector with an eigenvalue ε. Then the eigenvalue
problem reduces to the following difference equation

εan = t⊥(an−1 + an+1), (2.3)

with the boundary condition a0 = aN+1 = 0. Assuming an ∼ einθ, it can be shown
that13)

εr = 2 t⊥ cos θr,

ar =

√

2

N + 1
(sin θr, sin 2θr, · · · , sinNθr), (2.4)

where r = 1, 2, . . . , N is the chain eigenvalue index and θr = rπ/(N + 1). Note that
odd N chains have a zero-energy eigenstate with an eigenvector that has nonzero
amplitudes, constant in magnitude and alternating in sign, on the sublattice of the
chain ends.



4 H. Min and A. H. MacDonald

2.2.2. AA stacking

Although AA stacking is not energetically favorable, it is still interesting to
consider this arrangement for pedagogical purposes. In the case of AA stacking, the
Hamiltonian at K is given by

HAA(p) =





















0 vπ† t⊥ 0 0 0
vπ 0 0 t⊥ 0 0
t⊥ 0 0 vπ† t⊥ 0
0 t⊥ vπ 0 0 t⊥ · · ·
0 0 t⊥ 0 0 vπ†

0 0 0 t⊥ vπ 0
· · ·





















, (2.5)

where π = px + ipy.
As we now explain, the electronic structure of AA stacked N -layer graphene

can be thought of as consisting of separate 1D chains for each wavevector in the
2D triangular lattice Brillouin zone of a single graphene layer. For an eigenvector
(a1, b1, · · · , aN , bN ) with an eigenvalue ε and fixed 2D momentum, the difference
equations in this case are

εan = t⊥(an−1 + an+1) + vπ†bn,

εbn = t⊥(bn−1 + bn+1) + vπan, (2.6)

with the boundary condition a0 = aN+1 = b0 = bN+1 = 0.
Let cn = an + bne

−iφ and dn = an − bne
−iφ where φ = tan−1(py/px), then

(ε− v|p|)cn = t⊥(cn−1 + cn+1),

(ε+ v|p|)dn = t⊥(dn−1 + dn+1), (2.7)

with the same boundary condition c0 = cN+1 = d0 = dN+1 = 0. Thus the energy
spectrum is given by

ε±r,p = ±v|p|+ 2t⊥ cos

(

rπ

N + 1

)

, (2.8)

where r = 1, 2, · · · , N . Note that for odd N , the r = (N + 1)/2 mode provides two
zero-energy states at p = 0.

Figure 3 shows the band structure of AA stacked trilayer and tetralayer graphene
near the K point. Because of the hybridization between α-α and β-β sublattices in
each layer, zero-energy states occur at momenta that are remote from the K and K ′

points. In the following we turn our attention to stacks in which adjacent graphene
layers have a relative rotation of 60 degrees. As we show, in this case the zero-energy
states always occur precisely at the Brillouin-zone corners.
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Fig. 3. Band structure near the K point for (a) trilayer and (b) tetralayer graphene with AA stack-

ing for nearest intralayer neighbor hopping t = 3 eV and nearest interlayer neighbor hopping

t⊥ = 0.1t.

2.2.3. AB stacking

In the case of AB stacking, the Hamiltonian at K has the following form,

HAB(p) =





















0 vπ† 0 0 0 0
vπ 0 t⊥ 0 0 0
0 t⊥ 0 vπ† 0 t⊥
0 0 vπ 0 0 0 · · ·
0 0 0 0 0 vπ†

0 0 t⊥ 0 vπ 0
· · ·





















. (2.9)

We will see that the subtle difference in the Hamiltonian compared to the AA case
changes the electronic structure in a qualitative way. To obtain the energy spec-
trum of AB stacked N -layer graphene, let us consider corresponding difference equa-
tions:14)

εa2n−1 = (vπ†)b2n−1,

εb2n−1 = t⊥(a2n−2 + a2n) + (vπ)a2n−1,

εa2n = t⊥(b2n−1 + b2n+1) + (vπ†)b2n,

εb2n = (vπ)a2n, (2.10)

with the boundary condition a0 = aN+1 = b0 = bN+1 = 0.
Let c2n−1 = b2n−1 and c2n = a2n, then the difference equations reduce to

(ε− v2|p|2/ε)cn = t⊥(cn−1 + cn+1), (2.11)

with the boundary condition c0 = cN+1 = 0. Then the energy spectrum is given by

ε− v2|p|2/ε = 2t⊥ cos

(

rπ

N + 1

)

, (2.12)
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Fig. 4. Band structure near the K point for (a) trilayer and (b) tetralayer graphene with AB stack-

ing for nearest intralayer neighbor hopping t = 3 eV and nearest interlayer neighbor hopping

t⊥ = 0.1t.

where r = 1, 2, · · · , N . Thus

ε±r,p = t⊥ cos

(

rπ

N + 1

)

±
√

v2|p|2 + t2⊥ cos2
(

rπ

N + 1

)

. (2.13)

Note that relativistic energy spectrum for a particle with the momentum p and
mass m is given by

εp =
√

|p|2c2 +m2c4. (2.14)

Thus we can identify mrv
2 =

∣

∣

∣t⊥ cos
(

rπ
N+1

)∣

∣

∣ as the effective mass for mode r.

For a massive mode with mass mr, the low-energy spectrum is given by

εr,p ≈







+ p2

2mr
if t⊥ cos

(

rπ
N+1

)

< 0,

− p2

2mr
if t⊥ cos

(

rπ
N+1

)

> 0.
(2.15)

For odd N , the mode with r = (N + 1)/2 is massless and its energy is given by

ε±p ≈ ±v|p|. (2.16)

For even N , all N modes are massive at low energies. Therefore, the low-energy
spectrum with odd number of layers is a combination of one massless Dirac mode
and N−1 massive Dirac modes, whereas the low-energy spectrum with even number
of layers is composed of only massive Dirac modes.

