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EXISTENCE AND LIPSCHITZ STABILITY FOR α-DISSIPATIVE

SOLUTIONS OF THE TWO-COMPONENT HUNTER–SAXTON

SYSTEM

KATRIN GRUNERT AND ANDERS NORDLI

Abstract. We establish the concept of α-dissipative solutions for the two-
component Hunter–Saxton system under the assumption that either α(x) = 1
or 0 ≤ α(x) < 1 for all x ∈ R. Furthermore, we investigate the Lipschitz sta-
bility of solutions with respect to time by introducing a suitable parametrized
family of metrics in Lagrangian coordinates. This is necessary due to the fact
that the solution space is not invariant with respect to time.

1. Introduction

In this paper we investigate the existence and Lipschitz stability of solutions of
the initial value problem of the two-component Hunter–Saxton (2HS) system on
the line, which is given by

ut(x, t) + uux(x, t) =
1

4

(
∫ x

−∞

(ux(z, t)
2 + ρ(z, t)2) dz

−
∫ ∞

x

(ux(z, t)
2 + ρ(z, t)2) dz

)

,(1.1a)

ρt(x, t) + (uρ)x(x, t) = 0.(1.1b)

It has been derived by Pavlov as a model of non-dissipative dark matter [17], but
can also be viewed as a high frequency limit of the two-component Camassa–Holm
system describing water waves [8, 18]. Moreover, it is a generalization of the well
known Hunter–Saxton equation

(1.2) ut(x, t) + uux(x, t) =
1

4

(
∫ x

−∞

ux(z, t)
2 dz −

∫ ∞

x

ux(z, t)
2 dz

)

,

which has been introduced by Hunter and Saxton as a model of the director field
of a nematic liquid crystal [14].

Solutions of the 2HS system develop singularities in finite time, even for smooth
initial data [16, 18]. The appearance of singularities, known as wave breaking,
means that ux tends pointwise to −∞ while u remains bounded and continuous.
The phenomenon is illustrated in the following example.
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Figure 1. A plot of u in Example 1.1 for t = 0, 1, 1.5, 1.9, 2.

Example 1.1. Let t ∈ [0, 2) and let the functions u and ρ be defined by

u(x, t) =























− 1
2 t+ 1, x ≤ −(1− 1

2 t)
2,

− 1
− 1

2 t+1
x, −(1− 1

2 t)
2 ≤ x ≤ 0,

t
1
2 t

2+2
x, 0 ≤ x ≤ 1

4 t
2 + 1,

1
2 t,

1
4 t

2 + 1 ≤ x,

ρ(x, t) =











0, x ≤ 0,
1

1
4 t

2+1
, 0 < x ≤ 1

4 t
2 + 1,

0, 1
4 t

2 + 1 < x.

Then (u, ρ) is a weak solution of (1.1) for t ∈ [0, 2). Note that ux(0, t) → −∞ as
t → 2−, which in particular means that wave breaking occurs. We can define the
energy of the system at time t to be given by

(1.3)

∫

R

(

u2
x(x, t) + ρ2(x, t)

)

dx = 2,

which is constant in time, even up to the point t = 2. The energy contained in the

interval − 1
4 t

2+t−1 ≤ x ≤ 0, given by
∫ 0

− 1
4 t

2+t−1
(u2

x+ρ2)dx = 1, is also conserved.

Thus a finite amount of energy is being concentrated in a single point as t → 2−.

As seen in Example 1.1 part of the energy
∫

R
(u2

x + ρ2) dx is concentrated at a
single point at wave breaking. This illustrates that the energy density in general
is not absolutely continuous, but a positive, finite Radon measure. Nevertheless,
the total energy remains constant in time as t → 2−. Hence ux and ρ remain in
L2(R) even if ux tends to minus infinity and the energy can be described by the
cumulative distribution function of a positive, finite Radon measure.

To continue solutions past wave breaking is a delicate issue since weak solutions
are not unique afterwards. A property that the 2HS system shares with the Hunter–
Saxton equation [1, 4, 5, 14, 15, 19], the Camassa–Holm equation [2, 3, 6, 13],
and the two-component Camassa–Holm system [9]. To be more precise, there are
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infinitely many ways to extend a local solution to a global one past wave breaking
by manipulating the concentrated energy at breaking time. In particular, there
has been shown much interest in two classes of weak solutions, namely dissipative
solutions and conservative solutions. On the one hand one could ignore the part of
the energy that concentrates on a set of measure zero in the continuation, which
yields dissipative solutions. On the other hand one could continue by letting the
concentrated energy back into the system, which would give conservative solutions.
In practice that would amount to defining u and ρ by the formulas in Example 1.1
even for t > 2. Thus it is essential to include the energy in our sets of variables,
when constructing global conservative solutions. Existence of dissipative solutions
has been proven in [18], while existence and stability of conservative solutions has
been shown in [16]. Here we generalize and provide a unified approach to the
notions of dissipative and conservative weak solutions.

We will work within the novel concept of α-dissipative solutions, which has been
introduced in [12] in the context of the two-component Camassa–Holm system for
the case α being constant. Here we consider a more general case. Given a Lipschitz
continuous function of space, α : R → [0, 1], an α-dissipative solution will dissipate
an α-fraction of the energy concentrated on a set of measure zero at wave breaking.
Dissipative and conservative solutions are recovered as special cases with α = 1
and α = 0, respectively. Here we will construct α-dissipative solutions and prove
Lipschitz stability of the constructed solutions.

We will solve the 2HS system by a generalized method of characteristics. The
method will be similar to the one for conservative solutions [16] and dissipative so-
lutions [18]. As long as solutions (u, ρ) stay smooth we can define the corresponding
Lagrangian variables (y, U, r, V ) by

(1.4) yt(ξ, t) = u(y(ξ, t), t),

and

U(ξ, t) = u(y(ξ, t), t),(1.5)

V (ξ, t) =

∫ y(ξ,t)

−∞

ux(x, t)
2 + ρ(x, t)2 dx = 0,(1.6)

r(ξ, t) = ρ(y(ξ, t), t)yξ(ξ, t),(1.7)

where ξ is a parameter that determines the initial value of the characteristics. Then

Ut(ξ, t) =
1

2
V (ξ, t)− 1

4
lim
ξ→∞

V (ξ, t),(1.8)

Vt(ξ, t) = 0,(1.9)

rt(ξ, t) = 0,(1.10)

Wave breaking happens precisely where different characteristic curves y(ξ, t), y(ξ′, t)
meet, and one can choose which solution to obtain by manipulating the energy
density Vξ(ξ, t) at wave breaking. The time of wave breaking τ(ξ) can be determined
initially and is given by

(1.11) τ(ξ) = −2
y0,ξ(ξ)

U0,ξ(ξ)
.

To obtain dissipative solutions one sets Vξ(ξ, t) = 0 after wave breaking, which
implies that the characteristics stick together after they meet. One can solve the
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resulting system explicitly as shown by Wunsch [18]. If one on the other hand
keeps Vξ(ξ, t) constant across wave breaking one gets conservative solutions [16].
For dissipative solutions one can always choose y(ξ, 0) = ξ, while for conservative
solutions this choice is not possible since energy can then be concentrated on a set of
measure zero initially. The main difficulty with α-dissipative solutions compared to
conservative or dissipative solutions is that it is not known a priori how the energy
density is manipulated at wave breaking. After wave breaking we have Vξ(ξ, t) =
(1−α(y(ξ, τ(ξ))))V0,ξ(ξ). Since the time evolution of y(ξ, t) depends heavily on the
total amount of energy in the system, the points y(ξ, τ(ξ)) where wave breaking
happens will depend heavily on all other points where wave breaking has previously
happened and cannot be computed explicitly. In Section 2 we reformulate the 2HS
system in Lagrangian coordinates and prove the existence of α-dissipative solutions
in Lagrangian coordinates.

Similar to the case of conservative solutions, for α-dissipative solutions parts
of the energy can concentrate on a set of measure zero and later be given back
into the system, hence one has to be careful when going from the Eulerian to
the Lagrangian description of the system. Since we cannot choose y(ξ, 0) = ξ we
need a systematic way of going from Eulerian coordinates (u, ρ, µ) to Lagrangian
variables (y, U, r, V ), and vice versa. We will use the mappings developed for the
Camassa–Holm equation in [9, 12, 13], and modify them to the solution spaces for
the 2HS system [4, 16]. Even though we cannot use y(ξ, 0) = ξ, there is no unique
way to define y(ξ, 0) = y0(ξ). Thus there is some redundancy in the Lagrangian
variables, and we can identify a group of homeomorphisms ξ 7→ f(ξ) that acts on
the Lagrangian variables and identifies equivalence classes which are in one-to-one
correspondence to the Eulerian coordinates. We will develop the mappings between
Eulerian and Lagrangian coordinates, and use those mappings to prove existence
of α-dissipative solutions in Eulerian coordinates in Section 3.

