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Abstract

It was proved in [14] that the existence of a noncritical multiplier for a (smooth) nonlinear
programming problem is equivalent to an error bound condition for the Karush-Kuhn-Thcker (KKT)
system without any assumptions. This paper investigates whether this result still holds true for
a (smooth) nonlinear semidefinite programming (SDP) problem. We first introduce the notion of
critical and noncritical multipliers for a SDP problem and obtain their complete characterizations
in terms of the problem data. We prove for the SDP problem, the noncriticality property can be
derived from the error bound condition for the KKT system without any assumptions, and this fact is
revealed by some simple examples. Besides we give an appropriate second-order sufficient optimality
condition characterizing noncriticality explicitly. We propose a set of assumptions from which the
error bound condition for the KKT system can be derived from the noncriticality property. Finally
we establish a new error bound for x-part, which is expressed by both perturbation and the multiplier
estimation.

Keywords: semidefinite programming, critical and noncritical multipliers, KKT system, error bound.

1 Introduction

Consider an optimization problem of the following form

{

min
x∈X

f(x)

s.t. G(x) ∈ K,
(1.1)

where f : X → R, G : X → Y , X and Y are two finite dimensional real vector spaces, and K is a closed
convex set in Y . We say that a local error bound holds in a neighborhood of a particular KKT point
(x̄, ȳ) if there exist a function σ : X × Y → [0,∞) and a constant c > 0 such that

σ(x, y) ≥ cdist
(

(x, y), x̄×M(x̄)
)

, (1.2)

for all (x, y) in a neighborhood of (x̄, ȳ), where M(x̄) is the set of all the multipliers at the point x̄.

When f and G are continuously differentiable and K is a polyhedral set, Problem (1.1) is a conven-
tional nonlinear programing (NLP). It is well known that for NLP the local error bound plays a critical
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role in the convergence analysis for numerical algorithms when the KKT system has nonisolated solu-
tions. For example, if the error bound condition holds, algorithms can be constructed which converge
locally superlinearly to a KKT point [14, Chapter 7]. Therefore the characterization of the error bound
condition is an important issue for the study of NLP problem. Izmailov and solodov defined critical
multipliers and noncritical conterparts, they showed the existence of the local error bound (1.2) around
the KKT point (x̄, ȳ) is equivalent to requiring that ȳ is noncritical [14, Chapter 1].

Recently Mordukhovich and Sarabi [16] consider the following problem

min f(x) = ϕ0(x) + θ(Φ(x)), x ∈ R
n, (1.3)

where Φ : R
n → R

m and Ψ : R
n × R

m → R
l are sufficiently smooth while the convex function

θ : Rm → R̄ := (−∞,∞] is extended-real-valued but piecewise linear. This is just the case of Problem
(1.1) where f(x) := ϕ0(x) + θ(Φ(x)), G(x) := Φ(x), and K := dom θ := {z ∈ R

m|θ(z) < ∞}. They
proposed critical and noncritical multipliers for the KKT system of (1.3), and established the equivalent
relation between noncritical multipliers and the local error bound (1.2).

When K is a nonpolyhedral set, critical and noncritical multipliers are not easy to be characterized.
Sun, Cui and Toh [5] provided sufficient conditions to guarantee the metric subregularity of KKT
mappings for solving linearly constrained convex semidefinite programming with multiple solutions.
When the set K in (1.1) belongs to the class of C2- cone reducible sets, Ding, Sun and Zhang [7] showed
that under the Robinson constaint qualification, the KKT solution mapping is robustly isolated calm if
and only if both the strict robinson constraint qualification and second order sufficient condition hold.
Cui, Ding and Zhao [4] provided two types of sufficient conditions for ensuring the quadratic growth
conditions of a class of constrained convex symmetric and non-symmetric matrix optimization problems
regularized by nonsmooth spectral functions. These sufficient conditions are derived via the study of
the C2-cone reducibility of spectral functions and the metric subregularity of their subdifferentials,
respectively.

Mordukhovich and Sarabi [16] introduced the notions of critical and noncritical multipliers for KKT
systems of a class of composite optimization problems which is a extension of the notions by Izmailove
and Solodov [13] developed for classical KKT systems for NLPs.

When K = Sp
+, the cone of positively semidefinite matrices in Sp, how can we define critical and

noncritical multipliers, is the result for the equivalence of the existence of noncritical multipliers and
the local error bound still valid? These questions are quite interesting and challenging. The purpose of
this paper is to try answering these questions.

The remaining parts of this paper are organized as follows. In the next section, we introduce some
definitions and preliminary results required in the subsequent analysis from variational analysis. In
section 3, we define critical and noncritical multipliers for KKT systems of SDPs, establish equivalent
description of them and specify them for noncritical multipliers for particular KKT systems. We also
characterize noncritical multipliers for KKT systems for SDPs via some error bounds, present a new
second-order sufficient condition (SOSCȳ) which ensures the noncriticality of multiplier ȳ. Section 4 is
mainly devoted to characterizing another kind of error bound. We also proof (SOSCȳ) is a sufficient
condition for this kind of error bound. We conclude this paper in section 5.

2 Preliminaries

In this section we recall some basic notions and definitions in variational analysis which are extensively
used in this paper. For a set valued mapping S : X ⇒ Y with X , Y being finite dimensional Hilbert
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spaces, the upper limite is the set

lim sup
x→x̄

S(x) := {y ∈ Y : ∃xk → x̄, ∃yk → ȳ, yk ∈ S(xk)},

while the inner limit is the set

lim inf
x→x̄

S(x) := {y ∈ Y : ∀xk → x̄, ∃N1 ∈ N∞, ∃yk N1→ ȳ, yk ∈ S(xk), k ∈ N1},

with N∞ := {N ⊆ N : N\N is finite}(N is the natural numbers). Based on the definition of inner
and outer limits of set-valued mappings, normal cone and tangent cone can be calculated. Z is a finite
dimensional Hilbert space, and Ω ∈ Z is locally closed around x̄ ∈ Ω. The regular normal cone to Ω at
x̄ is defined by