Figure 4 shows the band structure of AB stacked trilayer and tetralayer graphene
near the K point. As discussed earlier, the trilayer has one massless mode and two
massive modes, while the tetralayer has all massive modes at low energies. Note that
at p = 0, each massless mode gives two zero energies while each massive mode gives
one zero energy. Therefore, for odd N , there are 2 + (N − 1) = N + 1 zero-energy
states while for even N , there are N zero-energy states.
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2.2.4. ABC stacking

In the case of ABC stacking, the Hamiltonian at K is given by

HABC(p) =





















0 vπ† 0 0 0 0
vπ 0 t⊥ 0 0 0
0 t⊥ 0 vπ† 0 0
0 0 vπ 0 t⊥ 0 · · ·
0 0 0 t⊥ 0 vπ†

0 0 0 0 vπ 0
· · ·





















. (2.17)

Unfortunately for ABC stacking, there do not exist low-order difference equations
with a simple boundary condition. Instead we can easily derive a low-energy effec-
tive Hamiltonian. Surprisingly, it turns out that ABC stacked N -layer graphene is
described by N -chiral 2D electron system. (More detailed discussion for the effective
theory of arbitrarily stacked graphene will be presented in §3.)

It is important to recognize that in ABC stacking, there is vertical hopping
between all the lower layer β sites and all the upper layer α sites. For π = 0 each
α-β pair forms a symmetric-antisymmetric doublet with energies ±t⊥, leaving the
bottom α1 and top βN sites as the only low-energy states. This behavior is readily
understood from the stacking diagrams, in Fig. 2. It is possible to construct a 2×2 π-
dependent low-energy effective Hamiltonian for the low-energy part of the spectrum
using perturbation theory. The same procedure can then be extended to arbitrary
stacking sequences.

The simplest example is bilayer graphene.15) Low and high energy subspaces
are identified by finding the spectrum at π = 0 and identifying all the zero-energy
eigenstates. The intralayer tunneling term, which is proportional to π, couples low
and high energy states. Using degenerate state perturbation theory, the effective
Hamiltonian in the low energy space is given to leading (2nd) order in π by

Heff
2 (p) = −

(

0 (π†)2

2m
(π)2

2m 0

)

= −t⊥

(

0 (ν†)2

(ν)2 0

)

, (2.18)

where we have used a (α1, β2) basis, m = t⊥/2v2 and ν = vπ/t⊥. In the same way
we find that the effective Hamiltonian of ABC stacked N -layer graphene is given by

Heff
N (p) = −t⊥

(

0 (ν†)N

(ν)N 0

)

, (2.19)

using a (α1, βN ) basis. The leading correction appears at order N in π because the
unperturbed high-energy states are localized on a (βi, αi+1) pair and the perturbation
is intralayer tunneling. Note that we have for mathematical convenience chosen a
gauge in which the single-layer Hamiltonian is

Heff
1 (p) = −

(

0 vπ†

vπ 0

)

. (2.20)
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We can prove Eq. (2.19) by the mathematical induction method. Imagine that
we add one more layer on top of N -layer graphene with ABC stacking. Then the
combined Hamiltonian is given by

Heff
N+1(p) = −t⊥









0 (ν†)N 0 0
(ν)N 0 −1 0
0 −1 0 ν†

0 0 ν 0









, (2.21)

using a (α1, βN , αN+1, βN+1) basis.
Let P be a low-energy subspace spanned by (α1, βN+1) and Q be a high-energy

subspace spanned by (αN+1, βN ). Note that the effective Hamiltonian can be derived
using the degenerate state perturbation theory,16)

Heff ≈ HPP −HPQ
1

HQQ
HQP . (2.22)

Here the projected Hamiltonian matrices to P and Q subspace are given by

HQQ(p) = t⊥

(

0 1
1 0

)

, HPQ(p) = −t⊥

(

0 (ν†)N

ν 0

)

, (2.23)

and HPP (p) = 0. Thus we can easily show that,

Heff
N+1(p) ≈ −t⊥

(

0 (ν†)N+1

(ν)N+1 0

)

, (2.24)

which proves Eq. (2.19). The corresponding energy spectrum in Eq. (2.19) is given
by

ε±eff,p = ±t⊥

(

v|p|
t⊥

)N

. (2.25)

Figure 5 shows the band structure of ABC stacked trilayer and tetralayer graphene
near theK point. Note that at p = 0, there are only two zero energy states no matter
how thick the stack is.

2.2.5. Arbitrary stacking

It is easy to generalize the previous discussion to construct the Hamiltonian for
an arbitrarily stacked multilayer graphene system. Figure 6 shows the band structure
of ABCB stacked tetralayer graphene and ABBC stacked tetralayer graphene near
the K point. For the ABCB stacked tetralayer graphene, the low-energy spectrum
looks like a superposition of a linear dispersion and a cubic one. For the ABBA
stacked tetralayer graphene, zero energies appear not only at the Dirac point but
also away from it. A more detailed low-energy spectrum analysis will be presented
in §3.
2.3. Landau level spectrum

2.3.1. Preliminaries

In the presence of a magnetic field B = Bẑ, a Hamiltonian is modified by
p → p + e

cA, where A is the vector potential with B = ∇ × A. The quantum
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Fig. 5. Band structure near the K point for (a) trilayer and (b) tetralayer graphene with ABC

stacking for nearest intralayer neighbor hopping t = 3 eV and nearest interlayer neighbor hop-

ping t⊥ = 0.1t.

Fig. 6. Band structure near the K point for tetralayer graphene with (a) ABCB stacking and (b)

ABBC stacking for nearest intralayer neighbor hopping t = 3 eV and nearest interlayer neighbor

hopping t⊥ = 0.1t.