In Section 4, we turn to the Lipschitz stability of solutions. Here the redundancy
will cause some problems since two solutions may differ in Lagrangian coordinates,
but coincide in Eulerian coordinates. To overcome this obstacle we must create a
metric in Lagrangian coordinates that gives zero distance between solutions that
map to the same Eulerian solution. Such a metric was created in [4] for conserva-
tive solutions of (1.2). Moreover, for metrics in Lagrangian coordinates to induce
metrics in Eulerian coordinates we need that there is a bijection from Lagrangian
coordinates to Eulerian coordinates. For this to be the case we must restrict α to
either α ≡ 1, that is dissipative solutions, or α : R → [0, 1).

Since the size of the discontinuity in the energy at wave breaking is unknown
initially, it is more difficult to establish stability of solutions in this case than in
the conservative one. To do so we will need to keep track of the amount of energy
initially. Thus in addition to the energy variable µ we will need an energy variable
ν such that µ ≤ ν, and µ0 = ν0. In Lagrangian coordinates this corresponds to a
variable H such that Vξ ≤ Hξ and V0,ξ = H0,ξ and Ht(ξ, t) = 0. Hence the solution
space will not be invariant with respect to time and therefore we will introduce a
parametrized family of metrics dDα,M

0
(t, ·, ·) on sets with the total energy bounded

by M . The main result of Section 4 is that the α-dissipative solutions constructed
in Section 3 are Lipschitz continuous in time with respect to the initial data.
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2. Existence of solutions in Lagrangian coordinates

In [16] the conservative solutions to (1.1) have been constructed by rewriting the
2HS system as a system of differential equations in a suitable Banach space. Here
we are aiming at constructing so-called α-dissipative solutions where one takes out
an α-fraction of the concentrated energy every time wave breaking occurs. The de-
scription of these solutions is also based on a reformulation of (1.1) in Lagrangian
coordinates via a generalized method of characteristics. In contrast to [12], where
the concept of α-dissipative solutions has been introduced for α being a constant
in [0, 1] in the context of the two-component Camassa–Holm system, we are con-
sidering functions

(2.1a) α(x) ∈ W 1,∞(R)

such that

(2.1b) either 0 ≤ α(x) < 1 or α(x) = 1 for all x ∈ R.

In this section we will first introduce the concept of α-dissipative solutions in La-
grangian coordinates and then establish their existence in this setting.

Let (u0, ρ0) be some smooth initial data for (1.1), such that u0(x) ∈ L∞(R)
and u0,x(x), ρ0(x) ∈ L2(R). In addition, in this case the initial characteristic
y(ξ, 0) can be chosen to be equal to the identity or more general to any strictly
increasing function y0(ξ) belonging to the set of relabeling functions G, which will
be introduced in Definition 3.4. Applying the method of characteristics, we obtain
a local in time solution, by solving the initial value problem

yt(ξ, t) = U(ξ, t),(2.2a)

Ut(ξ, t) =
1

2
H(ξ, t)− 1

4
lim
ξ→∞

H(ξ, t),(2.2b)

Ht(ξ, t) = 0,(2.2c)

rt(ξ, t) = 0(2.2d)

with initial data

y(ξ, 0) = y0(ξ),(2.3a)

U(ξ, 0) = u0(y(ξ, 0)) = u0(y0(ξ)),(2.3b)

H(ξ, 0) =

∫ y(ξ,0)

−∞

(

u2
0,x(z) + ρ20(z)

)

dz =

∫ y0(ξ)

−∞

(

u2
0,x(z) + ρ20(z)

)

dz,(2.3c)

r(ξ, 0) = ρ0(y(ξ, 0))yξ(ξ, 0) = ρ0(y0(ξ))y0,ξ(ξ).(2.3d)

This system coincides with the one for conservative solutions and is valid until wave
breaking occurs for the first time and energy concentrates on sets of measure zero.
This happens when yξ(ξ, t) = 0 for some ξ. To study this phenomenon in detail we
differentiate the above system with respect to ξ and get for each ξ ∈ R the following
closed system of linear ordinary differential equations

yξ,t(ξ, t) = Uξ(ξ, t)(2.4a)

Uξ,t(ξ, t) =
1

2
Hξ(ξ, t)(2.4b)

Hξ,t(ξ, t) = 0,(2.4c)
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which can be solved explicitly. In particular, one has

(2.5) yξ(ξ, t) = y0,ξ(ξ) + U0,ξ(ξ)t+
1

4
H0,ξ(ξ)t

2.

Since y0(ξ) is strictly increasing and both y0,ξ(ξ) and H0,ξ(ξ) are positive for all
ξ ∈ R, wave breaking can only occur when U0,ξ(ξ) < 0. A closer look reveals that,
if wave breaking occurs the breaking time τ(ξ) is given by

(2.6) τ(ξ) = 2
−U0,ξ(ξ)±

√

U0,ξ(ξ)2 − y0,ξ(ξ)H0,ξ(ξ)

H0,ξ(ξ)
.

and since wave breaking can occur only once, we must have

(2.7) y0,ξ(ξ)H0,ξ(ξ) = U0,ξ(ξ)
2.

Comparing (2.7) with (2.3) yields, in addition, that wave breaking will occur at
all points ξ ∈ R such that U0,ξ(ξ) < 0 and r0(ξ) = 0. The corresponding wave
breaking time τ(ξ) is given by

(2.8) τ(ξ) = −2
U0,ξ(ξ)

H0,ξ(ξ)
= −2

y0,ξ(ξ)

U0,ξ(ξ)
.

Furthermore, it should be noted that

(2.9) Uξ(ξ, t) ↑ 0 and yξ(ξ, t) ↓ 0 as t → τ(ξ) − .

We can now turn to the continuation of the solution past the first time wave
breaking occurs. If wave breaking occurs at a point (ξ, t) in Lagrangian coordinates
then it occurs in Eulerian coordinates at the point (y(ξ, t), t), Moreover, the energy
density at any point (ξ, t) in the conservative case is given by Hξ(ξ, t). Thus taking
out an α-fraction of the energy concentrated at a point (ξ, τ(ξ)) corresponds to
replacing Hξ(ξ, t) by

(2.10) Vξ(ξ, t) =

{

H0,ξ(ξ), if t < τ(ξ),

(1− α(y(ξ, τ(ξ)))H0,ξ(ξ), if t ≥ τ(ξ),

on the right hand side of (2.2a)
Before defining α-dissipative solutions in Lagrangian coordinates rigorously, it

is important to note that our introduction of the solution concept is heuristic, in
that sense that we assumed that the initial data is smooth and no wave breaking
occurs at time t = 0. This limitations will be overcome in the next section, where
we focus on the interplay between Eulerian and Lagrangian coordinates.

Let E1 be the Banach space defined by

(2.11) E1 = {f ∈ L∞(R) | f ′ ∈ L2(R) and lim
x→−∞

f(x) = 0},

equipped with the norm ‖f‖E1 = ‖f‖∞+ ‖f ′‖2, and E2 the Banach space given by

(2.12) E2 = {f ∈ L∞(R) | f ′ ∈ L2(R)},
equipped with the norm ‖f‖E2 = ‖f‖∞ + ‖f ′‖2.

In addition, let B be the Banach space B = E2 × E2 × E1 × L2(R) × E1 with
the norm

(2.13) ‖(f1, f2, f3, f4, f5)‖B = ‖f1‖E2 + ‖f2‖E2 + ‖f3‖E1 + ‖f4‖2 + ‖f5‖E1 .

Then the set of Lagrangian coordinates Fα is given as follows.
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Definition 2.1 (Lagrangian coordinates). The set Fα consists of all
X = (y, U,H, r, V ), such that (y − id, U,H, r, V ) ∈ B, and

(i) y − id, U,H, V ∈ W 1,∞(R), r ∈ L∞(R),

(ii) 0 ≤ yξ, 0 ≤ Hξ, 0 < c < Hξ + yξ almost everwhere,

(iii) yξVξ = U2
ξ + r2 almost everywhere,

(iv) 0 ≤ Vξ ≤ Hξ almost everywhere,

(v) If 0 ≤ α(x) < 1 for all x ∈ R,

then there exists κ : R → (0, 1] such that Vξ(ξ) = κ(y(ξ))Hξ(ξ) almost

everywhere, and κ(y(ξ)) = 1 whenever Uξ(ξ) < 0 or r(ξ) 6= 0,

(vi) If α(x) = 1 for all x ∈ R, then yξ(ξ) = 0 implies Vξ(ξ) = 0,

and yξ(ξ) > 0 implies that Vξ(ξ) = Hξ(ξ) almost everywhere.

