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Abstract: The Roman dominating function on a graph G = (V,E) is a

function f : V → {0, 1, 2} such that each vertex x with f(x) = 0 is adjacent

to at least one vertex y with f(y) = 2. The value f(G) =
∑

u∈V (G)

f(u) is

called the weight of f . The Roman domination number γR(G) is defined as

the minimum weight of all Roman dominating functions. This paper defines

the Roman bondage number bR(G) of a nonempty graph G = (V,E) to be

the cardinality among all sets of edges B ⊆ E for which γR(G−B) > γR(G).

Some bounds are obtained for bR(G), and the exact values are determined for

several classes of graphs. Moreover, the decision problem for bR(G) is proved

to be NP-hard even for bipartite graphs.

Keywords: Roman domination number, Roman bondage number,NP-hardness.
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1 Introduction

In this paper, a graph G = (V,E) is considered as an undirected graph without loops

and multi-edges, where V = V (G) is the vertex set and E = E(G) is the edge set. For

each vertex x ∈ V (G), let NG(x) = {y ∈ V (G) : (x, y) ∈ E(G)}, NG[x] = NG(x) ∪ {x}.

∗The work was supported by NNSF of China (No. 11071233).
†Corresponding author: xujm@ustc.edu.cn

1

http://arxiv.org/abs/1109.3930v1


A subset S ⊆ V is a dominating set of G if NG[x]∩S 6= ∅ for every vertex x in G. The

domination number of G, denoted by γ(G), is the minimum cardinality of all dominating

sets ofG. The Roman dominating function on a graphG = (V,E), proposed by Cockayne

et al. [2], is a function f : V → {0, 1, 2} such that each vertex x with f(x) = 0 is adjacent

to at least one vertex y with f(y) = 2. Let (V0, V1, V2) be the ordered partition of V

induced by f , where Vi = {v ∈ V |f(v) = i} for i = 0, 1, 2. It is clear that V1 ∪ V2 is a

dominating set of G, called the Roman dominating set, denoted by DR = (V1, V2). For

S ⊆ V , let f(S) =
∑

u∈S

f(u). The value f(V (G)) is called the weight of f , denoted by

f(G). The Roman domination number, denoted by γR(G), is defined as the minimum

weight of all Roman dominating functions, that is,

γR(G) = min{f(G) : f is a Roman dominating function on G}.

It is clear that for a Roman dominating function f on G and a Roman dominating

set DR of G, f(DR) = 2|V2|+ |V1|. If DR is a minimum Roman dominating set of graph

G, then f(DR) = γR(G). A Roman dominating function f is called a γR-function if

f(G) = γR(G). It has been showed by Cockayne et al. [2] that for any graph G, γ(G) 6

γR(G) 6 2γ(G). A graph G is called to be Roman if γR(G) = 2γ(G). Roman domination

numbers have been studied, for example, in [2, 3, 5, 6, 11, 12, 13, 14, 15, 16, 20].

To measure the vulnerability or the stability of the domination in an interconnection

network under edge failure, Fink et at. [4] proposed the concept of the bondage number

in 1990. The bondage number, denoted by b(G), of G is the minimum number of edges

whose removal from G results in a graph with larger domination number of G.

Analogously, we can define the Roman bondage number. The Roman bondage num-

ber, denoted by bR(G), of a nonempty graph G is the minimum number of edges whose

removal from G results in a graph with larger Roman domination number. Precisely

speaking, the Roman bondage number

bR(G) = min{|B| : B ⊆ E(G), γR(G− B) > γR(G)}.

An edge set B that γR(G − B) > γR(G) is called the Roman bondage set and the

minimum one the minimum Roman bondage set. In fact, if B is a minimum Roman
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bondage set, then γR(G − B) = γR(G) + 1, because the removal of one single edge can

not increase the Roman domination number by more than one. If bR(G) does not exist

we define bR(G) = ∞.

In this paper, we give an original investigation. Some bounds are obtained for bR(G),

and the exact values are determined for several classes of graphs. Moreover, the decision

problem for bR(G) is proved to be NP-hard even for bipartite graphs.

In the proofs of our results, when a Roman dominating function of a graph is con-

structed, we only give its nonzero value of some vertices.

2 Some basic results on γR

For terminology and notation on graph theory not given here, the reader is referred to

[8, 9, 19].

Let G = (V,E) be a graph and EG(x) = {xy ∈ E(G) : y ∈ NG(x)}. For two disjoint

nonempty sets S, T ⊂ V (G), EG(S, T ) = E(S, T ) denotes the set of edges between S

and T . The degree of x is denoted by dG(x), which is equal to |NG(x)|, and ni denotes

the number of vertices of degree i in G for i = 1, 2, · · · ,∆(G). Denote the maximum and

the minimum degree of G by ∆(G) and δ(G), respectively.

The symbols Pn and Cn denote a path and a cycle, respectively, where V (Pn) =

V (Cn) = {x1, x2, · · · , xn}, E(Pn) = {xixi+1 : i = 1, 2, · · · , n} and E(Cn) = E(Pn) ∪

{x1xn}.

The Cartesian product graph G1×G2 of two graphs G1 = (V1, E1) and G2 = (V2, E2)

is a graph with vertex-set V = V1 × V2 = {(x, y) : x ∈ V1, y ∈ V2}, and two vertices

(x1, y1) and (x2, y2) being adjacent if and only if either x1 = x2, y1 and y2 are adjacent

in G2, or y1 = y2, x1 and x2 are adjacent in G1.