Hamiltonian is most easily diagonalized by introducing raising and lowering opera-
tors, a = lπ†/

√
2~ and a† = lπ/

√
2~ substitution, where l =

√

~c/e|B|, and noting
that [a, a†] = 1. We can then expand the wavefunction amplitude on each sublattice
of each layer in terms of parabolic band Landau level states |n〉 which are eigenstates
of the a†a. For many Hamiltonians, including those studied here, the Hamiltonian
can be block diagonalized by fixing the parabolic band Landau-level offset between
different sublattices and between different layers. This procedure is familiar from
theories of Landau-level structure in other multiband k · p theories.
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Fig. 7. Landau levels of (a) trilayer and (b) tetralayer graphene with AA stacking for nearest

intralayer neighbor hopping t = 3 eV and nearest interlayer neighbor hopping t⊥ = 0.1t. Landau

levels were shown up to n = 10.

2.3.2. AA stacking

In the case of AA stacking, let us choose the n-th Landau level basis at K as
(α1,n−1, β1,n, · · · , αN,n−1, βN,n). Then Eq. (2.5) reduces to

HAA(n) =





















0 εn t⊥ 0 0 0
εn 0 0 t⊥ 0 0
t⊥ 0 0 εn t⊥ 0
0 t⊥ εn 0 0 t⊥ · · ·
0 0 t⊥ 0 0 εn
0 0 0 t⊥ εn 0

· · ·





















, (2.26)

where εn =
√
2n~v/l. Note that 2D Landau level states with a negative index do not

exist so the corresponding basis states and matrix elements are understood as being
absent in the matrix block. Thus HAA(n = 0) is a N ×N matrix, while HAA(n > 0)
is a 2N × 2N matrix.

By diagonalizing Eq. (2.26) using the difference equation method, we can obtain
the exact Landau level spectrum. For n > 0, Landau levels are given by

ε±r,n = ±εn + 2t⊥ cos

(

rπ

N + 1

)

, (2.27)

where r = 1, 2, · · · , N . Note that for n = 0, Landau levels are given by εr,0 =

2t⊥ cos
(

rπ
N+1

)

. Thus for odd N , there exists one (B-independent) zero-energy Lan-

dau level at r = (N + 1)/2.
Figure 7 shows the Landau levels of AA stacked trilayer and tetralayer graphene

as a function of magnetic fields. For the trilayer, there is one zero-energy Landau
level, while for the tetralayer, there is no zero-energy Landau level. Note that there
are Landau levels crossing the zero-energy line in AA stacking.
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2.3.3. AB stacking

In the case of AB stacking, a proper choice of the n-th Landau level basis at K
is (α1,n−1, β1,n, α2,n, β2,n+1, α3,n−1, β3,n, α4,n, β4,n+1, · · · ) such that all the interlayer
hopping terms are contained in the n-th Landau level Hamiltonian. Then Eq. (2.9)
reduces to

HAB(n) =





















0 εn 0 0 0 0
εn 0 t⊥ 0 0 0
0 t⊥ 0 εn+1 0 t⊥
0 0 εn+1 0 0 0 · · ·
0 0 0 0 0 εn
0 0 t⊥ 0 εn 0

· · ·





















, (2.28)

where εn =
√
2n~v/l. As discussed earlier, special care should be given for states

with a negative index.
For the Hamiltonian in Eq. (2.28), there do not exist corresponding difference

equations with a proper boundary condition, thus cannot be diagonalized analyti-
cally. From Eq. (2.15), however, we can find the low-energy Landau levels for massive
mode with mass mr as

εr,n ≈







+~ωr

√

n(n+ 1) if t⊥ cos
(

rπ
N+1

)

< 0,

−~ωr

√

n(n+ 1) if t⊥ cos
(

rπ
N+1

)

> 0,
(2.29)

where ωr = e|B|/mrc and r = 1, 2, · · · , N , which is proportional to B. These
equations apply at small B, just as the B = 0 limiting low-energy dispersions applied
at small momentum π. For the massless mode, from Eq. (2.16) Landau levels are
given by

ε±n = ±εn, (2.30)

which is proportional to B1/2.
Figure 8 shows the Landau levels of AB stacked trilayer and tetralayer graphene

as a function of magnetic fields. Note that the linear B dependence expected for
massive modes applies over a more limited field range when the mass is small. For
the trilayer, Landau levels are composed of massless Dirac spectra (∝ B1/2) and
massive Dirac spectra (∝ B), while for the tetralayer, Landau levels are all massive
Dirac spectra. This is consistent with the band structure analysis shown in Fig. 4.

Note that the massive modes in Eq. (2.29) have two zero-energy Landau levels
for n = −1 and 0, whereas the massless mode in Eq. (2.30) has one for n = 0. There
are therefore N zero-energy Landau levels in both even and odd N AB stacks. This
property can also be understood directly from the Hamiltonian in Eq. (2.28), by
eliminating negative n basis states and rearranging rows to block diagonalize the
matrix.

2.3.4. ABC stacking

In the case of ABC stacking, a proper choice of the n-th Landau level basis atK is
(α1,n−1, β1,n, α2,n, β2,n+1, α3,n+1, β3,n+2, · · · ) such that all the interlayer hopping terms
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Fig. 8. Landau levels of (a) trilayer and (b) tetralayer graphene with AB stacking for nearest

intralayer neighbor hopping t = 3 eV and nearest interlayer neighbor hopping t⊥ = 0.1t. Landau

levels up to n = 10 are shown.

are contained in the n-th Landau level Hamiltonian. Then Eq. (2.17) reduces to

HABC(n) =





















0 εn 0 0 0 0
εn 0 t⊥ 0 0 0
0 t⊥ 0 εn+1 0 0
0 0 εn+1 0 t⊥ 0 · · ·
0 0 0 t⊥ 0 εn+2

0 0 0 0 εn+2 0
· · ·





















, (2.31)

where εn =
√
2n~v/l.