The α-dissipative solution X(t) ∈ Fα with initial data X(0) = X0 ∈ Fα to (1.1)
in Lagrangian coordinates is then given by

yt(ξ, t) = U(ξ, t),(2.14a)

Ut(ξ, t) =
1

2
V (ξ, t)− 1

4
lim
ξ→∞

V (ξ, t),(2.14b)

Ht(ξ, t) = 0,(2.14c)

rt(ξ, t) = 0,(2.14d)

where

(2.15) V (ξ, t) =

∫ ξ

−∞

H0,ξ(η)
(

1− 1{t≥τ(η)}α(y(η, τ(η)))
)

dη.

Here the blow-up time τ(ξ) is given by

(2.16) τ(ξ) =











0, if y0,ξ(ξ) = 0,

− 2U0,ξ(ξ)
H0,ξ(ξ)

, if r0(ξ) = 0 and U0,ξ(ξ) < 0,

∞, otherwise.

Note that τ(ξ) = 0 for some ξ ∈ R, implies that y0,ξ(ξ) = 0 for some ξ ∈ R and
hence wave breaking occurs at time t = 0.

In (2.15) it is implicitly assumed that V0,ξ(ξ) = H0,ξ(ξ) for a.e. ξ ∈ R. This is a
stricter condition than (iv) in Definition 2.1. Thus we define the set of admissible
initial data, Fα

i as follows.

Definition 2.2. Let Fα
i be the set of all X ∈ Fα such that

(2.17) V (ξ) = H(ξ) for all ξ ∈ R.

Here, it should be pointed out that all of Section 2 and 3 remain true for initial
data in Fα. The reason for this restriction will be clarified in Section 4.

We now turn our attention to the existence and uniqueness of solutions to the
system (2.14) with initial data in Fα

i .

Lemma 2.3. To any initial data X0 ∈ Fα
i there exists a unique solution X ∈

C(R+,Fα) of (2.14) with X(0) = X0.
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Proof. Let X0 ∈ Fα
i . First we prove existence and uniqueness of solutions to (2.14)

in B. We are going to construct a sequence of approximate solutions Xn(t) that
converge to the α-dissipative solution X(t) which satisfies X(0) = X0. To that end
define X1(t) = X0 for all t ≥ 0. For n ≥ 2, we take advantage of the fact that
for each ξ ∈ R the breaking time τ(ξ) can be computed from the initial data, see
(2.16). Indeed we define, for n+ 1 ≥ 2,

(2.18) βn+1(ξ, t) =











0, τ(ξ) = ∞,

α
(

yn(ξ, t)
)

, t < τ(ξ) < ∞,

α
(

yn(ξ, τ(ξ))
)

, τ(ξ) ≤ t,

and Xn+1(t) as the solution to

yn+1,t(ξ, t) = Un+1(ξ, t),(2.19a)

Un+1,t(ξ, t) =
1

2
Vn+1(ξ, t)−

1

4
Vn+1,∞(t),(2.19b)

Hn+1,t(ξ, t) = 0,(2.19c)

rn+1,t(ξ, t) = 0,(2.19d)

Vn+1(ξ, t) =

∫ ξ

−∞

H0,ξ(η)(1 − 1{t≥τ(η)}βn+1(η, t)) dη,(2.19e)

where Vn+1,∞(t) = limξ→∞ Vn+1(ξ, t), with initial data Xn+1(0) = X0. That
Xn(t) ∈ B for all t ≥ 0 and n ≥ 1 follows inductively by integrating the system.

To establish the existence of a limiting function X(t) we use a fix point argument.
First, estimate the difference between yn(t) and yn+1(t) for 0 ≤ t ≤ T . From (2.18)
we get that

(2.20) |βn+1(ξ, t)− βn(ξ, t)| ≤ ‖α′‖∞ sup
t∈[0,T ]

‖yn(t)− yn−1(t)‖∞,

which implies together with (2.19) that

|Vn+1(ξ, t)− Vn(ξ, t)| ≤
∫ ∞

−∞

H0,ξ(η)|βn+1(η, t)− βn(η, t)|1{t≥τ(η)} dη(2.21a)

≤ ‖H0‖∞‖α′‖∞ sup
t∈[0,T ]

‖yn(t)− yn−1(t)‖∞,

|Un+1(ξ, t)− Un(ξ, t)| ≤
1

4
‖H0‖∞‖α′‖∞ sup

t∈[0,T ]

‖yn(t)− yn−1(t)‖∞t,(2.21b)

|yn+1(ξ, t)− yn(ξ, t)| ≤
1

8
‖H0‖∞‖α′‖∞ sup

t∈[0,T ]

‖yn(t)− yn−1(t)‖∞t2.(2.21c)

Thus,

sup
t∈[0,T ]

‖yn+1(t)− yn(t)‖∞ ≤ 1

8
‖H0‖∞‖α′‖∞ sup

t∈[0,T ]

‖yn(t)− yn−1(t)‖∞T 2,

and if T is chosen such that T <
√

8
‖α′‖∞‖H0‖∞

, we have a contraction on the

Banach space C([0, T ], L∞(R)). In particular, there exists a unique function y ∈
C([0, T ], L∞(R)) such that yn(·, t) → y(·, t) in L∞(R) for all t ∈ [0, T ]. More-
over, (2.20), (2.21a), and (2.21b) imply that there exist unique β, V , and U in
C([0, T ], L∞(R)), such that βn(·, t) → β(·, t), Vn(·, t) → V (·, t), and Un(·, t) →
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U(·, t) in L∞(R) for all t ∈ [0, T ] as well. As far as rn(ξ, t) and Hn(ξ, t) are con-
cerned, observe that rn(ξ, t) = r0(ξ) and Hn(ξ, t) = H0(ξ) for all n ≥ 1 and hence
rn(t, ·) → r0(·) in L2(R) ∩ L∞(R) and Hn(·, t) → H0(·) in L∞(R) for all t ∈ R.

The system for the derivatives is given by

yn+1,ξ,t(ξ, t) = Un+1,ξ(ξ, t),(2.22a)

Un+1,ξ,t(ξ, t) =
1

2
(1 − βn+1(ξ, t)1{t≥τ(ξ)})H0,ξ(ξ),(2.22b)

and hence

|Un+1,ξ(ξ, t)− Un,ξ(ξ, t)| ≤
1

2
t|βn+1(ξ, t)− βn(ξ, t)|H0,ξ(ξ)(2.23a)

≤ 1

2
tH0,ξ‖α′‖∞ sup

t∈[0,T ]

‖yn(t)− yn−1(t)‖∞,

|yn+1,ξ(ξ, t)− yn,ξ(ξ, t)| ≤
1

4
H0,ξt

2‖α′‖∞ sup
t∈[0,T ]

‖yn(t)− yn−1(t)‖∞.(2.23b)

Since H0,ξ(·) ∈ L2(R) ∩ L∞(R) it follows that Un,ξ(·, t) → Uξ(·, t) and (yn,ξ −
1)(·, t) → (yξ − 1)(·, t) in L2(R) ∩ L∞(R) for all t ∈ [0, T ]. Thus we showed that
to each X0 ∈ Fα

i there exists a local solution X(t) to (2.14) in B. In addition,
we obtained that both (yξ − 1)(·, t), Uξ(·, t), and r(·, t) belong to L∞(R) for all
t ∈ [0, T ].

The uniqueness of the solution X(t) to (2.14) with X(0) = X0 ∈ Fα
i on the in-

terval [0, T ] follows by a standard contraction argument, based on estimates similar
to the ones established so far.

To extend X(t) from a local to a global solution observe that the upper bound
on T only depends on ‖H0‖∞ and ‖α′‖∞, which are both independent of time.
Thus one can repeat the above construction, with slight modifications, with initial
data X(12T ) to obtain the unique solution on [0, 32T ]. Continuing inductively finally
yields the unique, global solution X(t) ∈ B to (2.14).

The method is illustrated in Example A.3 where the iteration (2.19) is applied
to some multipeakon initial data.