In this section, we recall some basic results on γR, which will be used in our discussion.

Lemma 2.1 (Cockayne et al. [2]) For a path Pn and a cycle Cn,

γR(Pn) = γR(Cn) =

⌈

2n

3

⌉

.
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For a grid graph P2 × Pn,

γR(P2 × Pn) = n+ 1.

For a complete t-partite graph Km1,m2,···,mt
with 1 ≤ m1 ≤ m2 ≤ · · · ≤ mt and t ≥ 2,

γR(Km1,m2,···,mt
) =







2, if m1 = 1;
3, if m1 = 2;
4, if m1 ≥ 3.

Lemma 2.2 (Cockayne et al. [2]) If G is a graph of order n and contains vertices of

degree n− 1, then γR(G) = 2.

Lemma 2.3 Let G be a nonempty graph with order n ≥ 3, then γR(G) = 3 if and only

if ∆(G) = n− 2.

Proof. Assume that u is a vertex of degree n−2 and v is the unique vertex not adjacent

to u in G. It is easy to verify that γR(G) ≥ 3. Let f be a function from V (G) to {0, 1, 2}

subject to

f(x) =







2, if x = u;
1, if x = v;
0, otherwise.

Then f is a Roman dominating function of G with f(G) = 3. Thus, γR(G) = 3.

Conversely, assume γR(G) = 3, then ∆(G) ≤ n − 2 by Lemma 2.2. Let f be a

γR-function of G.

If there is no vertex u with f(u) = 2, then f(v) = 1 for each vertex v ∈ V (G), and

so n = 3 since f(G) = γR(G) = 3. Sine G is nonempty and not K3, G consists of K2

and an isolated vertex. Thus, ∆(G) = 1 = n− 2.

If there is a vertex u with f(u) = 2, then there is only one vertex v ∈ V (G) with

f(v) = 1 since f(G) = γR(G) = 3. The other n − 2 vertices assigned 0 are all adjacent

to u. Thus, ∆(G) ≥ dG(u) ≥ n− 2 and hence ∆(G) = n− 2.

Lemma 2.4 Let G be an (n− 3)-regular graph with order n ≥ 4. Then γR(G) = 4.

Proof. Since G is (n− 3)-regular and n ≥ 4, G is nonempty. It is clear that γR(G) > 2.

By Lemma 2.3, γR(G) 6= 3 since ∆(G) = n − 3. Then γR(G) ≥ 4. For any vertex
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x ∈ V (G), let y, z be the only two vertices not adjacent to x in G, let f(x) = 2 and

f(y) = f(z) = 1. Then, f is a Roman dominating function of G with f(G) = 4, hence

γR(G) ≤ 4. Thus, γR(G) = 4.

Lemma 2.5 (Cockayne et al. [2]) For any graph G, γ(G) ≤ γR(G) ≤ 2γ(G).

Lemma 2.6 (Cockayne et al. [2]) For any graph G of order n, γ(G) = γR(G) if and

only if G = K̄n.

Lemma 2.7 (Cockayne et al. [2]) If G is a connected graph of order n, then γR(G) =

γ(G) + 1 if and only if there is a vertex v ∈ V (G) of degree n− γ(G).

A graph G is called to be vertex domination-critical ( vc-graph for short) if γ(G−x) <

γ(G) for any vertex x in G.

Lemma 2.8 (Brigham, Chinn and Dutton [1], 1988) A graph G with γ(G) = 2 is a vc-

graph if and only if G is a complete graph K2t (t ≥ 2) with a perfect matching removed.

A graph G of order n is vertex Roman domination-critical ( vrc-graph for short) if

γR(G) 6= n and γR(G − x) < γR(G) for any vertex x in G. For example, for a positive

integer k, both C3k+1 and C3k+2 are vrc-graphs by Lemma 2.1. From the definition, it is

clear that γR(G) ≥ 3 if G is a vrc-graph with order at least 3.

Lemma 2.9 If G is a vrc-graph with γR(G) = 3, then G is a vc-graph with γ(G) = 2.

Proof. Let G be a vrc-graph with γR(G) = 3. From the definition of vrc-graph,

|V (G)| > γR(G) = 3. By Lemma 2.3, ∆(G) = |V (G)| − 2 and hence γ(G) = 2. For any

vertex x, if γR(G − x) < γR(G) = 3, then γR(G− x) = 2 since G − x is nonempty. By

Lemma 2.2, G− x contains vertices of degree |V (G− x)| − 1 and, hence, γ(G− x) = 1,

which implies that G is a vc-graph.
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3 The exact values of bR for some graphs

Lemma 3.1 Let G be a graph with order n ≥ 3 and t be the number of vertices of degree

n− 1 in G. If t ≥ 1 then bR(G) = ⌈ t
2
⌉.

Proof. Let H be a spanning subgraph of G obtained by removing fewer than ⌈ t
2
⌉ edges

from G. Then H contains vertices of degree n − 1 and, hence, γR(H) = 2 = γR(G) by

Lemma 2.2, which implies bR(G) ≥ ⌈ t
2
⌉.

Since G contains t vertices of degree n−1, it contains a complete subgraphKt induced

by these t vertices. We can remove ⌈ t
2
⌉ edges such that no vertices have degree n−1 and,

hence, γR(H) ≥ 3 > 2 = γR(G) since n ≥ 3. Thus bR(G) ≤ ⌈ t
2
⌉, whence bR(G) = ⌈ t

2
⌉.