N̂(x̄; Ω) :=

{

v ∈ Z∗ : lim sup
x

Ω
→x̄

〈v, x− x̄〉
‖x− x̄‖ ≤ 0

}

, (2.4)

and normal cone by
N(x̄; Ω) := lim sup

x
Ω
→x̄

N̂(x̄; Ω), (2.5)

where the symbol x
Ω→ x̄ means that x→x̄ with x ∈ Ω. If Ω is a convex set, then (2.4) and (2.5) are

equal to the classical normal cone of convex analysis. Define the normal cone and inner tangent cone
to Ω at x̄ by

T (x̄; Ω) := lim sup
tց0

Ω− x̄

t
(2.6)

and

T i(x̄; Ω) := lim inf
tց0

Ω− x̄

t
(2.7)

respectively. If h : Y → R̄ is an extend-valued function on a finite Hilbert space, define the basic
subdifferential of h at z̄ ∈ dom h by

∂h(z̄) := {y ∈ Y : (y,−1) ∈ N((z̄, h(z̄); epi h))}. (2.8)

The indicator function for set Ω is δΩ = δ(z; Ω) := 0 for z ∈ Ω and δ(z; Ω) := ∞ otherwise, and we have

N(z̄; Ω) = ∂δ(z̄; Ω), z̄ ∈ Ω. (2.9)

The regular coderivative, the limiting coderivative and the graphical derivative to S at (x̄, ȳ) ∈ gphS
are defined by

D̂∗S(x̄, ȳ)(v) := {u ∈ X : (u,−v) ∈ N̂((x̄, ȳ); gphS)}, v ∈ Y, (2.10)

D∗S(x̄, ȳ)(v) := {u ∈ X : (u,−v) ∈ N((x̄, ȳ); gphS)}, v ∈ Y, (2.11)

DS(x̄, ȳ)(u) := {v ∈ Y : (u, v) ∈ T ((x̄, ȳ); gphS)}, u ∈ X , (2.12)

respectively.

Lemma 2.1. [21, Theorem 3.1] For any (X,Y ) ∈ gphN(·;Sp
+), the inner tangent cone and tangent

cone to gphN(·;Sp
+) coincide and they both have the expression

T i((X,Y ); gphN(·;Sp
+)) = T ((X,Y ); gphN(·;Sp

+))
= {(H1,H2) ∈ Sp × Sp : Π′

Sp
+

(X + Y ;H1 +H2) = H1}. (2.13)
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For any matrix A ∈ Sp, let A have the following eigenvalue decomposition

A = P





Λα

0β
Λγ



P T , (2.14)

where α := {i : λi(A) > 0}, β := {i : λi(A) = 0}, γ := {i : λi(A) < 0}. Let (X,Y ) ∈ gphN(·, Sp
+) and

A = X + Y have the eigenvalue decomposition (2.14) then the following results can be get easily

X = P





Λα

0β
0γ



P T , Y = P





0α
0β

Λγ



P T . (2.15)

Define the matrix
∑ ∈ SP with entries

Σij :=
max{λi(A), 0} −max{λj(A), 0}

λi(A)− λj(A)
, i, j = 1, . . . , n, (2.16)

where 0/0 is defined to be 1. Denote P = [PαPβPγ ] with Pα ∈ R
p×α, Pβ ∈ R

p×β, Pγ ∈ R
p×γ . Then

from [5] we have














T (X;Sp
+) = {H ∈ Sp : [PβPγ ]

TH[PβPγ ] � 0},
T (Y ;Sp

−) = {H ∈ Sp : [PβPγ ]
TH[PαPβ ] � 0},

N(X;Sp
+) = {H ∈ Sp : [PβPγ ]

TH[PβPγ ] � 0, Pα
THP = 0},

N(Y ;Sp
−) = {H ∈ Sp : [PαPβ ]

TH[PαPβ ] � 0, Pγ
THP = 0}.

For the convenience of the latter discussions, we denote the critical cone of Sp
+ at X associated with Y

as
CSp

+
(X,Y ) := T (X;Sp

+) ∩ Y ⊥ = {H ∈ Sp : Pγ
TH[PβPγ ] = 0, P T

β HPβ � 0},
and the critical cone of Sp

− at Y associated with X as

CSp
−
(Y,X) := T (Y ;Sp

−) ∩X⊥ = {H ∈ Sp : Pα
TH[PαPβ] = 0, P T

β HPβ � 0}.

Lemma 2.2. [21, Corallary3.1] For any (X,Y ) ∈ gphN(·;Sp
+), let A = X + Y have the eigenvalue

decomposition (2.14). Then

T ((X,Y ); gphN(·;Sp
+)) =



















(H1,H2) ∈ Sp × Sp :

(H̃1)βα = 0, (H̃1)γγ = 0,

(H̃2)αα = 0, (H̃2)αβ = 0,

(Σαγ −Eαγ) ◦ (H̃1)αγ +Σαγ ◦ (H̃2)αγ = 0,

S
|β|
+ ∋ (H̃1)ββ ⊥ (H̃2)ββ ∈ S

|β|
−



















,

(2.17)
where H̃1 = P TH1P , H̃2 = P TH2P .

Lemma 2.3. (Hoffman’s Lemma) Let X and Y be Banach spaces, and let A : X → Y be a linear
continuous mapping with closed range (i.e., its range AX is a closed subspace of Y ). Given x∗i ∈ X∗,
i = 1, · · · , p, consider the multifunction

Υ(y, b) := {x ∈ X : Ax = y, 〈x∗i , x〉 ≤ bi, i = 1, · · · , p}. (2.18)

Then there exist a constant k > 0, depending on A and x⋆i , i = 1, · · · , p, such that for any x ∈ X and
any (y, b) ∈ dom (Υ),

dist (x,Υ(y, b)) ≤ k(‖Ax− y‖+
p

∑

i=1

[〈x∗i , x〉 − bi]+). (2.19)
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In our subsequent discussion, like [5] we need the concept of bounded linear regularity of a collection
of closed convex sets, see, e.g., [1, Definition 5.6].