It is left to show that X(t) satisfies properties (ii)–(vi) in Definition 2.1. By
definition, see (2.15), we have that

(2.24) Vξ(ξ, t) =

{

H0,ξ(ξ), if t < τ(ξ),

(1− α(y(ξ, τ(ξ))))H0,ξ(ξ), if t ≥ τ(ξ),

and hence properties (iv)–(vi) in Definition 2.1 hold since wave breaking happens
when Uξ(ξ, t) = 0 and r(ξ, t) = 0. It should be pointed out that in the case α = 1
we have that if yξ(ξ, t) = 0, then yξ(ξ, t

′) = 0 for all t′ > t.
Direct calculations yield for a.e. ξ ∈ R, that

d

dt

1

yξ(ξ, t) +H0,ξ(ξ)
= − Uξ(ξ, t)

(yξ(ξ, t) +H0,ξ(ξ))2

≤
√

yξVξ(ξ, t)

(yξ(ξ, t) +H0,ξ(ξ))2
≤ 1

2

1

yξ(ξ, t) +H0,ξ(ξ)
,(2.25)

Applying Gronwall’s inequality, we obtain

(2.26) (yξ(ξ, 0) +H0,ξ(ξ))e
− 1

2 t ≤ (yξ(ξ, t) +H0,ξ(ξ))

for a.e. ξ ∈ R, i.e. property (ii) in Definition 2.1 .
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Thus it is left to show that yξ(ξ, t)Vξ(ξ, t) = U2
ξ (ξ, t)+ r2(ξ, t) for a.e. ξ ∈ R and

t > 0. For a.e. ξ ∈ R we have for t < τ(ξ),

Uξ(ξ, t)
2 =

1

4
H2

0,ξ(ξ)t
2 + U0,ξ(ξ)H0,ξ(ξ)t + U0,ξ(ξ)

2,

r(ξ, t)2 =r20(ξ),

yξVξ(ξ, t) =
1

4
H2

0,ξ(ξ)t
2 + U0,ξH0,ξ(ξ)t+ U2

0,ξ(ξ) + r20(ξ),

where we used that V0,ξy0,ξ(ξ) = U2
0,ξ(ξ) + r20(ξ) for a.e. ξ ∈ R. For t ≥ τ(ξ), we

have

rt(t, ξ) = 0,

Uξ(ξ, t) =
1

2
Vξ(ξ, τ(ξ))(t − τ(ξ)),

yξ(ξ, t) =
1

4
Vξ(ξ, τ(ξ))(t − τ(ξ))2,

where we used that Uξ(ξ, τ(ξ)) = 0 = yξ(ξ, τ(ξ)). Thus, yξVξ(ξ, t) = U2
ξ (ξ, t) +

r2(ξ, t) for a.e ξ ∈ R also in this case and Definition 2.1 (iii) holds. �

A natural question, that is going to play a major role when establishing the
Lipschitz stability, is if one can estimate the size of the set where wave breaking
has already taken place in Lagrangian coordinates.

Corollary 2.4. Let X0 ∈ Fα
i , and denote by X(t) the solution to (2.14) with initial

data X0. Then the set of all points where wave breaking has taken place within the
time interval [0, t] satisfies

(2.27) m ({ξ | τ(ξ) ≤ t}) ≤
(

1 + 1
4 t

2
)

c
‖H0‖∞,

where c is given by 0 < c ≤ y0,ξ(ξ) +H0,ξ(ξ) for a.e. ξ ∈ R (cf. Definition 2.1).

Proof. Given ξ ∈ R such that τ(ξ) ≤ t, then (2.14) implies that

(2.28) 0 = yξ(ξ, τ(ξ)) = y0,ξ(ξ) + U0,ξ(ξ)τ(ξ) +
1

4
H0,ξ(ξ)τ(ξ)

2

and

(2.29) 0 = Uξ(ξ, τ(ξ)) = U0,ξ(ξ) +
1

2
H0,ξ(ξ)τ(ξ).

Combining these two equations finally yields 0 = y0,ξ(ξ)− 1
4H0,ξ(ξ)τ(ξ)

2 and hence

(2.30) 1 =
H0,ξ(ξ)(1 +

1
4τ(ξ)

2)

y0,ξ(ξ) +H0,ξ(ξ)
≤ H0,ξ(ξ)(1 +

1
4τ(ξ)

2)

c
,

where we used that there exists c > 0 such that y0,ξ(ξ) +H0,ξ(ξ) ≥ c > 0 for a.e.
ξ ∈ R. Thus one obtains

m ({ξ | τ(ξ) = t}) ≤ m({ξ | τ(ξ) ≤ t}) =
∫

R

1{τ(ξ)≤t} dξ

≤ 1 + 1
4 t

2

c

∫

R

H0,ξ(ξ) dξ =
1 + 1

4 t
2

c
‖H0‖∞.(2.31)

�
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Note, that if y0ξ(ξ) +H0,ξ(ξ) = 1 for all ξ ∈ R, the above estimate reads

(2.32) m ({ξ | τ(ξ) ≤ t}) ≤
(

1 +
1

4
t2
)

‖H0‖∞.

3. Existence of solutions in Eulerian coordinates

In Section 2 α-dissipative solutions of the reformulation of the 2HS system in
Lagrangian coordinates, (2.14), have been constructed. The goal of this section is to
establish the connection between Eulerian and Lagrangian coordinates, which will
enable us to define α-dissipative solutions in Eulerian coordinates. The strategy is
to map the initial data in Eulerian coordinates to the space Fα, then solve (2.14),
and map the solution back to Eulerian coordinates. In order to do so the space
Dα, of solutions in Eulerian coordinates, will be defined, and mappings between
Fα and Dα will be established. A definition of α-dissipative solutions of (1.1) will
be given and the proposed solutions will be shown to satisfy this definition.

The solution space in Eulerian coordinates is given in the next definition.

Definition 3.1 (Eulerian coordinates). Let Dα be the set of all (u, ρ, ν, µ) such
that

(i) u ∈ L∞(R), ux ∈ L2(R),

(ii) ρ ∈ L2(R),

(iii) µ ≤ ν ∈ M+(R),

(iv) µac = (u2
x + ρ2) dx,

(v) if 0 ≤ α(x) < 1 for all x ∈ R, then
dµ

dν
> 0,

and
dµ

dν
(x) = 1 whenever ux(x) < 0 or ρ(x) 6= 0,

(vi) if α(x) = 1 for all x ∈ R, then µ = νac,

where M+(R) denotes the set of positive, finite Radon measures on R.

Next, the mappings between the elements in Dα and the elements of Fα are
introduced. When the mapping L : Dα → Fα is to be defined, the critical part
is how to define the characteristics y in nice way, since all the other variables will
follow naturally.

Definition 3.2. Let the mapping L : Dα → Fα be defined by L((u, ρ, ν, µ)) =
(y, U,H, r, V ) where

y(ξ) = sup{x | ν((−∞, x)) + x < ξ},(3.1a)

H(ξ) = ξ − y(ξ),(3.1b)

U(ξ) = u ◦ y(ξ),(3.1c)

r(ξ) = (ρ ◦ y(ξ))yξ(ξ),(3.1d)

V (ξ) =

∫ ξ

−∞

dµ

dν
◦ y(η)Hξ(η) dη.(3.1e)

When going from Fα to Dα one has to be careful, since the presence of wave
breaking implies that there can be ξ such that yξ(ξ) = 0. However, yξ(ξ) = 0
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implies that Uξ(ξ) = 0 and r(ξ) = 0 by property (iii) in Definition 2.1 and hence
one can define the mapping M : Fα → Dα as follows.

Definition 3.3. Let the mapping M : Fα → Dα be defined by M((y, U,H, r, V )) =
(u, ρ, ν, µ) where

u(x) = U(ξ), for any ξ such that x = y(ξ),(3.2a)

ρ dx = y#(r dξ),(3.2b)

ν = y#(Hξ dξ),(3.2c)

µ = y#(Vξ dξ).(3.2d)

That L and M are well-defined follows from combining the proofs of [16, Propo-
sition 2.6 and 2.9], [12, Definitions 3.9 and 3.10, Theorem 3.11], and [13, Theorem
3.8 and 3.11], where slightly different mappings have been considered. We therefore
leave the details to the interested reader.

There are five variables in Lagrangian coordinates, while in Eulerian coordinates
there are only four. Hence there cannot be a one-to-one correspondence. Indeed,
there is an equivalence relation ∼ on Fα such that X ∼ X̄ implies that M(X) =
M(X̄). This equivalence relation is induced by a group action • by a group G given
in the next definition.

Definition 3.4. Let the group G and the group action • of G on Fα be defined as
follows.

(i) Define G as the group of homeomorphisms f : R → R such that

f − id ∈ W 1,∞(R), f−1 − id ∈ W 1,∞(R), and fξ − 1 ∈ L2(R).

(ii) Define a group action • : Fα ×G → Fα by

(X, f) 7→ (y ◦ f, U ◦ f,H ◦ f, (r ◦ f) · fξ, V ◦ f) = X • f.
We will call the action of f ∈ G on X ∈ Fα the relabeling of X by f .

That the group action • is well-defined follows the same lines as [13, Proposition
3.4] and is left to the interested reader.

As indicated above M respects equivalence classes identified via relabeling.

Proposition 3.5. We have for any X ∈ Fα and f ∈ G that

(3.3) M(X • f) = M(X).