Corollary 3.1 For a complete graph Kn (n ≥ 3), bR(Kn) = ⌈n
2
⌉.

Theorem 3.1 For a path Pn with n ≥ 3,

bR(Pn) =

{

1, if n ≡ 0, 1 (mod 3);
2, otherwise.

Proof. Let Pn = (x1, x2, . . . , xn) be a path. By Lemma 2.1, γR(Pn) = ⌈2n
3
⌉.

If n ≡ 0, 1 (mod3), then

γR(Pn − x2x3) = 2 +

⌈

2(n− 2)

3

⌉

= 1 +

⌈

2n− 1

3

⌉

= 1 + γR(Pn),

and hence bR(Pn) ≤ 1, whence bR(Pn) = 1.

If n ≡ 2 (mod 3), then for any edge e = xixi+1 ∈ E(Pn),

γR(Pn − e) =

⌈

2i

3

⌉

+

⌈

2(n− i)

3

⌉

≤

⌈

2(n− i) + 2i+ 2

3

⌉

=

⌈

2n

3

⌉

= γR(Pn),

and hence bR(Pn) ≥ 2. Since

γR(Pn − x2x3 − x4x5) = 2 + 2 +

⌈

2(n− 4)

3

⌉

= 1 +

⌈

2n+ 1

3

⌉

≥ 1 + γR(Pn),

we have bR(Pn) ≤ 2, whence bR(Pn) = 2.

Corollary 3.2 For a cycle Cn with n ≥ 3,

bR(Cn) =

{

2, if n = 0, 1 (mod3);
3, otherwise.
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Lemma 3.2 Let Pn = (x1, x2, . . . , xn) be a path, and use ui,j to denote the vertex (xi, xj)

in P2×Pn, where 1 ≤ i ≤ 2 and 1 ≤ j ≤ n. Then there exists a γR-function f on P2×Pn

such that f(u1,1) = 2 or f(u2,1) = 2 or f(u1,n) = 2 or f(u2,n) = 2.

Proof. Without loss of generality, we only need to find a γR-function f on P2×Pn with

f(u1,1) = 2. Define a Roman dominating function f as follows. For each non-negative

integer i with 1 + 4i ≤ n, let f(u1,1+4i) = 2, and for each non-negative integer j with

3 + 4j ≤ n, let f(u2,3+4j) = 2. If n ≡ 0 (mod 4), let f(u1,n) = 1, and if n ≡ 2 (mod 4),

let f(u2,n) = 1. Then f(P2 × Pn) = n + 1 and, hence by Lemma 2.1, f is a γR-function

with f(u1,1) = 2.

Theorem 3.2 bR(P2 × Pn) = 2 for n ≥ 2.

Proof. By Lemma 2.1, we have γR(P2 × Pn) = n + 1. Since γR(P2 × Pn − u1,1u1,2 −

u2,1u2,2) = 2 + γR(P2 × Pn−1) = n + 2, we have bR(P2 × Pn) ≤ 2. Next we prove that

γR(P2 × Pn − e) ≤ γR(P2 × Pn) for any edge e ∈ E(P2 × Pn).

Suppose that e is incident with some vertex in {u1,1, u2,1, u1,n, u2,n}. Without loss

of generality let e be incident with u1,1. By Lemma 3.2, there exists a γR-function f

on P2 × (Pn − P1) such that f(u2,2) = 2. Denote f(u1,1) = 1 and then f is a Roman

dominating function of P2 ×Pn − e with f(P2×Pn − e) = n+1, thus γR(P2×Pn − e) ≤

γR(P2 × Pn).

Suppose that e is incident with some vertex in {ui,j : 1 ≤ i ≤ 2, 2 ≤ j ≤ n −

1} \ {u1,1, u2,1, u1,n, u2,n}. Without loss of generality let e be incident with u1,j and

not incident with u1,j−1. By Lemma 3.2, there exists a γR-function f1 on P2 × Pj−1

with f1(u1,j−1) = 2 and a γR-function f2 on P2 × (Pn − Pj) with f2(u2,j+1) = 2. Then

f = f1∪ f2 is a Roman dominating function on P2×Pn− e with f(P2×Pn− e) = n+1,

thus γR(P2 × Pn − e) ≤ γR(P2 × Pn).

The above two cases yield that bR(P2 × Pn) ≥ 2 and, hence, bR(P2 × Pn) = 2. The

lemma follows.
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4 Complexity of Roman bondage number

In this section, we will show that the Roman bondage number problem is NP-hard and

the Roman domination number problem is NP-complete even for bipartite graphs. We

first state the problem as the following decision problem.

Roman bondage number problem (RBN):

Instance: A nonempty bipartite graph G and a positive integer k.

Question: Is bR(G) ≤ k?

Roman domination number problem (RDN):

Instance: A nonempty bipartite graph G and a positive integer k.

Question: Is γR(G) ≤ k?

Following Garey and Johnson’s techniques for proving NP-completeness given in [7],

we prove our results by describing a polynomial transformation from the known-well

NP-complete problem: 3SAT. To state 3SAT, we recall some terms.

Let U be a set of Boolean variables. A truth assignment for U is a mapping t : U →

{T, F}. If t(u) = T , then u is said to be “ true” under t; If t(u) = F , then u is said to

be “ false” under t. If u is a variable in U , then u and ū are literals over U . The literal

u is true under t if and only if the variable u is true under t; the literal ū is true if and

only if the variable u is false.