The low-energy spectrum can be obtained from the effective Hamiltonian in
Eq. (2.19). For n > 0, Landau levels are given by

ε±n = ±~ωN

√

n(n+ 1) · · · (n+N − 1), (2.32)

where ~ωN = t⊥(
√
2~v/t⊥l)N ∝ BN/2, while for n = −N + 1,−N + 2, · · · , 0 they

are zero. Note that there are N zero-energy Landau levels for ABC stacked N -layer
graphene.

Figure 9 shows the Landau levels of ABC stacked trilayer and tetralayer graphene
as a function of magnetic fields. For the trilayer, Landau levels are proportional to
B3/2, while for the tetralayer, Landau levels are proportional to B2.

2.3.5. Arbitrary stacking

It is straightforward to generalize the previous discussion to construct the Hamil-
tonian in Landau level basis for an arbitrarily stacked multilayer graphene system.
As discussed earlier, special care should be given for states with a negative index.
Figure 10 shows Landau levels of ABCB stacked tetralayer graphene and ABBC
stacked tetralayer graphene. For the ABCB stacked tetralayer graphene, the Lan-
dau levels look like a superposition of B1/2 and B3/2 levels, which is consistent with



Electronic Structure of Multilayer Graphene 13

Fig. 9. Landau levels of (a) trilayer and (b) tetralayer graphene with ABC stacking for nearest

intralayer neighbor hopping t = 3 eV and nearest interlayer neighbor hopping t⊥ = 0.1t. Landau

levels up to n = 10 are shown.

Fig. 10. Landau levels of tetralayer graphene with (a) ABCB stacking and (b) ABBC stacking for

nearest intralayer neighbor hopping t = 3 eV and nearest interlayer neighbor hopping t⊥ = 0.1t.

Landau levels up to n = 10 are shown.

Fig. 6(a). For the ABBA stacked tetralayer graphene, there are Landau levels cross-
ing the zero-energy line, which is consistent with Fig. 6(b). Detailed low-energy
Landau-level spectrum analysis will be presented in §3.
2.4. Quantum Hall conductivity

Applying the Kubo formula to a disorder-free systems we find that the conduc-
tivity tensor with an external magnetic field along z is given by

σij(ω) = − e2

2π~l2B

∑

n

fnΩ
n
ij(ω), (2.33)
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where fn is Fermi factor of n-th energy state, i, j = x, y and

Ωn
ij(ω) = i

∑

m6=n

[ 〈n| ~vi |m〉 〈m| ~vj |n〉
(εn − εm)(εn − εm + ~ω + iη)

− 〈m| ~vi |n〉 〈n| ~vj |m〉
(εn − εm)(εn − εm − ~ω − iη)

]

.

(2.34)
Here vi is a velocity operator obtained by taking a derivative of the Hamiltonian
H(p) with respect to pi. Note that in case of multilayer graphene, the velocity
operator is constant, i.e. it does not depend on the Landau level index.

The appropriate quantized Hall conductivity is obtained by evaluating σH =
σxy(0). Detailed analysis of the quantum Hall conductivity will be presented in §3.

§3. Chiral decomposition of energy spectrum

In this section∗) we demonstrate an unanticipated low-energy property of
graphene multilayers, which follows from an interplay between interlayer tunneling
and the chiral properties of low-energy quasiparticles in an isolated graphene sheet.
Our conclusions apply in the strongest form to models with only nearest-neighbor
interlayer tunneling, but are valid over a broad field range as we explain below. We
find that the low-energy band structure of any graphene multilayer consists of a set
of independent pseudospin doublets. Within each doublet, the bands are described
by a pseudospin Hamiltonian of the form

HJ(k) ∝ kJ [ cos(Jφk) τ
x ± sin(Jφk) τ

y ], (3.1)

where τα is a Pauli matrix acting on the doublet pseudospin, k is an envelope
function momentum measured from either the K or K ′ corner of the honeycomb
lattice’s Brillouin-zone,1), 2) k = |k|, and φk is the orientation of k. The ± sign in
Eq. (3.1) assumes the opposite signs in graphene’s K and K ′ valleys. Following the
earlier work on graphene bilayers,15) we refer to J as the chirality index of a doublet.
In the presence of a perpendicular magnetic field B, HJ(k) yields J Landau levels
at E = 0 and E 6= 0 levels with |E| ∝ BJ/2. Taking the twofold spin and valley
degeneracies into account, the number of independent zero-energy band eigenstates
at the Dirac point (k = 0) is therefore 8ND, where ND is the number of pseudospin
doublets. We find that, although ND depends on the details of the stacking sequence,

ND
∑

i=1

Ji = N (3.2)

in an N -layer stack. It follows from Eq. (3.2) that the Hall conductivity of an N -layer
stack has strong integer quantum Hall effects with plateau conductivities,

σxy = ±4e2

h

(

N

2
+ n

)

, (3.3)

where n is a non-negative integer.

∗) The content of this section provides a more complete explanation of the arguments presented

earlier in Ref. 10).
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3.1. Partitioning rules

The low-energy band and the Landau level structure can be read off the stacking
diagrams illustrated in Fig. 2 by partitioning a stack using the following rules, which
are justified in the following section.

(i) Identify the longest nonoverlapping segments within which there are no re-
versals of stacking sense. When there is ambiguity in the selection of nonoverlapping
segments, choose the partitioning which incorporates the largest number of layers.
Each segment (including for interior segments the end layers at which reversals take
place) defines a J-layer partition of the stack and may be associated with a chirality
J doublet.