Proof. The proof is a combination of the ones of [13, Theorem 3.11], [16, Proposition
2.12], and [12, Definition 3.19]. �

Let us look if the time evolution respects relabeling. To that end define St the
solution operators that maps any initial data X0 ∈ Fα

i to its unique α-dissipative
solution X(t) at time t.

Definition 3.6. For any t ≥ 0 and X0 ∈ Fα
i define St(X0) to be the unique

α-dissipative solution X(t) at time t that satisfies X(0) = X0.

For our solution concept to be well-defined we have to prove that St commutes
with relabeling.

Proposition 3.7. For any X0 ∈ Fα
i , f ∈ G it holds that St(X0 • f) = St(X0) • f .
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Proof. Let f ∈ G and X0 ∈ Fα
i be given and denote by X(t) the corresponding α-

dissipative solution, i.e. X(t) = St(X0). According to Definition 3.4, X̂0 = X0•f ∈
Fα

i and the corresponding solution is given by X̂(t) = St(X̂0) = St(X0 • f). Thus
we have to show that X̂(t) = X(t) • f for all t ≥ 0. At initial time t = 0 we have

X̂(0) = X0 • f = X(0) • f . For t > 0 recall that both X(t) and X̂(t) can be seen

as the limit of sequences Xn(t) and X̂n(t), respectively, as defined in the proof of
Lemma 2.3. In particular one has that

(3.4) X̂(t) = lim
n→∞

X̂n(t) and X(t) • f = lim
n→∞

(Xn(t) • f).

Thus it suffices to show by induction that X̂n(t) = Xn(t) • f for all n ∈ N and all
t ≥ 0. First of all note that

(3.5) τ̂(ξ) = τ(f(ξ)) for all ξ

and by definition X̂1(t) = X̂(0) = X0 • f = X1(t) • f for all t ≥ 0. For n = 2 direct

calculations yield that X̂2(t) = X2(t) • f . To conclude the argument, assume that

(3.6) X̂n(t) = Xn(t) • f for all t ≥ 0.

Combining (2.18), (3.5) and (3.6) yields

(3.7) β̂n+1(ξ, t) = βn+1(f(ξ), t) for all t ≥ 0,

and subsequently

V̂n+1(ξ, t) =

∫ ξ

−∞

(1− β̂n+1(η, t)1{t≥τ̂(η)})Ĥ0,ξ(η)dη(3.8)

=

∫ ξ

−∞

(1− βn+1(f(η), t)1{t≥τ(f(η))})H0,ξ(f(η))fξ(η)dη(3.9)

=

∫ f(ξ)

−∞

(1− βn+1(η, t)1{t≥τ(η)})H0,ξ(η)dη = Vn+1(f(ξ), t).(3.10)

Thus (2.19) implies that X̂n(t) = Xn(t) • f for all n ∈ N and all t ≥ 0. �

To show that there is a one-to-one correspondence between Dα and equivalence
classes in Fα, we need to identify a subset of Fα containing one representative of
each equivalence class. To that end define Fα

0 by

(3.11) Fα
0 = {X ∈ Fα | y +H = id} .

The following proposition states that the mappings M and L are inverses of each
other when M is restricted to Fα

0 .

Proposition 3.8. The mappings M and L satisfy

M ◦ L = idDα ,(3.12)

L ◦M = idFα
0
.(3.13)

Proof. See [12, Theorem 3.11] and [13, Theorem 3.12]. �

Observe that L maps Dα to Fα
0 . In addition, any initial data (u0, ρ0, µ0, µ0) is

mapped to an element in Fα
i,0 = Fα

0 ∩ Fα
i , which is advantageous because, among

other things, (2.32) applies in this setting.
If • is to induce the desired equivalence relation, then to each X ∈ Fα there

must exist f ∈ G such that X • f ∈ Fα
0 .
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Definition 3.9. Define the map Π : Fα → Fα
0 by

(3.14) ΠX = X • (y +H)−1, X ∈ Fα.

To ease the notation we write ΠX, despite the fact that Π is not a linear operator.

For the map Π to be well-defined we need that (y +H)−1 ∈ G.

Proposition 3.10. Let X ∈ Fα, then y +H ∈ G and (y +H)−1 ∈ G. Moreover

if X0 ∈ Fα
i,0, and X(t) = St(X0), then for all t ≥ 0 we have that e−

1
2 t ≤ yξ(ξ, t) +

Hξ(ξ, t) ≤ 1
4 t

2 + t+ 1 for almost every ξ ∈ R.

Proof. Let y+H = f , we show that both f and f−1 belong toG. From the definition
of Fα we have that f − id ∈ W 1,∞(R) with fξ − 1 ∈ L2(R), with c ≤ fξ ≤ C for
some positive numbers c and C. Thus there exists a Lipschitz continuous inverse
f−1 such that f−1 − id ∈ W 1,∞(R) and (f−1)ξ − 1 ∈ L2(R). Hence f , f−1 ∈ G.

The lower bound on yξ(ξ, t) +Hξ(ξ, t) is given by (2.26), while the upper bound
is a result of (2.14) combined with |y0,ξ(ξ)|, |H0,ξ(ξ)|, and |U0,ξ(ξ)| all being less
than or equal to 1. �

The set of admissible initial data in Lagrangian coordinates Fα
i corresponds to

a set of admissible initial data Dα
0 = M(Fα

i ) in Eulerian coordinates as already
hinted before. We want to characterize the set Dα

0 in terms of conditions on the
measures µ and ν.

Proposition 3.11. Let Dα
0 = M(Fα

i ). Then (u, ρ, ν, µ) ∈ Dα
0 if and only if

(3.15) ν = µ.

Proof. Assume that X ∈ Fα
i and let (u, ρ, ν, µ) = M(X). Then combining Defini-

tion 2.2 and Definition 3.3 yields

(3.16) ν = y#(Hξ dξ) = y#(Vξ dξ) = µ.

Let (u, ρ, µ, ν) ∈ Dα such that µ = ν. Denoting X = L((u, ρ, ν, µ)), then we

have dµ
dν

= 1 and subsequently

(3.17) V (ξ) =

∫ ξ

−∞

Hξ(η) dη = H(ξ).

That is X ∈ Fα
i and since M ◦ L = idDα we have that (u, ρ, ν, µ) ∈ Dα

0 . �

The set up is complete, but before defining α-dissipative solutions in Eulerian
coordinates with the help of the mappings L and M , a remark on the properties
imposed on α.

Remark 3.12. We assume, see (2.1), that either α : R → [0, 1) or α : R → 1
instead of α : R → [0, 1]. The reason for this restriction is that in the latter case
there exist solutions in Lagrangian coordinates for which Proposition 3.8 is not
satisfies at all times. This is the case if there exist t⋆ ∈ [0,∞) and ξ1, ξ2, ξ3 ∈ R

with ξ1 < ξ2 < ξ3 such that

• yξ(ξ, t
⋆) = 0 for all ξ ∈ (ξ1, ξ2),

• Vξ(ξ, t
⋆) = 0 for all ξ ∈ (ξ1, ξ3),

• Vξ(ξ, t
⋆) 6= 0 for all ξ ∈ (ξ3, ξ2),

as illustrated in Example A.4.

We give the definition of α-dissipative solutions of (1.1).
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Definition 3.13. We say that (u, ρ, ν, µ) is a weak solution of (1.1) with initial
data (u0, ρ0, ν0, µ0) ∈ Dα

0 if

u ∈ C0, 12 (R× [0, T ],R) , for any finite T ≥ 0,(3.18a)

ρ dx ∈ Cweak∗ ([0,∞),M(R)) ,(3.18b)

ν ∈ Cweak∗

(

[0,∞),M+(R)
)

,(3.18c)
(

u(t), ρ(t), ν(t), µ(t)
)

∈ Dα for all t ≥ 0,(3.18d)
(

u, ρ, ν, µ
)∣

∣

t=0
= (u0, ρ0, ν0, µ0),(3.18e)

ν(t)(R) = ν0(R) for all t ≥ 0,(3.18f)

for each compactly supported test function φ ∈ C∞
0 (R× [0,∞)),

∫ ∞

0

∫

R

(

uφt +
1

2
u2φx +

1

4

(

∫ x

−∞

dµ−
∫ ∞

x

dµ
)

φ
)

dxdt = −
∫

R

u0φ|t=0 dx,(3.19a)

∫ ∞

0

∫

R

ρφt + (ρu)φx dxdt = −
∫

R

ρ0φ|t=0 dx,(3.19b)

and for each non-negative compactly supported test function φ ∈ C∞
0 (R× [0,∞)),

(3.19c)

∫ ∞

0

∫

R

(φt + uφx) dµ(t)dt ≥ −
∫

R

φ|t=0 dµ0.