A clause over U is a set of literals over U . It represents the disjunction of these

literals and is satisfied by a truth assignment if and only if at least one of its members

is true under that assignment. A collection C of clauses over U is satisfiable if and only

if there exists some truth assignment for U that simultaneously satisfies all the clauses

in C . Such a truth assignment is called a satisfying truth assignment for C . The 3SAT

is specified as follows.

3-satisfiability problem (3SAT):

Instance: A collection C = {C1, C2, . . . , Cm} of clauses over a finite set

U of variables such that |Cj| = 3 for j = 1, 2, . . . , m.

Question: Is there a truth assignment for U that satisfies all the clauses

in C ?
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Theorem 4.1 (Theorem 3.1 in [7]) 3SAT is NP-complete.

Theorem 4.2 RBN is NP-hard even for bipartite graphs.

Proof. The transformation is from 3SAT. Let U = {u1, u2, . . . , un} and C = {C1, C2, . . . ,

Cm} be an arbitrary instance of 3SAT. We will construct a bipartite graph G and choose

an integer k such that C is satisfiable if and only if bR(G) ≤ k. We construct such a

graph G as follows.

For each i = 1, 2, . . . , n, corresponding to the variable ui ∈ U , associate a graph Hi

with vertex set V (Hi) = {ui, ūi, vi, v
′

i, xi, yi, zi, wi} and edge set E(Hi) = {uivi, uizi, ūiv
′

i,

ūizi, yivi, yiv
′

i, yizi, wivi, wiv
′

i, wizi, xivi, xiv
′

i}. For each j = 1, 2, . . . , m, corresponding to

the clause Cj = {pj, qj , rj} ∈ C , associate a single vertex cj and add edge set Ej =

{cjpj , cjqj , cjrj}, 1 ≤ j ≤ m. Finally, add a path P = s1s2s3, join s1 and s3 to each

vertex cj with 1 ≤ j ≤ m and set k = 1.

Figure 1 shows an example of the graph obtained when U = {u1, u2, u3, u4} and

C = {C1, C2, C3}, where C1 = {u1, u2, ū3}, C2 = {ū1, u2, u4}, C3 = {ū2, u3, u4}.

s2

s1 s3

c2

c1 c3

u1 ū1 u2 ū2 u3 ū3 u4 ū4

v1 v′1 v2 v′2 v3 v′3 v4 v′4

w1 w2 w3 w4

z1 z2

z3

z4

y1 y2 y3 y4

x1 x2 x3 x4

Figure 1: An instance of the Roman bondage number problem resulting from an instance of 3SAT.
Here k = 1 and γR(G) = 18, where the bold vertex w means a Roman dominating function with
f(w) = 2.

9



To prove that this is indeed a transformation, we only need to show that bR(G) = 1

if and only if there is a truth assignment for U that satisfies all clauses in C . This aim

can be obtained by proving the following four claims.

Claim 4.1 γR(G) ≥ 4n + 2. Moreover, if γR(G) = 4n + 2, then for any γR-function f

on G, f(Hi) = 4 and at most one of f(ui) and f(ūi) is 2 for each i, f(cj) = 0 for

each j and f(s2) = 2.

Proof. Let f be a γR-function of G, and let H ′

i = Hi − ui − ūi.

If f(ui) = 2 and f(ūi) = 2, then f(Hi) ≥ 4. Assume either f(ui) = 2 or f(ūi) = 2,

if f(xi) = 0 or f(yi) = 0, then there is at least one vertex t in {vi, v̄i, zi} such that

f(t) = 2. And hence f(H ′

i) ≥ 2. Thus, f(Hi) ≥ 4.

If f(ui) 6= 2 and f(ūi) 6= 2, let f ′ be a restriction of f on H ′

i, then f ′ is a Roman

dominating function of H ′

i, and f ′(H ′

i) ≥ γR(H
′

i). Since the maximum degree of

H ′

i is V (H ′

i)− 3, by Lemma 2.3, γR(H
′

i) > 3 and hence f ′(H ′

i) ≥ 4 and f(Hi) ≥ 4.

If f(s1) = 0 or f(s3) = 0, then there is at least one vertex t in {c1, · · · , cm, s2} such

that f(t) = 2. Then f(NG[V (P )]) ≥ 2, and hence γR(G) ≥ 4n+ 2.

Suppose that γR(G) = 4n + 2, then f(Hi) = 4 and since f(NG[xi]) ≥ 1, at

most one of f(ui) and f(ūi) is 2 for each i = 1, 2, . . . , n, while f(NG[V (P )]) = 2.

Then we have f(s2) = 2 since f(NG[s2]) ≥ 1. Consequently, f(cj) = 0 for each

j = 1, 2, . . . , m.

Claim 4.2 γR(G) = 4n+ 2 if and only if C is satisfiable.

Proof. Suppose that γR(G) = 4n + 2 and let f be a γR-function of G. By Claim

4.1, at most one of f(ui) and f(ūi) is 2 for each i = 1, 2, . . . , n. Define a mapping

t : U → {T, F} by

t(ui) =

{

T if f(ui) = 2 or f(ui) 6= 2 andf(ūi) 6= 2,
F if f(ūi) = 2.

i = 1, 2, . . . , n. (4.1)

We now show that t is a satisfying truth assignment for C . It is sufficient to show

that every clause in C is satisfied by t. To this end, we arbitrarily choose a clause
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Cj ∈ C with 1 ≤ j ≤ m.