(ii) Iteratively partition the remaining segments of the stack into smaller J
elements, excluding layers contained within previously identified partitions, until all
layers are exhausted.

The chirality decompositions which follow from these rules are summarized in
Table I. Note that this procedure can result in J = 1 doublets associated with
separated single layers which remain at the last step in the partitioning process.

In applying these rules, the simplest case is cyclic ABC stacking for which there
are no stacking sense reversals and therefore a single J = N partition. In the
opposite limit, AB stacking, the stacking sense is reversed in every layer and the
rules imply N/2 partitions with J = 2 for even N , and when N is odd a remaining
J = 1 partition. Between these two limits, a rich variety of qualitatively distinct
low-energy behaviors occur. For example, in the ABCB stacked tetralayer, ABC is
identified as a J = 3 doublet and the remaining B layer gives a J = 1 doublet. The
low-energy band structure and the Landau level structure of this stack, as illustrated
in Figs. 6(a) and 10(a), have two sets of low-energy bands with |E| ∝ k, k3, Landau
levels with |E| ∝ B1/2, B3/2, and four zero-energy Landau levels per spin and valley.
All these properties are predicted by the partitioning rules. We have explicitly
checked that the rules correctly reproduce the low-energy electronic structure for all
stacking sequences up to N = 7. Because each layer is a member of one and only
one partition, the partitioning rules imply the chirality sum rule in Eq. (3.2).

3.2. Degenerate state perturbation theory

We start from the well-known J = 1 massless Dirac equation1), 2) k ·p model for
isolated sheets,

HMD(p) = −
(

0 vπ†

vπ 0

)

, (3.4)

where π = px+ ipy and v is the quasiparticle velocity. In the presence of an external
magnetic field, π and π† are proportional to the Landau level raising and lowering
operators, so that Eq. (3.4) implies the presence of one macroscopically degenerate
Landau level at the Dirac point for each spin and valley, and therefore, to the N = 1
quantum Hall effect8), 9) of Eq. (3.3). An N -layer stack has a two-dimensional band
structure with 2N atoms per unit cell. The Hamiltonian can be written as

H = H⊥ +H‖, (3.5)
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Table I. Chirality decomposition for N = 3, 4, 5, 6 layer stacks.

stacking chirality stacking chirality

ABC 3 ABCABC 6

ABA 2+1 ABCABA 5+1

ABCACA 4+2

ABCA 4 ABCACB 4+2

ABCB 3+1 ABCBCA 3+3

ABAB 2+2 ABCBCB 3+2+1

ABAC 1+3 ABCBAB 3+2+1

ABCBAC 3+3

ABCAB 5 ABABCA 2+4

ABCAC 4+1 ABABCB 2+3+1

ABCBC 3+2 ABABAB 2+2+2

ABCBA 3+2 ABABAC 2+1+3

ABABC 2+3 ABACAB 2+1+3

ABABA 2+2+1 ABACAC 1+3+2

ABACA 1+3+1 ABACBC 1+4+1

ABACB 1+4 ABACBA 1+5

where H⊥ accounts for interlayer tunneling and H‖ for intralayer tunneling. H‖
is the direct product of massless Dirac model Hamiltonians HMD for the sublattice
pseudospin degrees of freedom of each layer. We construct a low-energy Hamiltonian
by first identifying the zero-energy eigenstates of H⊥ and then treating H‖ as a
perturbation.

Referring to Fig. 2, we see that H⊥ is the direct product of a set of finite-length
1D tight-binding chains, as shown in Eq. (2.4), and a null matrix with dimension
equal to the number of isolated sites. The set of zero-energy eigenstates of H⊥
consists of the states localized on isolated sites and the single zero-energy eigenstates
of each odd-length chain.

The low-energy effective Hamiltonian is evaluated by applying leading order de-
generate state perturbation theory to the zero-energy subspace. The matrix element
of the effective Hamiltonian between degenerate zero-energy states r and r′ is given
by16)

〈Ψr|H|Ψr′〉 = 〈Ψr|H‖
[

Q̂(−H−1
⊥ )Q̂H‖

]n−1
|Ψr′〉 , (3.6)

where n is the smallest positive integer for which the matrix element is nonzero, and
Q̂ = 1− P̂ , P̂ is a projection operator onto the zero-energy subspace. To understand
the structure of this Hamiltonian, it is helpful to start with some simple examples.

3.2.1. ABC stacking

For ABC stacked N -layer graphene, the zero-energy states are the two isolated
site states in bottom and top layers, α1 and βN . N − 1 sets of two-site chains form
high-energy states. Because H‖ is diagonal in layer index and H⊥ (and hence H−1

⊥ )
can change the layer index by one unit, the lowest order at which α1 and βN are
coupled is n = N .
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According to Eq. (2.4), the wavefunction of each two-site chain is given by

|Φσr
〉 = 1√

2

(

|βr〉+ σr |αr+1〉
)

, (3.7)

with the energy ǫr = t⊥σr, where σr = ±1 and r = 1, 2, · · · , N − 1. From Eq. (3.6),

〈α1|H|βN 〉 = 〈α1|H‖
[

Q̂(−H−1
⊥ )Q̂H‖

]N−1
|βN 〉

=
∑

{σr}

〈

α1|H‖|Φσ1

〉

· · ·
〈

ΦσN−1
|H‖|βN

〉

(−ε1) · · · (−εN−1)

= −t⊥
∑

{σr}

(−σ1/2) · · · (−σN−1/2)