Definition 2.1. Let D1,D2, · · · ,Dm ⊆ X be closed convex sets for some positive integer m. Suppose
that D := D1 ∩D2 ∩ · · · ,∩ Dm is non-empty. The collection {D1,D2, · · · ,Dm} is said to be boundedly
linearly regular if for every bounded set B ⊆ X , there exists a constant κ > 0 such that

dist (x,D) ≤ κmax{dist (x,D1), · · · ,dist (x,Dm)}, ∀x ∈ B. (2.20)

A sufficient condition to guarantee the property of bounded linear regularity was established in [2,
Corollary 3].

Lemma 2.4. Let D1,D2, · · · ,Dm ⊆ X be closed convex sets for some positive integer m. Sup-
pose that D1,D2, · · · ,Dr are polyhedrals for some r ∈ {0, 1, · · · ,m}. Then a sufficient condition for
D1,D2, · · · ,Dm to be boundedly linearly regular is

⋂

i=1,2,··· ,r

Di ∩
⋂

i=r+1,··· ,m

ri (Di) 6= ∅. (2.21)

Lemma 2.5. [5, Proposition 3.2] Let X ∈ Sp
+ and Y ∈ N(X;Sp

+). Suppose that X and Y have the
eigenvalue decompositions as in (2.15). Then it holds that :

(a) N(X;Sp
+) is a polyhedral set if and only if |α| ≥ p− 1;

(b) 0 ∈ Y + ri (N(X;Sp
+)) if and only if |β| = 0, i.e., rank (X) + rank (Y ) = p.

Similar to [5, Proposition 3.3, Proposition 3.4], we can easily obtain the following conclusions.

Lemma 2.6. Let X ∈ Sp
+ and Y ∈ N(X;Sp

+). Then N(·;Sp
+) is metrically subregular at X for Y .

Lemma 2.7. Let X̄ ∈ Sp
+ and Ȳ ∈ N(X;Sp

+). Suppose that X̄ and Ȳ have the same eigenvalue
decompositions as X and Y respectively in (2.15). Then for all (X,Y ) ∈ Sn × Sn with Y ∈ N(X;Sp

+)
sufficiently close to (x̄, ȳ) ∈ Sn × Sn, we have















X̃αα = Λα +O(‖∆X‖), X̃αβ = O(‖∆X‖), X̃αγ = O(min{‖∆X‖, ‖∆Y ‖})
X̃ββ = O(‖∆X‖), X̃βγ = O(‖∆X‖‖∆Y ‖), X̃γγ = O(‖∆X‖‖∆Y ‖),
Ỹαα = O(‖∆X‖‖∆Y ‖), Ỹαβ = O(‖∆X‖‖∆Y ‖), Ỹαγ = O(min{‖∆X‖, ‖∆Y ‖})
Ỹββ = O(‖∆Y ‖), Ỹβγ = O(‖∆Y ‖), Ỹγγ = Λγ +O(‖∆Y ‖),

(2.22)

Ỹαγ + Λ−1
α X̃αγΛγ = O(‖∆X‖‖∆Y ‖), (2.23)

where ∆X = X − X̄, ∆Y = Y − Ȳ .

3 Noncritical multipliers for semidefinite programming

Consider the following SDP problem
min f(x)
s.t. G(x) ∈ Sp

+,
(3.24)

where f : Rn → R and G : X → Sp are twice continuously differentiable functions. The Lagrangian
function of (3.24) is defined by

L(x, y) := f(x) + 〈y,G(x)〉, (x, y) ∈ R
n × Sp. (3.25)
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Let x̄ ∈ R
n be a feasible point to (3.24). We define the set of Lagrange multipliers associated with x̄ by

Λ(x̄) := {y ∈ Sp : ∇xL(x̄, y) = 0, y ∈ N(G(x̄);Sp
+)}. (3.26)

Suppose that x̄ is a feasible solution to problem (3.24). The critical cone C(x̄) of (3.24) at x̄ is defined
by

C(x̄) := {d ∈ R
n : G′(x̄)d ∈ T (G(x̄);Sp

+), f ′(x̄)d ≤ 0}. (3.27)

If x̄ is a stationary point of problem (3.24) and ȳ ∈ Λ(x̄), then

C(x̄) = {d ∈ R
n : G′(x̄)d ∈ T (G(x̄);Sp

+), f ′(x̄)d = 0}
= {d ∈ R

n : G′(x̄)d ∈ CSp
+
(G(x̄), ȳ)}. (3.28)

We say that the Robinson constraint qualification (RCQ) for problem (3.24) holds at a feasible point x̄
if

G′(x̄)Rn + T (G(x̄);Sp
+) = Sp. (3.29)

It is well known that the RCQ holds at a locally optimal solution x̄ ∈ R
n if and only if Λ(x̄) is a

nonempty, convex, and compact subset of Sp.
The SRCQ is said to hold for problem (3.24) at x̄ with respect to ȳ ∈ Λ(x̄) 6= ∅ if

G′(x̄)Rn + T (G(x̄);Sp
+) ∩ ȳ⊥ = Sp. (3.30)

The set of Lagrange multipliers Λ(x̄) is a singleton if the SRCQ holds. Let x̄ be a stationary of (3.24),
and ȳ be an associated Lagrange multiplier. Assume SRCQ is satisfied at x̄. Local optimality of x̄
implies the second order necessary condition (SONC) in the following form

〈d,∇2
xxL(x̄, ȳ)d〉 − σ(ȳ, T 2

Sp
+
(G(x̄), G′(x̄)d)) ≥ 0, ∀d ∈ C(x̄). (3.31)

Recall that the second order sufficient condition (SOSC) which ensures that x̄ is a locally optimal
solution to (3.24) is defined by

sup
ȳ∈Λ(x̄)

{〈d,∇2
xxL(x̄, ȳ)d〉 − σ(ȳ, T 2

Sp
+
(G(x̄), G′(x̄)d))} > 0, ∀d ∈ C(x̄)\{0}. (3.32)