By Claim 4.1, f(cj) = f(s1) = f(s3) = 0. There exists some i with 1 ≤ i ≤ n

such that f(ui) = 2 or f(ūi) = 2 where cj is adjacent to ui or ūi. Suppose that

cj is adjacent to ui where f(ui) = 2. Since ui is adjacent to cj in G, the literal

ui is in the clause Cj by the construction of G. Since f(ui) = 2, it follows that

t(ui) = T by (4.1), which implies that the clause Cj is satisfied by t. Suppose that

cj is adjacent to ūi where f(ūi) = 2. Since ūi is adjacent to cj in G, the literal ūi

is in the clause Cj . Since f(ūi) = 2, it follows that t(ui) = F by (4.1). Thus, t

assigns ūi the truth value T , that is, t satisfies the clause Cj. By the arbitrariness

of j with 1 ≤ j ≤ m, we show that t satisfies all the clauses in C , that is, C is

satisfiable.

Conversely, suppose that C is satisfiable, and let t : U → {T, F} be a satisfying

truth assignment for C . Create a function f on V (G) as follows: if t(ui) = T , then

let f(ui) = f(v′i) = 2, and if t(ui) = F , then let f(ūi) = f(vi) = 2. Let f(s2) = 2.

Clearly, f(G) = 4n + 2. Since t is a satisfying truth assignment for C , for each

j = 1, 2, . . . , m, at least one of literals in Cj is true under the assignment t. It

follows that the corresponding vertex cj in G is adjacent to at least one vertex w

with f(w) = 2 since cj is adjacent to each literal in Cj by the construction of G.

Thus f is a Roman dominating function of G, and so γR(G) ≤ f(G) = 4n+ 2. By

Claim 4.1, γR(G) ≥ 4n+ 2, and so γR(G) = 4n+ 2.

Claim 4.3 γR(G− e) ≤ 4n+ 3 for any e ∈ E(G).

Proof. For any edge e ∈ E(G), it is sufficient to construct a Roman dominating

function f with weight 4n + 3 of G. We first assume e ∈ EG(s1) or e ∈ EG(s3)

or e ∈ EG(cj) for each j = 1, 2, . . . , m, without loss of generality let e ∈ EG(s1)

or e = cjui or e = cjūi. Let f(s3) = 2, f(s1) = 1 and f(ui) = f(v′i) = 2 for

each i = 1, 2, . . . , n. For the edge e /∈ EG(ui) and e /∈ EG(v
′

i) or e = ūizi, let

f(s1) = 2, f(s3) = 1 and f(ui) = f(v′i) = 2. For the edge e /∈ E(ūi) and e /∈ E(vi)

or e = uizi, let f(s1) = 2, f(s3) = 1 and f(ūi) = f(vi) = 2. If e = uivi or e = ūiv
′

i,
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let f(s1) = 2, f(s3) = 1 and f(xi) = f(zi) = 2. Then f is a Roman dominating

function of G− e with f(G− e) = 4n+ 3 and hence γR(G− e) ≤ 4n+ 3.

Claim 4.4 γR(G) = 4n+ 2 if and only if bR(G) = 1.

Proof. Assume γR(G) = 4n+2 and consider the edge e = s1s2. Suppose γR(G) =

γR(G− e). Let f ′ be a γR-function of G− e. It is clear that f ′ is also a γR-function

on G. By Claim 4.1 we have f ′(cj) = 0 for each j = 1, 2, . . . , m and f ′(s2) = 2.

But then f ′(NG−e[s1]) = 0, a contradiction. Hence, γR(G) < γR(G − e), and so

bR(G) = 1.

Now, assume bR(G) = 1. By Claim 4.1, we have that γR(G) ≥ 4n+2. Let e′ be an

edge such that γR(G) < γR(G−e′). By Claim 4.3, we have that γR(G−e′) ≤ 4n+3.

Thus, 4n+ 2 ≤ γR(G) < γR(G− e′) ≤ 4n+ 3, which yields γR(G) = 4n+ 2.

By Claim 4.2 and Claim 4.4, we prove that bR(G) = 1 if and only if there is a truth

assignment for U that satisfies all clauses in C . Since the construction of the Roman

bondage number instance is straightforward from a 3-satisfiability instance, the size of

the Roman bondage number instance is bounded above by a polynomial function of the

size of 3-satisfiability instance. It follows that this is a polynomial reduction.

The theorem follows.

Corollary 4.1 Roman domination number problem is NP-complete even for bipartite

graphs.

Proof. It is easy to see that the Roman bondage problem is in NP since a nondeter-

ministic algorithm need only guess a vertex set pair (V1, V2) with |V1| + 2|V2| ≤ k and

check in polynomial time whether that for any vertex u ∈ V \ (V1 ∪ V2) whether there is

a vertex in V2 adjacent to u for a given nonempty graph G.

We use the same method as Theorem 4.2 to prove this conclusion. We construct the

same graph G but does not contain the path P . We set k = 4n, then use the same

methods as Claim 4.1 and 4.2, we have that γR(G) = 4n if and only if C is satisfiable.
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5 General bounds

Lemma 5.1 Let H be a spanning subgraph obtained by removing k edges from a graph

G. Then bR(G) ≤ bR(H) + k.

Proof. Let B = E(G) \ E(H) and B′ be a minimum Roman bondage set of H . Then

|B| = k, |B′| = bR(H) and γR(H − B′) > γR(H). Let f : V → {0, 1, 2} be a Roman

dominating function on H with f(H) = γR(H). Then each vertex x with f(x) = 0 is

adjacent to at least one vertex y with f(y) = 2 in H , and so is in G since H = G− B,

which implies that f is a Roman dominating function of G, and so f(G) ≥ γR(G). It

follows that γR(G − B − B′) = γR(H − B′) > γR(H) ≥ γR(G) and, hence, bR(G) ≤

|B|+ |B′| = bR(H) + k.