(−σ1) · · · (−σN−1)
(ν†)N

= −t⊥(ν
†)N

∑

σ1,··· ,σN−1

1

2N−1

= −t⊥(ν
†)N , (3.8)

where ν = vπ/t⊥. Here 〈α1|V |Φσ1〉 = −(1/
√
2)t⊥ν†,

〈

ΦσN−1
|V |βN

〉

= −(σN−1

/
√
2)t⊥ν† and

〈

Φσr
|V |Φσr+1

〉

= −(σr/2)t⊥ν† were used. Thus, the effective Hamil-
tonian of N -layer graphene with ABC stacking has a single J = N doublet given
by

Heff
N = −t⊥

(

0 (ν†)N

(ν)N 0

)

. (3.9)

3.2.2. AB stacking

For AB stacked N -layer graphene, the high-energy Hilbert space consists of a
single N -site 1D chain, excluding its zero-energy eigenstate when N is odd. There
is an isolated site in each layer which is connected to both its neighbors at or-
der n = 2 forming an isolated site chain. When N is even, this chain is diag-
onalized by N/2, J = 2 doublets formed between α-sublattice and β-sublattice
chain states.14), 17), 18), 19) When N is odd, the zero-energy chain state is mapped
to an equal-magnitude oscillating-sign linear combination of isolated site states by
intralayer tunneling at order n = 1, yielding a J = 1 doublet. The (N − 1)/2, J = 2
doublets are then formed between α-sublattice and β-sublattice isolated site chain
states in the orthogonal portion of the isolated state subspace.

Let us consider the low-energy spectrum of AB stacking in more detail. From
Eq. (2.4) energy spectra and wavefunctions of the single N -site chain are given by

εr = 2t⊥ cos θr,

|Φr〉 =
√

2

N + 1

(

sin θr |β1〉+ sin 2θr |α2〉+ sin 3θr |β3〉+ sin 4θr |α4〉 · · ·
)

, (3.10)

where θr =
rπ

N+1 and r = 1, 2, · · · , N .
First, let us consider the case with even N . Then the low-energy states come
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from the isolated sites or equivalently their superpositions. Let us define

|Ψr〉 =
√

2

N + 1

(

sin θre
−iφ |α1〉+sin 2θre

iφ |β2〉+sin 3θre
−iφ |α3〉+sin 4θre

iφ |β4〉 · · ·
)

(3.11)
such that

〈Ψr|V |Φs〉 = −δr,s|ν|, (3.12)

where eiφ = ν/|ν|. Then the matrix elements between the low-energy states are
given by the second order perturbation theory:

〈Ψr|H|Ψr′〉 =
N
∑

s=1

〈Ψr|V |Φs〉 〈Φs|V |Ψr′〉
(−εs)

= −δr,r′(t
2
⊥/εr)|ν|2. (3.13)

Note that εr = −εN+1−r and these two modes form a 2-chiral system with energies
±|εr|. The chirality can be manifested clearly if we define

|α̃r〉 =
eiφ√
2
(|Ψr〉+ |ΨN+1−r〉) ,

∣

∣

∣
β̃r

〉

=
e−iφ

√
2

(|Ψr〉 − |ΨN+1−r〉) . (3.14)

Then the Hamiltonian of the 2-chiral system for r = 1, 2, · · · , N/2 is given by

Hr = − t2⊥
εr

(

0 (ν†)2

(ν)2 0

)

= −
(

0 (π†)2

2mr

(π)2

2mr
0

)

(3.15)

in a (α̃r, β̃r) basis with mrv
2 = t⊥ cos

(

rπ
N+1

)

. Thus the system is described by a

combination of massive Dirac modes with different masses.
For odd N , there is a zero-energy state in the N -site chain at r = (N + 1)/2 in

Eq. (3.10). Thus in addition to the massive modes, there exists one massless Dirac
mode,

〈

ΨN+1
2

|V |ΦN+1
2

〉

= −|ν|. (3.16)

Thus the system is described by one massless Dirac mode and a combination of
massive Dirac modes with different masses.

3.2.3. ABC+B type stacking

A more complex and more typical example is realized by placing a single reversed
layer on top of ABC stacked N -layer graphene with N > 2. Note that the last chain
has three sites, thus it has a zero-energy state β−

N+1 defined by

∣

∣β−
N+1

〉

=
1√
2
(|βN+1〉 − |βN−1〉) , (3.17)

and two high-energy states with energies
√
2σN−1t⊥ defined by

∣

∣ΦσN−1

〉

=
1

2
|βN−1〉+

σN−1√
2

|αN 〉+ 1

2
|βN+1〉 , (3.18)



Electronic Structure of Multilayer Graphene 19

where σN−1 = ±1. Then the first-order perturbation theory gives

〈

αN+1|H|β−
N+1

〉

= − t⊥√
2
ν†, (3.19)

suggesting the existence of the massless Dirac mode with a reduced velocity.
Similarly as Eq. (3.8), we obtain

Heff
N+1 = −t⊥















0 ν†√
2

0 (ν†)2

2

ν√
2

0 − (ν)N−1
√
2

0

0 − (ν†)N−1
√
2

0 (ν†)N

2

ν2

2 0 (ν)N

2 0















, (3.20)

using a (αN+1, β
−
N+1, α1, βN ) basis. The first 2× 2 block in Eq. (3.20) gives a J = 1

doublet with a reduced velocity. Note that the matrix in Eq. (3.20) is not block
diagonal thus we cannot simply say that the second 2 × 2 matrix block is a N -
chiral system. The J = N doublet in this instance includes both the (α1, βN )
subspace contribution and an equal contribution due to perturbative coupling to the
(αN+1, β

−
N+1) subspace. Using a similar perturbation theory shown in Eq. (2.22),

we can obtain higher order correction by integrating out the massless Dirac mode
which forms a higher energy state. Then the final Hamiltonian is reduced to

Heff
N+1 ≈ H1 ⊗HN , (3.21)

where

H1 = −t⊥

(

0 ν†/
√
2

ν/
√
2 0

)

, HN = −t⊥

(

0 (ν†)N

(ν)N 0

)

. (3.22)

This means that the combined system can be described by a combination of one
1-chiral system with reduced velocity and one N -chiral system. Note that stacking
a layer with an opposite handedness partitions a system into systems with different
chiralities.