Definition 3.1. (SOSCȳ) We say that the second order sufficient condition for problem (3.24) satisfied
at x̄ respect to ȳ ∈ Λ(x̄) is

〈d,∇2
xxL(x̄, ȳ)d〉 − σ(ȳ, T 2

Sp
+
(G(x̄), G′(x̄)d)) > 0, ∀d ∈ C(x̄)\{0}. (3.33)

Definition 3.2. (critical and noncritical multipliers) A Lagrange multiplier ȳ ∈ Λ(x̄) is called critical
multiplier for (3.24) if there exists 0 6= ξ ∈ R

n satisfying the following generalized KKT system

0 ∈ ∇2
xxL(x̄, ȳ)ξ +G′(x̄)∗(D∂δ(·;Sp

+))(G(x̄), ȳ)(G′(x̄)ξ). (3.34)

The multiplier ȳ ∈ Λ(x̄) is noncritical for (3.24) otherwise, i.e., when the generalized equation (3.34)
admits only the trivial solution ξ = 0.

For NLP it has been proved that superlinear convergence results for dual stabilization methods under
assumptions that rely on the dual estimates being close enough to a noncritical Lagrange multiplier,
see [17].

In the following, we consider the characterization of noncritical multipliers.
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Theorem 3.1. Let (x̄, ȳ) is a KKT point of (3.24). Then ȳ is noncritical for (3.24) if and only if we
can derive ξ = 0 from

{

∇2
xxL(x̄, ȳ)ξ +G′(x̄)∗η = 0,

G′(x̄)ξ −Π′
Sp
+

(G(x̄) + ȳ;G′(x̄)ξ + η) = 0, (G′(x̄)ξ, η) ∈ R
n × Sp. (3.35)

Proof. Relation (3.34) can be reformulated as

{

∇2
xxL(x̄, ȳ)ξ +G′(x̄)∗η = 0,

η ∈ (D∂δ(·;Sp
+))(G(x̄), ȳ)(G′(x̄)ξ).

(3.36)

From (2.9) we have
∂δ(·;Sp

+) = N(·;Sp
+). (3.37)

In view of the definition of the graphical derivative (see (2.12)), we have

η ∈ (D∂δ(·;Sp
+))(G(x̄), ȳ)(G′(x̄)ξ) (3.38)

which is equivalent to
(G′(x̄)ξ, η) ∈ T ((G(x̄), ȳ); gphN(·;Sp

+)). (3.39)

Note that ȳ ∈ N(G(x̄);Sp
+) ⇔ Sp

+ ∋ G(x̄) ⊥ ȳ ∈ Sp
−, so G(x̄) and ȳ have the same eigenvalue

decomposition. Applying Lemma 2.1, we obtain

Π′
Sp
+
(G(x̄) + ȳ;G′(x̄)ξ + η) = G′(x̄)ξ. (3.40)

This proof is completed. ✷

Corollary 3.1. Assume (x̄, ȳ) is a KKT point of (3.24). ȳ is critical for (3.24) if and only if the
following system

{

∇2
xxL(x̄, ȳ)ξ +G′(x̄)∗η = 0,

G′(x̄)ξ −Π′
Sp
+

(G(x̄) + ȳ;G′(x̄)ξ + η) = 0, (G′(x̄)ξ, η) ∈ R
n × Sp (3.41)

admits a solution pair (ξ, η) ∈ R
n × Sp with ξ 6= 0.

The following result provides us a useful criterion for charactering critical multipliers.

Corollary 3.2. (equivalent description of critical multipliers). Let (x̄, ȳ) be a KKT point of (3.24).
Then ȳ is critical for (3.24) if and only if the following system

∇2
xxL(x̄, ȳ)ξ +G′(x̄)∗η = 0, (3.42)

(P TG′(x̄)ξP )βγ = 0, (P TG′(x̄)ξP )γγ = 0, (3.43)

(P T ηP )αα = 0, (P T ηP )αβ = 0, (3.44)

(Σαγ − Eαγ) ◦ (P TG′(x̄)ξP )αγ +Σαγ ◦ (P T ηP )αγ = 0, (3.45)

S
|β|
+ ∋ (P TG′(x̄)ξP )ββ ⊥ (P T ηP )ββ ∈ S

|β|
− }, (3.46)

(G′(x̄)ξ, η) ∈ Sp × Sp (3.47)

admits a solution pair (ξ, η) ∈ R
n × Sp with ξ 6= 0.
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Proof. From the proof of the Theorem 3.1, we obtain that (3.34) can be reformulated as

{

∇2
xxL(x̄, ȳ)ξ +G′(x̄)∗η = 0,

(G′(x̄)ξ, η) ∈ T ((G(x̄), ȳ); gphN(·;Sp
+)).

(3.48)

Then applying Lemma 2.2, the results can be derived. ✷

We next show noncritical multipliers of SDP is compatible with the NLP case.

Example 3.1. Consider SDP (3.24) with G(x) = Diag(g1(x), · · · , gp(x)), where gi : Rn → R, i ∈
{1, · · · , p}. We denote g(x) := (g1(x), · · · , gp(x))T , Ȳ := Diag(λ̄1, · · · , λ̄p) ∈ Λ(x̄), and ȳ := (λ̄1, · · · , λ̄p)

T .
Suppose without loss of generality that x̄ satisfies g1(x̄) = · · · = gp(x̄) = 0. Denote the index subsets by

I− := {i ∈ {1, · · · , p} : λ̄i < 0} and I0 := {i ∈ {1, · · · , p} : λ̄i = 0}. (3.49)

From Theorem 3.1 we have that Ȳ is a noncritical multiplier of x̄ if and only if















∇2
xxL(x̄, ȳ)ξ + g′(x̄)∗η = 0,

η = (η1, · · · , ηp) ∈ R
p
−,

ηi∇gi(x̄)
T ξ = 0 if i ∈ I0,

∇gi(x̄)
T ξ = 0 if i ∈ I−,∇gi(x̄)

T ξ ≥ 0 if i ∈ I0

=⇒ ξ = 0. (3.50)

The above relations also illustrate that ȳ is a noncritical multiplier at x̄ for the following inequality
constrained NLP:

min f(x)
s.t. g(x) ≥ 0.