Theorem 5.1 bR(G) ≤ dG(x) + dG(y) + dG(z)− |NG(y) ∩NG({x, z})| − 3 for any path

(x, y, z) of length 2 in a graph G.

Proof. Let Fy = {(y, u) ∈ E(G) : u ∈ NG(y) ∩ NG({x, z})}, B = EG(x) ∪ EG(z) ∪

(EG(y) \ Fy). Then

|B| = dG(x) + dG(y) + dG(z)− |NG(y) ∩NG({x, z})| − 2.

Let H = G−B + yz. Then x is an isolated vertex and z is a vertex of degree 1 which is

only adjacent to y in H . Let f be a minimum Roman dominating function of H , then

f(x) = 1 and 1 ≤ f(y) + f(z) ≤ 2.

If f(y)+f(z) = 2, then let f ′ = f except f ′(x) = 0, f ′(y) = 2 and f ′(z) = 0. Clearly,

f ′ is a Roman dominating function of G with f ′(G) < f(H) and, hence, bR(G) ≤ |B|−1.

If f(y) + f(z) = 1, then f(y) = 0 and f(z) = 1. There is an edge (u, y) ∈ Fy with

f(u) = 2. Let f ′ = f except f ′(x) = 0 if u ∈ NG(x) or f
′(z) = 0 if u ∈ NG(z) \NG(x).

Then f ′ is a Roman dominating function of G with f ′(G) < f(H), and hence bR(G) ≤

|B| − 1.

Theorem 5.2 bR(G) ≤ dG(x)+dG(y)+dG(z)−|NG(y)∩NG({x, z})|−|NG(x)∩NG(z)|−1

for any path (x, y, z) of length 2 in a graph G.

13



Proof. Let Fy = {(y, u) ∈ E(G) : u ∈ NG(y) ∩ NG({x, z})} and Fz = {(z, u) ∈ E(G) :

u ∈ (NG(z)∩NG(x))}, B = EG(x)∪ (EG(z)\Fz)∪ (EG(y)\Fy) and H = G−B. Then x

is an isolated vertex in H . Let f be a minimum Roman dominating function of H , then

f(x) = 1. We will construct a Roman dominating function f ′ of G with f ′(G) < f(H).

If f(z) = 0, then there is an edge (z, s) ∈ Fz with f(s) = 2. Thus, if f(y) = 2 or

f(z) = 0, let f ′ = f except f ′(x) = 0. In the following, let f(y) 6= 2 and f(z) 6= 0.

If f(y) = 0. Then there is a vertex s ∈ Fy such that f(s) = 2. If s ∈ NG(x), let

f ′ = f except f ′(x) = 0. If s ∈ NG(z) \NG(x), let f
′ = f except f ′(z) = 0.

If f(y) = 1. If f(z) = 1, let f ′ = f except f ′(x) = f ′(z) = 0 and f ′(y) = 2. If

f(z) = 2, let f ′ = f except f ′(y) = 0.

Then f ′ is a Roman dominating function of G with f ′(G) < f(H), and hence bR(G) ≤

|B| ≤ dG(x) + dG(y) + dG(z)− |NG(y) ∩NG({x, z})| − |NG(x) ∩NG(z)| − 1.

Corollary 5.1 bR(G) ≤ min{dG(x)+ dG(y)+ dG(z)−|NG(y)∩NG({x, z})|−3, dG(x)+

dG(y) + dG(z) − |NG(y) ∩ NG({x, z})| − |NG(x) ∩ NG(z)| − 1} for any path (x, y, z) of

length 2 in a graph G.

Corollary 5.2 bR(G) ≤ 2∆(G) + δ(G)− 3 for any graph with diameter at least two.

Corollary 5.3 For any tree T of order at least 3, then bR(T ) ≤ ∆(T ).

Proof. If there is a vertex x adjacent to at least two vertices of degree one in T ,

say u1 and u2, then (u1, x, u2) is a path of length 2 in T . By Lemma 5.1, bR(T ) ≤

dT (u1) + dT (x) + dT (u2)− 3 ≤ ∆(T )− 1.

Assume now that each vertex of T is adjacent to at most one vertex of degree one.

Then T has a vertex u of degree 2 adjacent to exactly one vertex, say v, of degree one.

Let w be the other vertex adjacent to u. Then (v, u, w) is a path of length 2 in T . By

Lemma 5.1, bR(T ) ≤ dT (v) + dT (u) + dT (w)− 3 ≤ ∆(T ).

Lemma 5.2 Let G be a connected graph of order n (≥ 3) and γR(G) = γ(G) + 1. If

there is an set B of edges with γR(G−B) = γR(G), then ∆(G) = ∆(G− B).
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Proof. Since G is connected and n ≥ 3, γR(G) = γ(G) + 1 ≤ n− 1. Since γR(G−B) =

γR(G) ≤ n−1, G−B is nonempty. By Lemma 2.5 and Lemma 2.6, γR(G−B) ≥ γ(G−

B)+1. Since γR(G−B) = γR(G) = γ(G)+1 ≤ γ(G−B)+1, γR(G−B) = γ(G−B)+1

and γ(G−B) = γ(G).