If in addition for each t ≥ 0 we have

dµ(t) = dµ(t)−ac + (1 − α(x)) dµ(x, t)−s ,(3.20a)

µ(s)
∗
⇀ µ(t) as s ↓ t,(3.20b)

µ(s)
∗
⇀ µ(t)− as s ↑ t,(3.20c)

we call t 7→ (u(t), ρ(t), ν(t), µ(t)) an α-dissipative weak solution.

Now, α-dissipative solutions can be constructed. The solution operator Tt :
Dα

0 × [0,∞) → Dα is then given by Tt = M ◦ St ◦ L.
Theorem 3.14. To any initial data (u0, ρ0, ν0, µ0) ∈ Dα

0 there exists a globally
defined α-dissipative solution,

(

u(t), ρ(t), ν(t), µ(t)
)

, in the sense of Definition 3.13

such that
(

u(0), ρ(0), ν(0), µ(0)
)

= (u0, ρ0, ν0, µ0).

Proof. First we show that the operator Tt = M ◦ St ◦ L is indeed a solution
operator on Dα. Let (u(t), ρ(t), ν(t), µ(t)) = Tt((u0, ρ0, ν0, µ0)). Then we have
(u(t), ρ(t), ν(t), µ(t)) ∈ Dα, and (3.18d)–(3.18f) are satisfied.

To show (3.19), we apply a change of variables in the integrals by letting x =
y(ξ, t) for each t. Strictly speaking we have to integrate over the set {ξ ∈ R |
yξ(ξ, t) > 0}, but since yξ(ξ, t) = 0 implies that both r(ξ, t) = 0 and Uξ(ξ, t) = 0
the integrands vanish on the complement of this set. We have that

∫ ∞

0

∫

R

(

uφt +
1

2
u2φx +

1

4

(

∫ x

−∞

dµ−
∫ ∞

x

dµ
)

φ
)

dxdt

=

∫ ∞

0

∫

R

U(φt ◦ y +
1

2
Uφx ◦ y)yξ(ξ) dξdt

+
1

4

∫ ∞

0

∫

R

(

∫ y(ξ)

−∞

dµ−
∫ ∞

y(ξ)

dµ
)

φ ◦ yyξ dξdt
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=

∫ ∞

0

∫

R

[

U(ξ, t)
( d

dt
φ(y(ξ, t), t)− 1

2
Uφx(y(ξ, t), t)

)

+
1

2

(

∫ ξ

−∞

Vξ(η, t) dη −
1

2

∫ ∞

−∞

Vξ(η, t) dη
)

φ ◦ y
]

yξ dξdt

=

∫ ∞

0

∫

R

[ d

dt
(Uφ ◦ y)− 1

2
U2φx ◦ y

]

yξ dξdt

=

∫ ∞

0

∫

R

[ d

dt
(Uφ ◦ yyξ)−

1

2
U2φx ◦ yyξ − Uφ ◦ yyt,ξ

]

dξdt

=

∫ ∞

0

∫

R

[ d

dt
(Uφ ◦ yyξ)− (

1

2
U2φ ◦ y)ξ

]

dξdt

= −
∫

R

u0φ|t=0 dx.(3.21)

The equation for ρ is treated in the same way,
∫ ∞

0

∫

R

ρφt + (ρu)φx dxdt =

∫ ∞

0

∫

R

(

φt + uφx

)

ρ dxdt

=

∫ ∞

0

∫

R

(

φt ◦ y + Uφx ◦ y
)

r dξdt

=

∫ ∞

0

∫

R

d

dt
φ(y(ξ, t), t)r(ξ, t) dξdt

=

∫ ∞

0

∫

R

d

dt

(

φ(y(ξ, t), t)r(ξ, t)
)

dξdt

= −
∫

R

φ(y(ξ, 0), 0)r(ξ, 0) dξ

= −
∫

R

ρ0(x)φ(x, 0) dx.(3.22)

The inequality for µ is proved following the same lines
∫ ∞

0

∫

R

(φt + uφx) dµ(t)dt =

∫ ∞

0

∫

R

(φt + uφx) ◦ yVξ dξdt

=

∫ ∞

0

∫

R

Vξ

d

dt
(φ ◦ y) dξdt

=

∫

R

(

∫ τ

0

H0,ξ
d

dt
(φ ◦ y) dt

+

∫ ∞

τ

(1− α(y(τ)))H0,ξ
d

dt
(φ ◦ y) dt

)

dξ

=

∫

R

(

α(y(τ))H0,ξφ ◦ y|t=τ −H0,ξ(φ ◦ y)|t=0

)

dξ

≥ −
∫

R

H0,ξ(φ ◦ y)|t=0 dξ

= −
∫

R

φ|t=0 dµ0.(3.23)

We are going to show that (3.18a)–(3.18c) hold. First we show that u is Hölder
continuous. To that end let (x1, t1), (x2, t2) ∈ R× [0,∞). Then there exist ξ1 and
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ξ2 ∈ R such that y(ξ1, t1) = x1 and y(ξ2, t2) = x2. Thus

|u(x1, t1)− u(x2, t2)| = |u(y(ξ1, t1), t1)− u(y(ξ2, t2), t2)|

≤ |
∫ y(ξ2,t1)

y(ξ1,t1)

ux(x, t1) dx|+ |u(y(ξ2, t1), t1)− u(y(ξ2, t2), t2)|

≤ ‖ux(·, t1)‖2
√

|y(ξ2, t1)− y(ξ1, t1)|+ |
∫ t2

t1

Ut(ξ2, t) dt|

≤
√

ν0(R)
√

|x2 − x1|+ |y(ξ2, t2)− y(ξ2, t1)|

+
1

4
ν0(R)|t2 − t1|

≤
√

ν0(R)

√

|x2 − x1|+ ‖u0‖∞|t2 − t1|+
1

8
ν0(R)|t2 − t1|2

+
1

4
ν0(R)|t2 − t1|,(3.24)

and thus u is Hölder continuous. Moreover, if t1, t2 ≤ T for some finite T , then

(3.25) |u(x1, t1)− u(x2, t2)| ≤ C(1 +
√
T )
√

|x2 − x1|+ |t2 − t1|,
where C depends on ‖u0‖∞ and ν0(R) only. Hence u is locally Hölder continuous
both with respect to time and space with Hölder exponent one half.

Let t ≥ 0 be given, and choose a sequence tn in [0,∞) that converges to t. In
order to show the continuity of the measure ν let φ ∈ C∞

c (R) be given. Then

(3.26)

∫

R

φ(x) dν(tn) =

∫

R

φ(y(ξ, tn))H0,ξ(ξ) dξ.

Since φ is bounded and of compact support, and y(ξ, tn) tends to y(ξ, t) for almost
every ξ as tn tends to t, we have that φ(y(ξ, tn))H0,ξ(ξ) ≤ ‖φ‖∞H0,ξ(ξ). Thus by
the Lebesgue dominated convergence theorem ν(tn) converges star weakly to ν(t)
in the sense of measures.

The weak star continuity of ρ dx is proved in the same manner as for ν.
Next, we show that (3.20) holds. The proof is similar to the one of [12, Theorem

4.3]. Let t > 0 be given. Then we have that

lim
s↑t

Vξ(ξ, s) =

{

H0,ξ(ξ), if t ≤ τ(ξ),

Vξ(ξ, t), if τ(ξ) < t.
(3.27)

lim
s↓t

Vξ(ξ, s) = Vξ(ξ, t).(3.28)

We want to prove that

lim
s↑t

µ(s) = y(t)#
(

lim
s↑t

Vξ(ξ, s) dξ
)

,(3.29a)

lim
s↓t

µ(s) = y(t)#
(

Vξ(ξ, s) dξ
)

= µ(t),(3.29b)

where the limit is in the weak star sense in M+(R). Let φ ∈ C∞
c (R) be given, then

(3.30)

∫

R

φ(x) dµ(s) =

∫

R

φ(y(ξ, s))Vξ(ξ, s) dξ.

Since φ is bounded and of compact support, and y(ξ, s) tends to y(ξ, t) for almost
every ξ as s tends to t, we have that φ(y(ξ, s))Vξ(ξ, s) ≤ ‖φ‖∞H0,ξ(ξ). Thus by
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the Lebesgue dominated convergence theorem (3.29) hold. Let us prove that

(3.31) dµ(t) = dµ(t)−ac + (1− α(x))dµ(t)−s ,

where µ(t)− = lims↑t µ(s). We have that

µ(t)− − µ(t) = y(t)#
(

lim
s↑t

Vξ(ξ, s) dξ
)

− y(t)#
(

Vξ(ξ, t) dξ
)

= y(t)#
(

(lim
s↑t

Vξ(ξ, s)− Vξ(ξ, t)) dξ
)

= y(t)#
(

α(y(ξ, t))H0,ξ(ξ)1{ξ|yξ(ξ,t)=0}dξ
)

.(3.32)

Define for each t the sets

B(t) = {ξ | yξ(ξ, t) > 0},(3.33)

A(t) = y(B, t).(3.34)

Let us show that A(t) is of full measure. Since y(·, t) is surjectiveA(t)c ⊆ y(B(t)c, t),
and thus

(3.35) m(A(t)c) ≤
∫

y(B(t)c,t)

dξ =

∫

B(t)c
yξ(ξ, t) dξ = 0.