(3.51)

Now, we turn to explore the relation between noncriticality property and error bound condition.
The KKT system of (3.24) is defined by:

0 ∈
[

∇xL(x, y)
−G(x)

]

+

[

0
N(y;Sp

−)

]

. (3.52)

The canonical perturbation of system (3.52) is defined by

[

p1
p2

]

∈
[

∇xL(x, y)
−G(x)

]

+

[

0
N(y;Sp

−)

]

(3.53)

with the canonical parameter pair (p1, p2) ∈ R
n × Sp. Consider the set-valued mapping Φ : Rn × Sp

⇒

R
n × Sp associated with (3.53) by

Φ(x, y) :=

[

∇xL(x, y)
−G(x)

]

+

[

0
N(y;Sp

−)

]

(3.54)

and then define the solution map SKKT : Rn × Sp
⇒ R

n × Sp to (3.53) as the inverse to (3.54) by

SKKT(p1, p2) := {(x, y) ∈ R
n × Sp : (p1, p2) ∈ Φ(x, y)}. (3.55)

For each given (p1, p2) ∈ R
n×Sp, it is easily verified that the the solution set of the KKT system (3.53)

can be rewritten as

SKKT(p1, p2) = {(x, z −ΠSp
+
(z)) ∈ R

n × Sp : Ψ(x, z) = (p1,−p2)}, (3.56)
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where Ψ : Rn × Sp → R
n × Sp is Robinson’s normal mapping defined by

Ψ(x, z) =

[

Ψ1(x, z)
Ψ2(x, z)

]

=

[

∇f(x) +G′(x)∗(z −ΠSp
+
(z))

G(x) −ΠSp
+
(z)

]

, (x, z) ∈ R
n × Sp. (3.57)

Let (x̄, ȳ) be a solution to the KKT system (3.53) with (p1, p2) = (0, 0). Denote z̄ := G(x̄) + ȳ. Then
ΠSp

+
is globally Lipschitz continuous (with modulus 1) and G is locally Lipschitz continuous.

Theorem 3.2. (noncritical property from error bounds of solutions under canonical perturbations) Let
(x̄, ȳ) ∈ SKKT(p1, p2) with (p1, p2) = (0, 0) in (3.56). If there is a number ε > 0 and neighborhoods U
of 0 ∈ R

n, W ⊆ Sp of 0 such that for any (p1, p2) ∈ U ×W and any (xp1p2 , yp1p2) ∈ S(p1, p2)∩ Bε(x̄, ȳ)
we have the estimate

‖xp1p2 − x̄‖ = O(‖p1‖+ ‖p2‖) (3.58)

holds. Then the Lagrange multiplier ȳ ∈ Λ(x̄) satisfying (3.34) is noncritical for Problem (3.24).

Proof. To justify ȳ is noncritical, we need to verify by Theorem 3.1 that the validity of the error bound
condition in (3.58) ensures that for any solution pair (ξ, η) ∈ R

n × Sp to (3.35) we have ξ = 0. Pick up
any pair (ξ, η) ∈ R

n × Sp satisfying (3.35), let t > 0, and define (xt, zt) := (x̄ + tξ, z̄ + tG′(x̄)ξ + tη).
Thus we have for t sufficiently small that

Ψ2(xt, zt)−Ψ2(x̄, z̄) = (G(xt)−ΠSp
+
(zt))− (G(x̄)−ΠSp

+
(z̄))

= tG′(x̄)ξ − tΠ′
Sp
+

(G(x̄) + ȳ;G′(x̄)ξ + η) + o(t)

= o(t) as t ↓ 0.

(3.59)

Since Ψ2(x̄, z̄) = G(x̄)−ΠSp
+
(z̄) = 0, we have

Ψ2(xt, zt) = G(xt)−ΠSp
+
(zt) = −p2t with p2t = o(t) as t ↓ 0. (3.60)

Moreover,

Ψ1(xt, zt)−Ψ1(x̄, z̄)

= ∇f(xt)−∇f(x̄) +G′(xt)
∗(zt −ΠSp

+
(zt))−G′(x̄)∗(z̄ −ΠSp

+
(z̄))

= t∇2f(x̄)ξ + t(G′′(x̄)ξ)∗(G(x̄)−ΠSp
+
(z̄)) +G′(x̄)∗((zt −ΠSp

+
(zt))− (z̄ −ΠSp

+
(z̄))) + o(t)

= t(∇2
xxL(x̄, ȳ)ξ +G′(x̄)∗η) +G′(x̄)∗(tG′(x̄)∗ξ − (ΠSp

+
(zt)−ΠSp

+
(z̄))) + o(t)

= G′(x̄)∗(tG′(x̄)∗ξ − (ΠSp
+
(zt)−ΠSp

+
(z̄))) + o(t)

= G′(x̄)∗(tG′(x̄)∗ξ − tΠ′
Sp
+

(G(x̄) + ȳ;G′(x̄)ξ + η)) + o(t) = o(t) as t ↓ 0.

(3.61)

Since Ψ1(x̄, z̄) = ∇f(x̄) +G′(x̄)∗(z̄ −ΠSp
+
(z̄)) = 0, we deduce from the above equality that

Ψ1(xt, zt) = ∇f(xt) +G′(xt)
∗(zt −ΠSp

+
(zt)) = p1t with p1t = o(t) as t ↓ 0. (3.62)

It follow from (3.60) and (3.62) that (xt, zt) is a solution to the system Ψ(x, z) = (p1t,−p2t), where
Ψ(x, z) = (p1t,−p2t) is defined in (3.57). So (xt, yt = z−ΠSp