If G−B is connected, then by Lemma 2.7, ∆(G−B) = n− γ(G−B) = n− γ(G) =

∆(G).

If G − B is disconnected, then let G1 be a nonempty connected component of G −

B. By Lemma 2.5 and 2.6, γR(G1) ≥ γ(G1) + 1. Then γ(G) + 1 = γR(G − B) ≥

γR(G1) + γR(G− G1) ≥ γ(G1) + 1 + γ(G− G1) ≥ γ(G) + 1, thus γR(G1) = γ(G1) + 1,

γR(G − G1) = γ(G − G1) and γ(G) = γ(G1) + γ(G − G1). By Lemma 2.6, G − G1 is

empty and hence γ(G−G1) = |V (G−G1)|. By Lemma 2.7, ∆(G1) = |V (G1)|−γ(G1) =

n− |V (G−G1)| − γ(G1) = n− γ(G−G1)− γ(G1) = n− γ(G) = ∆(G).

Theorem 5.3 Let G be a connected graph of order n (≥ 3) and γR(G) = γ(G) + 1.

Then bR(G) ≤ min{b(G), n∆}, where n∆ is the number of vertices with maximum degree

∆ in G.

Proof. Since n ≥ 3 and G is connected, ∆(G) ≥ 2 and hence γ(G) ≤ n− 2. Let B be a

minimum bondage set of G. Then G−B is nonempty and by Lemma 2.5 and Lemma 2.6.

Thus, γR(G−B) ≥ γ(G− B) + 1 > γ(G) + 1 = γR(G) and hence bR(G) ≤ b(G).

We now prove that bR(G) ≤ n∆. By Lemma 2.7, γR(G) = γ(G)+1 if and only if there

is a vertex of degree n− γ(G). If there is a vertex s in G such that dG(s) > n − γ(G),

let f(s) = 2 and f(w) = 1 for any vertex w not in NG[s], then f is a Roman dominating

function of G with f(G) = γ(G), a contradiction. Thus, ∆(G) = n − γ(G). We can

remove a smallest edge set B with |B| ≤ n∆ edges from G such that ∆(G − B) <

∆(G) = n − γ(G) and G − B is nonempty. Since G − B is nonempty, by Lemma 2.5

and Lemma 2.6, γR(G − B) ≥ γ(G − B) + 1. Assume γR(G − B) = γR(G), then by

Lemma 5.2, ∆(G−B) = ∆(G) = n−γ(G), a contradiction. Hence bR(G) ≤ |B| ≤ n∆.

Theorem 5.4 For Roman graph G, bR(G) ≥ b(G).
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Proof. LetB be a minimum Roman bondage set ofG, then γR(G−B) > γR(G) = 2γ(G).

By Lemma 2.5, γR(G−B) ≤ 2γ(G−B), then γ(G−B) > γ(G) and hence bR(G) ≥ b(G).

The equality in Theorem 5.4 can hold, for example, b(C3k) = 2 = bR(C3k), and the

strict inequality can also hold, for example, b(C3k+2) = 2 < 3 = bR(C3k+2).

Theorem 5.5 Let G be a nonempty graph with γR(G) ≥ 3. Then bR(G) ≤ (γR(G) −

2)∆(G) + 1.

Proof. The proof proceeds by induction on γR(G).

We first assume that γR(G) = 3. Then by Lemma 2.3, ∆(G) = |V (G)| − 2. Assume

that bR(G) ≥ ∆(G)+2. Let u be a vertex of maximum degree in G. We have γR(G−u) =

γR(G)− 1 = 2. There is a vertex v that is adjacent to every vertex in G− u and hence

vu /∈ E(G). Since bR(G − u) ≥ 2, then for any edge e ∈ EG−u(v), γR(G − u − e) = 2.

Thus there is a vertex w that is adjacent to every vertex of G − u − e. But, since v

is the only vertex of G that is not adjacent to u, wu ∈ E(G), dG(w) = |V (G)| − 1, a

contradiction. Thus, bR(G) ≤ ∆(G) + 1 if γR(G) = 3.

Assume the induction hypothesis for any integer k and any graph H with γR(H) =

k ≥ 3. Let G be a nonempty graph with γR(G) = k + 1, and assume that bR(G) ≥

(k − 1)∆(G) + 2. For any vertex u of G, let H = G− u. Then, γR(H) = γR(G)− 1 = k

since dG(u) < bR(G). By the inductive hypothesis and by Lemma 5.1, we have

bR(G) ≤ bR(H) + dG(u)
≤ (k − 2)∆(H) + 1 + dG(u)
≤ (k − 2)∆(G) + 1 + ∆(G)
= (k − 1)∆(G) + 1,

a contradiction. Thus, bR(G) ≤ (k − 1)∆(G) + 1, and by the principle of mathematical

induction, bR(G) ≤ (γR(G)− 2)∆(G) + 1.

Use κ(G) (resp. λ(G)) to denote the vertex-connectivity (resp. the edge-connectivity)

of a connected graph G which is the minimum number of vertices (resp, edges) whose

removal results in G disconnected. The famous Whitney’s inequality can be stated as

κ(G) 6 λ(G) 6 δ(G) for any graph G. A subset F ⊆ E(G) is called a λ-cut if |F | = λ(G)

and G− F is disconnected.
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Theorem 5.6 If G is a connected graph with order at least 3, then bR(G) ≤ 2∆(G) +

λ(G)− 3, where λ(G) is the edge-connectivity of G.

Proof. Let G be a connected graph with edge-connectivity λ(G) and F be λ-cut of G.