We prove that yξ(ξ, t) > 0 almost everywhere in y(t)−1(A(t)). Assume that there
exists ξ ∈ y(t)−1(A(t)) such that yξ(ξ, t) = 0. Then ξ ∈ B(t)c, and there must
be ξ′ in B(t) such that y(ξ′, t) = y(ξ, t). But then [ξ, ξ′] ⊆ y(t)−1(A(t)), and
y(η, t) = y(ξ′, t) for η ∈ (ξ, ξ′). Thus either yξ(ξ

′, t) = 0 or yξ(ξ
′, t) is undefined,

which contradicts ξ′ ∈ B(t).
Equation (3.32) implies that on any measurable set C ⊆ A(t) the measure µ(t)−−

µ(t) is zero. Hence µ(t)− − µ(t) is supported on a set of measure zero, and is thus
singular with respect to the Lebesgue measure. By the general change of variable
formula for any C ⊆ A(t)c we have that (µ(t)− − µ(t)) (C) =

∫

C
α(x)dµ(t)−, and

hence (µ(t)− − µ(t)) = α d
(

µ(t)−|A(t)c

)

. To complete the proof we need to prove

that

(3.36) µ(t)−ac = µ(t)−
∣

∣

A(t)
,

which would imply that µ(t)−s = µ(t)−|A(t)c . First we note that m(A(t)c) = 0.

Thus for any measurable C

µ(t)−ac(C) ≤ µ(t)−ac(C ∩ A(t)) + µ(t)−ac(C ∩ A(t)c)

≤ µ(t)−(C ∩ A(t)),(3.37)

and hence µ(t)−ac ≤ µ(t)−|A(t). We must show that µ(t)−|A(t) is absolutely continu-

ous. Let E be a set of measure zero and define KM = {ξ ∈ R | Vξ(ξ,t)
yξ(ξ,t)

≤ M}. Then
1KM

tends pointwise to one in y(t)−1(A(t)), and thus
∫

y−1(A(t)∩E)

Vξ(ξ, t)1KM
dξ ≤ M

∫

y−1(A(t)∩E)

yξ(ξ, t) dξ

= Mm(A(t) ∩E)

= 0.(3.38)

Hence by the monotone convergence theorem µ(t)−|A(t) (E) = 0 for all sets E of

measure zero, and µ(t)−|A(t) is absolutely continuous. �
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See Example A.1 for an example of an α-dissipative solution in Eulerian coordi-
nates.

We end this section by a corollary that connects the notion of α-dissipative
solutions to the construction of dissipative solutions by Bressan and Constantin [1],
Dafermos [7], Zhang and Zheng [19], and Wunsch [18].

Corollary 3.15. In the special case α(x) being constant, ν0 = µ0 = µ0,ac, and ρ0 ≡
0 there exists a formula for the solution similar to the formula in [7, Theorem 2.1]
for α ≡ 1. More precisely, choosing as initial characteristic the identity function,
i.e. y(ξ, 0) = ξ (which is always possible in this case), one obtains

u(x, t) = u0(ξx,t) +
1

2

∫ t

0

(

∫ ξx,t

−∞

(

1− α1{z|0≤ −2
u0,x(z)≤s}

)

u0,x(z)
2 dz

− 1

2

∫ ∞

−∞

(

1− α1{z|0≤ −2
u0,x(z)

≤s}

)

u0,x(z)
2 dz

)

ds,(3.39)

x = ξx,t + u0(ξx,t)t+
1

2

∫ t

0

∫ s

0

(

∫ ξx,t

−∞

(

1− α1{z|0≤ −2
u0,x(z)

≤σ}

)

u0,x(z)
2 dz

− 1

2

∫ ∞

−∞

(

1− α1{z|0≤ −2
u0,x(z)≤σ}

)

u0,x(z)
2 dz

)

dσds,(3.40)

where ξx,t is given implicitely through the relation x = y(ξx,t, t).

4. The Lipschitz stability

In this section we construct a parametrized family of metrics on bounded sets
of Dα that renders the flow Lipschitz continuous with respect to the initial data.
The construction is based on the ones in [4, 10, 11]. The idea is to first create a

parametrized family of metrics d̃(t, ·, ·) on Fα, and then to use d̃(t, ·, ·) to construct
a parametrized family of metrics on Dα.

We start by motivating the choice of the set of initial data Dα
0 . Having a close

look at the construction of α-dissipative solutions in the last two sections, it is
natural to require that the initial data (u0, ρ0, µ0, ν0) ∈ Dα

0 . To be more pre-
cise, all the important information about the solution is contained in the functions
(u, ρ, µ) while the measure ν is only added for technical reasons. Correspondingly
the important information in Lagrangian coordinates is encoded in the functions
(y, U, r, V ) while H is a help function. In particular, one has that M((y, U,H, r, V ))

and M((y, U, H̃, r, V )) yield the same triplet (u, ρ, µ) in Eulerian coordinates. Thus
if we do not have initial data in Dα

0 we can get solutions which are equal for all
practical purposes but far apart in Lagrangian coordinates. In addition, this choice
is consistent with the conservative solutions constructed in [16], that is α ≡ 0, since
ν(t) = µ(t) for all t ≥ 0 for conservative solutions.

Beside of the choice of the initial data, there is one more major difficulty. As
illustrated in Example A.2, solutions do not necessarily play nicely with the B-
norm. In particular, the sudden changes in the energy can lead to jumps in the
distance. To model the drop in the energy at wave breaking in a continuous way
we introduce a function g, which separates points where wave breaking will occur
and points where there will be no wave breaking. We start by splitting R into two
regions: One consisting of all points ξ ∈ R where wave breaking will occur and one
where there will be no wave breaking.
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Definition 4.1. For each X ∈ Fα define the sets Ωc(X), and Ωd(X) by

Ωc(X) = {ξ ∈ R | Uξ(ξ) ≥ 0 or r(ξ) 6= 0},(4.1)

Ωd(X) = {ξ ∈ R | Uξ(ξ) < 0 and r(ξ) = 0}.(4.2)

For each X ∈ Fα the real line splits into mutually disjoint parts Ωι(X), ι = c, d.
Given X0 ∈ Fα

i and ξ ∈ R, observe that if you start initially in Ωc(X0), c for
conservative (or continuous), you will remain there for all later times. That is,
Ωc(X0) ⊆ Ωc(X(t)) for all t ≥ 0. If you, on the other hand, start initially in
Ωd(X0), d for dissipative (or discontinuous), you will at the wave breaking time τ ,
given by (2.16), enter Ωc(X(τ)). In other words, ∩t≥0Ωd(X(t)) = ∅.

To model continuously the drop in the energy we introduce the function g and
for technical reasons in addition g2 and g3.

Definition 4.2. For each X ∈ Fα and ξ ∈ R define

(4.3) g(X(ξ)) =

{

yξ(ξ) +Hξ(ξ)− α(y(ξ))Hξ(ξ), ξ ∈ Ωd(X),

yξ(ξ) + Vξ(ξ), ξ ∈ Ωc(X).

Furthermore define g2 by

(4.4) g2(X(ξ)) =

{

‖α′‖∞H∞Uξ(ξ), ξ ∈ Ωd(X),

0, ξ ∈ Ωc(X).

and g3 by

(4.5) g3(X(ξ)) =

{

‖α′‖∞U(ξ)Uξ(ξ), ξ ∈ Ωd(X),

0, ξ ∈ Ωc(X),

where H∞ = lim
ξ→∞

H(ξ).

By construction we have that g(X) − 1, g2(X), and g3(X) ∈ L2(R). We want
to show that t 7→ g(X(t)), t 7→ g2(X(t)), t 7→ g3(X(t)) are well-defined functions,
which are continuous in time, for any solution X(t) = St(X0).

Proposition 4.3. Let X(ξ, t) = St(X0(ξ)) for some X0 ∈ Fα
i and ξ ∈ R. Then,

the mappings t 7→ g(X(ξ, t)) − 1, t 7→ g2(X(ξ, t)), t 7→ g3(X(ξ, t)) are continuous
with respect to the L2(R)-norm.