+
(z)) is a solution to (3.53) associated with

(p1t, p2t) and hence we arrive at

t‖ξ‖ = ‖xt‖ − ‖x̄‖ = O(‖p1t‖+ ‖p2t‖) = ‖o(t)‖ (3.63)

by (3.67). It yields ξ = 0 and thus justifies the claim. ✷

From Theorem 3.2 we know that if the multiplier for the KKT point is critical then the error bound
does not hold at this KKT point. Let us consider the following two examples, and the first one is a
convex quadratic semidefinite programming (SDP) constructed by Bonnans and Shapiro.
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Example 3.2. Consider the following problem [3, Example 4.54]:

min x1 + x21 + x22
s.t. Diag(x) + εA ∈ S2

+,
(3.64)

where x = (x1, x2) ∈ R
2, Diag(x) is the 2× 2 diagonal matrix whose ith diagonal element is xi, i = 1, 2,

A is a nondiagonal matrix in S2 , and ε is a scalar parameter. When ε = 0, the optimization problem
(3.64) has the unique optimal solution x = (0, 0) with the unique Lagrange multiplier Ȳ = [−1 0

0 0 ]. By
calculating we get that Ȳ is a critical multiplier. It is also easy to see that for any given ε ≥ 0, problem
(3.64) has a unique optimal solution X(ε) = (x1(ε), x2(ε)) with x2(ε) of order ε2/3 as ε → 0, which
illustrates that the error bound like (3.58) does not hold at (x, Ȳ ). So this example is consistent with
Theorem 3.2.

Example 3.3. Consider the following parametric problem:

min x21 + x22 + x1x2 − t1/2a

s.t. G(x) :=

[

x21 + x1x2 0
0 x22 + x1x2

]

− tB ∈ S2
+,

(3.65)

where x = (x1, x2) ∈ R
2, a := 5

3

√
3x1 +

4
3

√
3x2 ∈ R, B = [ 2 0

0 1 ] ∈ S2 , and t is a scalar parameter.
When t = 0, the optimization problem (3.65) has a KKT point (x̄, Ȳ ) = ((0, 0), O) with the multi-
plier Ȳ = O (null matrix). For any given t ≥ 0, problem (3.65) has a KKT point (X(t), Y (t)) =
((23

√
3t1/2, 13

√
3t1/2), O) which reveals that the error bound like (3.58) holds at (x̄, Ȳ ). Calculating based

on Corollary 3.2, Ȳ is a noncritical multiplier. This example is also consistent with Theorem 3.2.

In NLPs noncriticality of the multipliers is sufficient for the error bound holding at the KKT point.
We inspired by the work of Cui [5], if we assume some conditions hold, then error bound can be derived
from noncritical multipliers.

Theorem 3.3. Let (x̄, ȳ) ∈ SKKT(p1, p2) with (p1, p2) = (0, 0) in (3.56). Define











K := (CSn
+
(G(x̄), ȳ))◦,

Ξ := {(ξ, η) ∈ R
n × Sp : ∇2

xxL(x̄, ȳ)ξ +G′(x̄)∗η = 0},
C(x̄, ȳ) := {(ξ, η) ∈ R

n × Sp : G′(x̄)ξ ∈ CSp
+
(G(x̄), ȳ), η ∈ CSp

−
(ȳ, G(x̄))}.

(3.66)

Assume that the following two conditions hold:

(i) the set G′(x̄)∗K is closed;

(ii) 〈ΠK(G
′(x̄)ξ),ΠKη〉 = 0 for any (ξ, η) ∈ Ξ ∩ C(x̄, ȳ).

If the Lagrange multipliers ȳ ∈ Λ(x̄) from (3.34) is noncritical for (3.24), then there are numbers ε > 0,
κ > 0 and neighborhoods U of 0 ∈ R

n, W ⊆ Sp of 0 such that for any (p1, p2) ∈ U × W and any
(xp1p2 , yp1p2) ∈ S(p1, p2) ∩ Bε(x̄, ȳ) we have the estimate

‖xp1p2 − x̄‖ ≤ κ(‖p1‖+ ‖p2‖). (3.67)

.
In addition, if there exists ŷ ∈ Λ(x̄) such that rank (x̄) + rank (ŷ) = p, then we also have

dist (yp1p2 ,Λ(x̄)) = O(‖p1‖+ ‖p2‖). (3.68)
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Proof. We shall first show that under the given conditions, there exist constants ε > 0, κ > 0 and
neighborhoods U of 0 ∈ R

n and W ⊆ Sp of 0 such that (3.67) holds. Suppose on the contrary that
(3.67) fails, i.e., for any k ∈ N there are (p1k, p1k) ∈ B 1

k
(0) × B 1

k
(0p×p) and SKKT(p1k, p1k) ∩ B 1

k
(x̄, ȳ)

satisfying
‖xk − x̄‖

‖p1k‖+ ‖p2k‖
→ ∞ ⇔ ‖p1k‖+ ‖p2k‖

‖xk − x̄‖ → 0 as k → ∞, (3.69)

which yields p1k = o(‖xk − x̄‖) and p2k = o(‖xk − x̄‖).

p1k = ∇xL(xk, yk)

= ∇f(xk) +G′(xk)
∗yk

= ∇f(x̄) +∇2f(x̄)(xk − x̄) + (G′(x̄) +G′′(x̄)(xk − x̄))∗yk + o(‖xk − x̄‖)
= ∇f(x̄) +G′(x̄)∗ȳ +G′(x̄)∗(yk − ȳ) +∇2f(x̄)(xk − x̄) +G′′(x̄)(xk − x̄))∗yk + o(‖xk − x̄‖)
= ∇xL(x̄, ȳ) +∇2f(x̄)(xk − x̄) +G′(x̄)∗(yk − ȳ) + (G′′(x̄)(xk − x̄))∗yk + o(‖xk − x̄‖)
= ∇2f(x̄)(xk − x̄) +G′(x̄)∗(yk − ȳ) + (G′′(x̄)(xk − x̄))∗yk + o(‖xk − x̄‖).

(3.70)
Let us assume without loss of generality that

xk − x̄

‖xk − x̄‖ → ξ as k → ∞ for some ξ 6= 0. (3.71)

For simplicity, we denote
tk := ‖xk − x̄‖, (3.72)

Ω := {x ∈ Sp : [PβPγ ]
Tx[PβPγ ] = 0} (3.73)

and for all k ≥ 0,
{

G(x̄) := Ḡ, G(xk) + p2k := Gk, G̃k := P TGkP
ỹk := P T ykP, H1k := ΠΩ((yk − ȳ)/tk), H2k := (yk − ȳ)/tk −H1k ∈ K.