3.2.4. Arbitrary stacking

The relationship between the electronic structure of a general stack and the
partitioning procedure explained above can be understood as follows.

(i) First, note that a partition with chirality J has isolated sites in its terminal
layers that are coupled at order J in perturbation theory. In the case of J = 1
partition, the chain opposite to the single isolated site always has an odd length and
provides the zero-energy partner; isolated site to chain coupling therefore always
occurs at first order.

(ii) Next, consider the perturbation theory, truncating at successively higher
orders. When truncated at first order, the J = 1 partitions are isolated by higher
J blocks within which the Hamiltonian vanishes. Each J = 1 partition therefore
yields a separate massless Dirac equation with velocities∗) that can be smaller than

∗) The velocity of the J = 1 doublets is determined by the strength of the coupling between
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the graphene sheet Dirac velocity. When the perturbation theory is truncated at
second order, the Hamiltonian becomes nonzero within the J = 2 partitions. The
eigenenergies within the J = 1 partitions are parametrically larger, and the Hamil-
tonian within the J > 2 partitions is still zero. To leading order therefore, the J = 2
partitions are separated, and their isolated states are coupled at the second order in
perturbation theory so that each provides a J = 2 doublet such as that of an isolated
bilayer. If two or more J = 2 partitions are adjacent, then their Hamiltonians do not
separate. In this case, there is a chain of second order couplings between isolated
states, such as those of an even-length AB stack, but the end result is still J = 2
doublet for each J = 2 partition.

(iii) The identification between partitions and chiral doublets can be established
by continuing this consideration up to the highest values of J which occur for a
particular stack.

(iv) Then, the effective Hamiltonian of any N -layer graphene is as follows:

Heff
N ≈ HJ1 ⊗HJ2 ⊗ · · · ⊗HJND

, (3.23)

with the sum rule in Eq. (3.2). Note that ND is half the sum of the number of
isolated sites and the number of odd-length chains.

3.3. Discussion

3.3.1. Effects of remote hopping

The minimal model we have used to derive these results is approximately valid
in the broad intermediate magnetic field B range between ∼ 10 and ∼ 100 T,
over which the intralayer hopping energy in field (∼ ~v/ℓ where ℓ =

√

~c/e|B| ∼
25 nm/[B(T)]1/2 is the magnetic length) is larger than the distant neighbor interlayer
hopping amplitudes that we have neglected (γ2 ∼ −20 meV), but still smaller than
t⊥. For example, if we consider α1 → α3 hopping process in ABA stacked trilayer in
Fig. 2, the valid range of magnetic field for the minimal model is given by

|γ2| <
(~v/l)2

t⊥
< t⊥. (3.24)

When γ2 does not play an important role (in N = 2 stacks, for example), the
lower limit of the validity range is parametrically smaller. The minimum field in
bilayers has been estimated to be ∼ 1 T,15) by comparing intralayer hopping with
the γ3 ∼ 0.3 eV interlayer hopping amplitude,

~v3/l <
(~v/l)2

t⊥
< t⊥, (3.25)

where v3 = (
√
3/2)aγ3/~ and a is a lattice constant of graphene.

the odd-length chain zero-energy state and isolated states on the sublattice opposite to the chain

ends. For a chain of length 2N − 1, the chain’s zero-energy state has nonzero amplitude on the N

odd-index sites. The velocity is reduced from the single sheet velocity by a factor of
√

M/N , where

M is the number of isolated sites opposite to the N odd-index sites. In a similar manner, higher J

doublet Hamiltonians are sometimes altered by a multiplicative factor by perturbative coupling to

smaller J doublets as in the single reversed layer example.
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Fig. 11. Landau level spectrum near the K valley as a function of γ3 for an AB stacked bilayer for

(a) B = 0.1 T and (b) B = 1 T. Here t = 3 eV, t⊥ = 0.1t, and ωc = eB/mc, with m = t⊥/2v
2,

were used.

Fig. 12. Landau level spectrum near the K valley as a function of γ2 for an ABA stacked trilayer for

(a) B = 1 T and (b) B = 10 T. Here t = 3 eV, t⊥ = 0.1t, and ωc = eB/mc, with m = t⊥/2v
2,

were used. Note that for this case the Landau level structures near K and K′ valleys are not

identical.

Figures 11 and 12 show the Landau level spectrum at the K valley as a function
of γ3 for an AB stacked bilayer, and as a function of γ2 for an ABA stacked trilayer,
respectively. In the case of the bilayer, the dependence of the Landau levels on γ3
is weak for B larger than 1 T, whereas in the case of the trilayer, the Landau level
spectrum still strongly depends on γ2 for B = 1 T, but the dependence becomes
weak for B above 10 T, confirming the above argument.
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3.3.2. Quantum Hall effect

Fig. 13. (Color online) Noninteracting system Hall conductivity as a function of the Fermi energy

for all inequivalent four-layer graphene stacks when B = 10 T, t = 3 eV, and t⊥ = 0.1t. The

dependence of the Hall conductivity on Fermi energy is simply related to the dependence of the

Hall conductivity on total electron density. The Hall conductivity calculations shown in this

figure assume neutralizing ionized donors spread equally between the four layers.