Then H = G−F has exact two connected components. Let x, y ∈ V (G), xy ∈ F , andHx

and Hy denote the components of G−F containing x and y, respectively. Without loss of

generality, let z be adjacent to x inHx since |V (G)| ≥ 3. LetB = F∪EHx
(x)∪EHx

(z)−xz

and f be a γR-function of G′ = G− B. Then x and z is only adjacent to each other in

G′, and so we can assume f(x) = 2 and f(z) = 0. We construct a Roman dominating

function f ′ of G with f ′(G) < f(G′).

If V (Hy) = {y}, then f(y) = 1. Let f ′ = f except f ′(y) = 0. Then f ′ is a Roman

dominating function of G with f ′(G) < f(G′). Thus, bR(G) ≤ |B| ≤ 2∆(G) + λ(G)− 3.

In the following, we assume |V (Hy)| ≥ 2.

If γR(Hy − y) ≥ γR(Hy), then

γR(G− (F ∪ EHy
(y))) ≥ γR(Hx) + γR(Hy) + 1 ≥ γR(G) + 1.

Thus

bR(G) ≤ |F ∪ EHy
(y))| ≤ ∆(G) + λ(G)− 1

≤ 2∆(G) + λ(G)− 3.

If γR(Hy − y) = γR(Hy) − 1, we can assume that f(y) = 1. Let f ′ = f except

f ′(y) = 0. Then f ′ is a Roman dominating function of G with f ′(G) < f(G′). Thus,

bR(G) ≤ |B| ≤ 2∆(G) + λ(G)− 3.

The theorem follows.

Considering vertex rather than edge-connectivity, we could conjecture an analogy of

Theorem 5.6 by a similar argument.

Conjecture 5.1 If G is a connected graph with order no less than 3, then bR(G) ≤

2∆(G) + κ(G)− 3, where κ(G) is the vertex-connectivity of G.

Theorem 5.7 If G is a nonempty graph with a unique minimum Roman dominating

function, then bR(G) = 1.
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Proof. Let f be the unique γR-function on G, and let x be a vertex in G with f(x) = 0.

Then there is a vertex y ∈ NG(x) with f(y) = 2. If there are at least two vertices

y, z ∈ NG(x) such that f(y) = f(z) = 2 for each vertex x with f(x) = 0. Then let

f ′ = f except that f ′(x) = 2 and f ′(y) = 0 and f ′ is a γR-function on G as well, which is

a contradiction to the uniqueness of f . Thus, there is a unique y ∈ NG(x) with f(y) = 2

for a vertex x with f(x) = 0. Then γR(G− xy) > γR(G), which implies that bR(G) = 1.

Theorem 5.8 If G is a vrc-graph with γR(G) = 3, then bR(G) ≤ ∆(G) + 1.

Proof. By Lemma 2.9, G is a vc-graph with γ(G) = 2. By Lemma 2.8, G is a complete

K2t(t ≥ 2) with a perfect matching M removed. Thus, G is ∆(G)-regular, where ∆(G) =

2t− 2. Let uv ∈ M . Then v is the only vertex not adjacent to u in G. Let H = G− u.

Then γR(H) = 2 since G is a vrc-graph with γR(G) = 3. Note that the vertex v is the

only vertex adjacent to all the other vertices in H adjacent to each of other vertices in H .

Thus H has a unique minimum Roman dominating function f with f(v) = 2 = γR(H).

By Theorem 5.7, bR(H) = 1 and hence bR(G) ≤ ∆(G) + 1.

Theorem 5.9 If there exists at least one vertex u in a graph G with γR(G−u) ≥ γR(G),

then bR(G) = dG(x) ≤ ∆(G).

Proof. Since γR(G−EG(u)) = γR(G− u) + 1 > γR(G), bR(G) = dG(x) ≤ ∆(G).

Corollary 5.4 Let G be a graph of order n. If γR(G) = 3 6= n, then bR(G) ≤ ∆+ 1.

Problem 5.1 Whether or not there exits a positive integer c such that bR(G) ≤ ∆(G)+c

for any graph G of order n and γR(G) 6= n.

The vertex covering number β(G) of G is the minimum number of vertices that are

incident with all edges in G. If G has no isolated vertices, then γR(G) ≤ 2γ(G) ≤ 2β(G).

If γR(G) = 2β(G), then γR(G) = 2γ(G) and hence G is a Roman graph. In [17],

Volkmann gave a lot of graphs with γ(G) = β(G).
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Theorem 5.10 Let G be a graph with γR(G) = 2β(G). Then

(1) bR(G) ≥ δ(G);

(2) bR(G) ≥ δ(G) + 1 if G is a vrc-graph.

Proof. Let G be a graph with γR(G) = 2β(G).

(1) Without loss of generality, Assume δ(G) ≥ 2. Let B ⊆ E(G) with |B| ≤ δ(G)−1.

Then δ(G− B) ≥ 1 and so γR(G) ≤ γR(G− B) ≤ 2β(G− B) ≤ 2β(G) = γR(G). Thus,

B is not a Roman bondage set of G, and so bR(G) ≥ δ(G).

(2) From the above proof, every Roman bondage set B contains at least all edges

incident with some vertex x, so that G− B has an isolated vertex. On the other hand,

if G is a vrc-graph, then γR(G − x) < γR(G) for any vertex x, which implies that the

removal of all edges incident with x can not enlarge the Roman domination number.

Hence bR(G) ≥ δ(G) + 1.
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