(3.74)

Using Lemma 2.7 and ȳ ∈ N(G(x̄), Sp
+), yk ∈ N(Gk, S

p
+) for all k ≥ 0, we deduce that for all (xk, yk)

sufficiently close to (x̄, ȳ),







(ỹk)αα = O(‖yk − ȳ‖‖Gk − Ḡ‖), (ỹk)αβ = O(‖yk − ȳ‖‖Gk − Ḡ‖),
(G̃k)βγ = O(‖yk − ȳ‖‖Gk − Ḡ‖), (G̃k)γγ = O(‖yk − ȳ‖‖Gk − Ḡ‖),
(ỹk)αγ = −Λ−1

α (G̃k)αγΛγ +O(‖yk − ȳ‖‖Gk − Ḡ‖),
(3.75)

which together with the fact that (G̃k)ββ ∈ S
|β|
+ , (ỹk)ββ ∈ S

|β|
− , yields

G′(x̄)ξ ∈ CSp
+
(G(x̄), ȳ), (3.76)

H1 := lim
k→∞

H1k = P





0 0 Λ−1
α (P TG′(x̄)ξP )

0 0 0
Λ−1
α (P TG′(x̄)ξP )TαγΛγ 0 0



P T . (3.77)

Let us divide the last equality of (3.70) by ‖xk − x̄‖ on the both sides. Since

∇2
xxL(x̄, ȳ)ξ = ∇2f(x̄)ξ + (G′′(x̄)ξ)∗ȳ, (3.78)

G′(x̄)∗K is assumed to be closed and that (3.76), (3.77) holds, there exists H2 ∈ K such that

∇2
xxL(x̄, ȳ)ξ +G′(x̄)∗(H1 +H2) = 0. (3.79)
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Let η := H1 +H2. From (3.77) and H2 ∈ K we know

η ∈ CSp
−
(ȳ, G(x̄)). (3.80)

To verify
(Σαγ − Eαγ) ◦ (P TG′(x̄)ξP )αγ +Σαγ ◦ (P T ηP )αγ = 0 (3.81)

is to verify

λi

λi − λj

(

(P TG′(x̄)ξP )ij −
λj

λi
(P TG′(x̄)ξP )ij

)

= (P TG′(x̄)ξP )ij ,∀i ∈ α,∀j ∈ γ, (3.82)

which is obvious. Then we can obtain from (3.76), (3.79) and (3.80) that (ξ, η) ∈ Ξ ∩C(x̄, ȳ). Further-
more, by using condition (ii) in this theorem we have

〈(P TG′(x̄)ξP )ββ , (P
T ηP )ββ〉 = 〈ΠK(G

′(x̄)ξ),ΠKη〉 = 0. (3.83)

From (3.76), (3.79), (3.80), (3.82), (3.83) and Theorem 3.1 we can get ξ = 0, which contradicts (3.71).
So this justifies (3.67).
Next we shall show that if there exists ŷ ∈ Λ(x̄) such that rank (x̄) + rank (ŷ) = p, then we have (3.68).
Denote

∆1 := {y ∈ Sp : ∇xL(x̄, y) = 0}, ∆2 := {y ∈ Sp : y ∈ N(G(x̄);Sp
+)}. (3.84)

Then one has Λ(x̄) = ∆1 ∩∆2 and ŷ ∈ ∆1 ∩ ri (∆2). Thus, we obtain from Lemma 2.4 that there exists
a constant κ1 > 0 such that

dist (yp1p2 ,Λ(x̄)) ≤ κ1(dist (yp1p2 ,∆1) + dist (yp1p2 ,∆2)). (3.85)

From Lemma 2.3 and the fact that p1 = ∇xL(xp1p2 , yp1p2), we see that there exist constants κ2 > 0 and
κ′2 > 0 such that

dist (yp1p2 ,∆1) ≤ κ2‖∇xL(x̄, yp1p2)‖
≤ κ2(‖∇xL(x̄, yp1p2)−∇xL(xp1p2 , yp1p2)‖+ ‖∇xL(xp1p2 , yp1p2)‖)
≤ κ′2(‖xp1p2 − x̄‖+ ‖p1‖),

(3.86)

where the last inequality comes from the fact that f(x) and G(x) are both twice continuously differen-
tiable functions. Since N(·;Sp

−) has been proven to be metrically subregular at ȳ for G(x̄) in Lemma
2.6 and yp1p2 ∈ N(G(xp1p2) + p2;S

p
+), we obtain that there exist constants κ3 > 0 and κ′3 ≥ 0 such that

dist (yp1p2 ,∆2) ≤ κ3‖G(xp1p2) + p2 −G(x̄)‖ ≤ κ′3(‖xp1p2 − x̄‖+ ‖p2‖). (3.87)

Therefore, combining the inequality (3.67) and inequalities (3.85)-(3.87) we show that (3.68) holds. This
completes the proof of this theorem. ✷

Lemma 3.1. Let △A, △B, C ∈ Sp, Ā = ΠSp
+
(C) and B̄ = C − Ā. Then

△A−Π′
Sp
+
(C;△A+△B) = 0

if and only if










△A ∈ CSp
+
(Ā, B̄),

△B + 1
2σ(B̄, T 2

Sp
+

(Ā;△A)) ∈ [CSp
+
(Ā, B̄)]◦,

〈△A,△B〉 = −σ(B̄, T 2
Sp
+

(Ā;△A)).

(3.88)
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The above Lemma can be obtained from [7, Lemma 10] directly.

Theorem 3.4. Let x̄ be a stationary point of problem (3.24) and let ȳ be an associated Lagrange
multiplier. If x̄ and ȳ satisfy the SOSCȳ (3.33), then the multiplier ȳ is noncritical.