In Fig. 13, we plot the noninteracting Hall conductivity as a function of Fermi
energy for the four distinct four-layer stacks. When electron-electron interactions
are included at an electrostatic mean-field (Hartree) level and the neutralizing ion-
ized dopants (responsible for the Fermi energy shift away from the Dirac point) are
assumed to be equally distributed among the layers, the Landau levels with E 6= 0
are shifted by electrostatic potential differences between the layers. There is, how-
ever, no influence of electrostatics on the E = 0 levels. This property follows from
the perfect particle-hole symmetry of the models we employ, which implies a uni-
form charge distribution among the layers at the neutrality point. Remote (γ2 2nd
neighbor) interlayer hopping does shift the E = 0 Landau level in the ABAB stacked
tetralayer and weakly lifts the degeneracy responsible for the large jump between
the ±(4e2/h)N/2 Hall plateaus. This example demonstrates a tendency toward the
grouping of N spin and valley degenerate Landau levels very close to E = 0 in
general N -layer stacks even when remote neighbor hopping is included. Small gaps
between these Landau levels are unlikely to lead to Hall plateaus unless disorder is
very weak. When disorder is weak, on the other hand, electron-electron interaction
effects beyond Hartree level are likely to be important and lead to strong quantum
Hall effects at many filling factors, often ones associated with broken symmetries of
different types.20), 21), 22), 23), 24), 25) The property that the Hall conductivity will tend
to jump by four units on crossing the Dirac point for arbitrarily stacked tetralayer
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Fig. 14. (Color online) Stacking diagrams for tetralayer graphene with (a) ABBC stacking and (b)

ABBA stacking. Shaded ovals link nearest interlayer neighbors.

graphene is the most obvious experimental manifestation of the chirality sum rule
discussed in this paper. In practice charged multilayers (EF 6= 0) would normally
be prepared by placing the system on one side of an electrode and gating. Even
though gating will redistribute charge and shift electric potentials differently in dif-
ferent layers, the Landau level bunching we discussed should still be clearly reflected
in quantum Hall effect measurements.

3.3.3. Effects of the same stacking inside

The analysis presented so far is based on the assumption that stacking one layer
directly on top of its neighbor, AA stacking, is not allowed. When interior AA
stacking does occur, we can still apply a similar diagram analysis and identify the
zero-energy states at the Dirac point. In this case, however, zero-energy states can
appear not only at the Dirac points but also at other points in momentum space. The
degenerate state perturbation theory at the Dirac point discussed so far therefore
cannot completely capture the low-energy states.

As an example, let us consider ABBC stacked tetralayer graphene, as illustrated
in Fig. 14(a). Here, in addition to α1 and β4, there are two zero-energy states at
each three-site-chain defined by

∣

∣

∣β̃1

〉

=
1√
2
(|β1〉 − |α3〉) ,

|α̃4〉 =
1√
2
(|α4〉 − |β2〉) . (3.26)

Thus the matrix elements between low-energy states are given by

〈

α1|H|β̃1
〉

= 〈α̃4|H|β4〉 = − t⊥√
2
ν†. (3.27)

Therefore the system can be described by two massless Dirac modes with reduced
velocity, as shown in Figs. 6(b) and 10(b).

Another example is ABBA stacked tetralayer graphene, as illustrated in Fig. 14.(b).
In this case, there are two zero-energy states at α1 and α4. The high-energy states
Φr are given by Eq. (2.4) with N = 4, thus we get

〈α1|H|α4〉 =
4
∑

r=1

〈α1|V |Φr〉 〈Φr|V |α4〉
(−ǫr)

= −ct⊥|ν|2, (3.28)
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where c = 1
5

∑

r sin
(

rπ
5

)

sin
(

4rπ
5

)

/ cos
(

rπ
5

)

= −1. Here the low-energy state is
composed of one non-chiral massive mode. Note that because of the non-chirality,
there are no zero-energy Landau levels.

3.3.4. Pseudospin magnetism

Fig. 15. (Color online) In-plane projected pseudospin orientation of (a) J = 1, (b) J = 2, (c) J = 3

and (d) J = 4 chiral 2D electron system for a neutral, unbiased system with coupling constant

α ≡ e2/ǫ~v = 1 where ǫ is the dielectric constant. For J > 1, the arrows are shorter in the core

of the momentum space vortex because the pseudospins in the core have rotated spontaneously

toward ẑ or −ẑ direction indicating the pseudospin magnetic state.

Finally, we note that in the presence of electron-electron interactions, chiral two-
dimensional electron system (C2DES) tends toward momentum-space vortex states
in which charge is spontaneously shifted between layers26) and that these instabilities
are stronger in systems with larger J . Figure 15 shows in-plane projected pseudospin
orientation for J = 1, 2, 3, 4 C2DESs, which correspond toN = 1, 2, 3, 4 ABC-stacked
graphene multilayers. Note that for J > 1, the arrows in the core of the momentum
space vortex have rotated spontaneously toward ẑ or −ẑ direction indicating the
spontaneous charge transfer between layers. The present work identifies ABC stacked
multilayer graphene as the most likely candidate for this particular type of exotic
broken symmetry state. Other types of broken symmetry might occur for other
stacking sequences, especially in the quantum Hall regime.
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§4. Conclusions

We have shown thatN -layer graphene at intermediate and strong magnetic fields
has a strong tendency towards the appearance of N spin and orbitally degenerate
Landau levels very close to E = 0. This property should lead to strong quantum
Hall effects at ±(4e2/h)N/2 in many N -layer stacks. The origin of this behavior is
the following chirality sum rule: i) The low-energy bands of multilayer graphene can
be decomposed into ND doublets with chirality Ji. ii) Although ND depends on the
stacking sequence,

∑ND

i=1 Ji = N in an N -layer stack.
The chirality sum rule applies precisely only to idealized models with only

nearest-neighbor intralayer and interlayer tunneling. It nevertheless suggests the
likelihood of interesting interaction physics and broken symmetry ground states in
many neutral or weakly doped multilayer graphene samples.
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