Proof. Let (ξ, η) ∈ R
n × Sp be arbitrarily chosen such that

{

∇2
xxL(x̄, ȳ)ξ +G′(x̄)∗η = 0,

G′(x̄)ξ −Π′
Sp
+

(G(x̄) + ȳ;G′(x̄)ξ + η) = 0. (3.89)

By Lemma 3.1, we know from the first and third lines of (3.88)that

{

G′(x̄)ξ ∈ CSp
+
(G(x̄), ȳ),

〈G′(x̄)ξ, η〉 = −σ(ȳ, T 2
Sp
+

(G(x̄);G′(x̄)ξ)).
(3.90)

Thus, we have ξ ∈ C(x̄). By taking the inner product between ξ and both sides of the first equation of
(3.89), respectively, we obtain that

0 = 〈ξ,∇2
xxL(x̄, ȳ)ξ〉+ 〈G′(x̄)ξ, η〉

= 〈ξ,∇2
xxL(x̄, ȳ)ξ〉 − σ(ȳ, T 2

Sp
+

(G(x̄);G′(x̄)ξ)).
(3.91)

Hence, it follows from the SOSCȳ (3.33) for problem (3.24) that ξ = 0. Therefore the assertion is
established. ✷

4 A new error bound for x-part

Now, we restrict ourself to the estimation of x-part solutions when canonical perturbation is taken.

Theorem 4.1. Let (x̄, ȳ) ∈ SKKT(p1, p2) with (p1, p2) = (0, 0) in (3.56). Then the following properties
of problem (3.24) are equivalent:

(i) We can derive ξ = 0 from

{

∇2
xxL(x̄, ȳ)ξ = 0,

G′(x̄)ξ −Π′
Sp
+

(G(x̄) + ȳ;G′(x̄)ξ) = 0. (4.92)

(ii) There are numbers ε > 0, ℓ > 0 and neighborhoods U of 0 ∈ R
n, W ⊆ Sp of 0 such that for any

(p1, p2) ∈ U ×W and any (xp1p2 , yp1p2) ∈ S(p1, p2) ∩ Bε(x̄, ȳ) we have the estimate

‖xp1p2 − x̄‖ ≤ ℓ(‖p1‖+ ‖p2‖+ ‖yp1p2 − ȳ‖). (4.93)

Proof. To verify (i) ⇒ (ii), it suffices to check that under the validity of (i), there are numbers
ε > 0, ℓ > 0 and neighborhoods U of 0 ∈ R

n, W ⊆ Sp of 0 such that for any (p1, p2) ∈ U × W and
any (xp1p2 , yp1p2) ∈ S(p1, p2) ∩ Bε(x̄, ȳ) we have the estimation (4.93) holds. Assume for the sake of
contradiction that for any k ∈ N there are (p1k, p1k) ∈ B 1

k
(0)×B 1

k
(0p×p) and SKKT(p1k, p1k)∩B 1

k
(x̄, ȳ)

satisfying

‖xk − x̄‖
‖p1k‖+ ‖p2k‖+ ‖yk − ȳ‖ → ∞ ⇔ ‖p1k‖+ ‖p2k‖+ ‖yk − ȳ‖

‖xk − x̄‖ → 0 as k → ∞, (4.94)
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which yields p1k = o(‖xk − x̄‖), p2k = o(‖xk − x̄‖) and ‖yk − ȳ‖ = o(‖xk − x̄‖). From (3.70) we have

p1k = ∇2f(x̄)(xk − x̄) +G′(x̄)∗(yk − ȳ) + (G′′(x̄)(xk − x̄))∗yk + o(‖xk − x̄‖). (4.95)

Let us divide the above equality by ‖xk − x̄‖ on the both sides and assume without loss of generality
that

xk − x̄

‖xk − x̄‖ → ξ as k → ∞ for some ξ 6= 0. (4.96)

We arrive at
∇2

xxL(x̄, ȳ)ξ = 0. (4.97)

Since (3.75) and ‖yk − ȳ‖ = o(‖xk − x̄‖) we get

G′(x̄)ξ −Π′
Sp
+
(G(x̄) + ȳ;G′(x̄)ξ) = 0. (4.98)

By assertion (i) of the theorem we know ξ = 0 which thus contradicts (4.96). This justifies (i) ⇒ (ii).
We next verify the opposite one (ii) ⇒ (i). The proof is similar to that of the Theorem 3.2, which just
let η = 0. ✷

Theorem 4.2. Let x̄ be a stationary point of problem (3.24) and let ȳ be an associated Lagrange
multiplier. If x̄ and ȳ satisfy the SOSCȳ (3.33) then there are numbers ε > 0, ℓ > 0 and neighborhoods
U of 0 ∈ R

n, W ⊆ Sp of 0 such that for any (p1, p2) ∈ U×W and any (xp1p2 , yp1p2) ∈ S(p1, p2)∩Bε(x̄, ȳ)
we have the estimate

‖xp1p2 − x̄‖ ≤ ℓ(‖p1‖+ ‖p2‖+ ‖yp1p2 − ȳ‖). (4.99)

Proof. From Theorem 3.4 we have that if x̄ and ȳ satisfy the SOSCȳ (3.33), then the multiplier ȳ is
noncritical. If the multiplier ȳ is noncritical then the assertion (i) in Theorem 4.1 is satisfied. Using
Theorem 4.1 we have (4.99) which proves this theorem. ✷

5 Conclusion

In this paper we consider a class of generalized SDPs which are not only restricted to linear or convex
problems. When the KKT system of the SDP has nonisolated solutions we define the noncritical
multipliers and prove under certain conditions, noncriticality of multipliers is equivalent to the local
error bound holding at the KKT point, which is useful to construct algorithms that converge locally
superlinearly. We introduce a kind of second order sufficient condition SOSCȳ different from the usual
SOSC, which is a sufficient condition for noncriticality. Inspired by the structure of noncriticality of
multipliers, we show a new structure of KKT points. The equivalence between the new structure and a
new error bound for x-part has been constructed. This kind of error bound also holds when the KKT
point satisfies SOSCȳ.
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