Proof. For t 6= τ(ξ) the functions are pointwise continuous since for ξ given U , Uξ,
yξ, Hξ, Vξ, y and α are continuous functions when t 6= τ(ξ). What remains is to
prove that they are pointwise continuous at t = τ(ξ). We look at g first. By (2.9)
and (2.15),

lim
t↑τ(ξ)

g(X(ξ, t)) = lim
t↑τ(ξ)

(

yξ(ξ, t) + (1− α(y(ξ, t)))H0,ξ(ξ)
)

= yξ(ξ, τ(ξ)) +
(

1− α(y(ξ, τ(ξ)))
)

H0,ξ(ξ)

= yξ(ξ, τ(ξ)) + Vξ(ξ, τ(ξ))

= lim
t↓τ(ξ)

[yξ(ξ, t) + Vξ(ξ, t)] .(4.6)

From (2.9) we have that Uξ(ξ, t) → 0 as t → τ(ξ), and hence t 7→ g2(X(ξ, t)) and
t 7→ g3(X(ξ, t)) are continuous at t = τ(ξ).
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Since g(X(ξ, t′)) → g(X(ξ, t)) pointwise as t′ tends to t, we have by the domi-
nated convergence theorem

lim
t′→t

∫

R

(g(X(ξ, t′))− g(X(ξ, t)))
2
dξ =

∫

R

lim
t′→t

(g(X(ξ, t′)) − g(X(ξ, t)))
2
dξ = 0,

(4.7)

if we can find a function k(ξ) ∈ L1(R) such that |g(X(ξ, t′)) − g(X(ξ, t))|2 ≤ k(ξ)
for a.e ξ. Therefore recall (2.14), which implies that

(4.8) |Uξ(ξ, t)| ≤ |U0,ξ(ξ)| +
1

2
tH0,ξ(ξ)

and

(4.9) |yξ(ξ, t)− 1| ≤ |y0,ξ(ξ)− 1|+ t|U0,ξ(ξ)|+
1

4
t2H0ξ(ξ).

Thus one possible choice for k(ξ) is

(4.10) k(ξ) = (2|y0,ξ(ξ)|+ 2T |U0,ξ(ξ)|+ (2 +
1

2
T 2)H0,ξ(ξ))

2

where T = 2t. The same argumentation holds for g2 and g3. �

To simplify the notation we make the following definition.

Definition 4.4. Given X = (y, U,H, r, V ) ∈ Fα, define Z = (yξ, Uξ, Hξ, r).

We start by introducing a natural, preliminary metric on Fα which will form
the basis for establishing the Lipschitz stability later on.

Definition 4.5. Let d̃ : Fα ×Fα → [0,∞) be defined by

d̃(X, X̄) = ‖y − ȳ‖∞ + ‖U − Ū‖∞ + ‖α′‖∞‖UHξ − ŪH̄ξ‖2
+ ‖Hξ − H̄ξ‖1 + ‖Z − Z̄‖2 + ‖g(X)− g(X̄)‖2
+ ‖g2(X)− g2(X̄)‖2 + ‖g3(X)− g3(X̄)‖2.(4.11)

Note that d̃ defines a metric on Fα since g, g2, and g3 are well defined. The
metric d̃ will turn out to be a Lipschitz continuous with respect to time for carefully
selected initial data in Fα. The Lipschitz constant will depend on the total energy
of the initial data and hence we will have to restrict our attention to subsets of Fα

whose elements have bounded total energy.

Definition 4.6. Let Fα,M and Fα,M
0 be the following closed subsets of Fα

Fα,M = {X ∈ Fα | ‖H‖∞ ≤ M} ,(4.12)

Fα,M
0 = Fα

0 ∩ Fα,M .(4.13)

Correspondingly, denote by Dα,M the subset of Dα given by,

(4.14) Dα,M = {(u, ρ, ν, µ) ∈ Dα | ν(R) ≤ M} .
Note that the mappings M and L respect the energy bound,

L(Dα,M ) = Fα,M
0 ,

M(Fα,M ) = Dα,M .

The construction d̃ might seem arbitrary, but it is connected to Eulerian coor-
dinates as shown in the following remark.
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Remark 4.7. The terms in the definition of d̃ are natural in the sense that for
smooth (u, ρ, ν, µ) the various terms can be translated to Eulerian coordinates. In
particular for x = y(ξ) we have

yξ(ξ) =
1

1 + ux(x)2 + ρ(x)2
,

Hξ(ξ) =
ux(x)

2 + ρ(x)2

1 + ux(x)2 + ρ(x)2
,

Uξ(ξ) =
ux(x)

1 + ux(x)2 + ρ(x)2
,

r(ξ) =
ρ(x)

1 + ux(x)2 + ρ(x)2
,

and thus

U(ξ)Hξ(ξ) = u(x)
ux(x)

2 + ρ(x)2

1 + ux(x)2 + ρ(x)2
,

α(y(ξ))Hξ = α(x)
ux(x)

2 + ρ(x)2

1 + ux(x)2 + ρ(x)2
,

‖α′‖∞H∞Uξ(ξ) = ‖α′‖∞ν(R)
ux(x)

1 + ux(x)2 + ρ(x)2
,

‖α′‖∞U(ξ)Uξ(ξ) = ‖α′‖∞u(x)
ux(x)

1 + ux(x)2 + ρ(x)2
.

We will now construct a metric on Fα
0 that renders the flow Lipschitz continuous

with respect to the initial data. The metric d̃ will unfortunately give a positive
distance between X and X • f , even though they will map to the same element in
Eulerian coordinates via the mapping M . Following [10], we minimize the distance
over all possible relabelings and define J : Fα ×Fα → R by

(4.15) J(X, X̄) = inf
f,g∈G

(

d̃(X • f, X̄) + d̃(X, X̄ • g)
)

.

Now, J will not separate X and X • f . However J is not a metric, as the triangle

inequality fails. One can obtain a metric by summing over finite sequences in Fα,M
0

as follows.

Definition 4.8. Let X, X̄ ∈ Fα,M
i,0 , then define dM : [0,∞) × Fα,M

i,0 × Fα,M
i,0 → R

by

(4.16) dM (t,X, X̄) = inf

N
∑

n=1

J(ΠSt(Xn−1),ΠSt(Xn)),

where the infimum is taken over all finite sequences {Xn}Nn=0 in Fα,M
i,0 such that

the endpoints X0 and XN satisfy

X = X0,(4.17)

X̄ = XN .(4.18)

It is not at all clear that dM (t,X, X̄) only vanishes when X = X̄ . The purpose
of the next lemma is to assert that we have a positive lower bound on dM (t,X, X̄)
when X differs from X̄.
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Lemma 4.9 ([10, Lemma 3.2]). Given X, X̄ ∈ Fα,M
i,0 and t ≥ 0, let X1(t) =

ΠSt(X) and X̄1(t) = ΠSt(X̄), then

(4.19) ‖y1(t)− ȳ1(t)‖∞ + ‖U1(t)− Ū1(t)‖∞ + ‖H1(t)− H̄1(t)‖∞ ≤ 2dM (t,X, X̄).

Lemma 4.9 states that if the distance between X1(t) = ΠSt(X) and X̄1(t) =
ΠSt(X̄) equals zero, then (y1, U1, H1) and (ȳ1, Ū1, H̄1) coincide. Still, r1 and r̄1,
and V1 and V̄1 could, in principle, differ. The following lemmas shows that this

cannot be the case, and consequently dM is a metric on ΠSt(Fα,M
i,0 ).

Lemma 4.10 ([11, A weaker form of Lemma 6.4]). Given X, X̄ in Fα,M
i,0 and

t ≥ 0, let X1(t) = ΠSt(X) and X̄1(t) = ΠSt(X̄), then dM (t,X, X̄) = 0 implies that
r1(t) = r̄1(t).

Lemma 4.11. Let X0, X̄0 ∈ Fα
0 , and X1(t) = ΠSt(X0), X̄1(t) = ΠSt(X̄0). If

dM (t,X0, X̄0) = 0 then V1(t) = V̄1(t).

Proof. From Lemma 4.9 and 4.10 we have that

(4.20) (y1(t), U1(t), H1(t), r1(t)) = (ȳ1(t), Ū1(t), H̄1(t), r̄1(t)),

and thus for almost all ξ ∈ R

y1,ξ(ξ, t)V1,ξ(ξ, t) = U1,ξ(ξ, t)
2 + r1(ξ, t)

2

= Ū1,ξ(ξ, t)
2 + r̄1(ξ, t)

2

= ȳ1,ξ(ξ, t)V̄1,ξ(ξ, t).(4.21)

Thus we have that V̄1,ξ(t) = V1,ξ(t) almost everywhere in the set {ξ ∈ R | y1,ξ(ξ, t) >
0}. We turn our attention to the set {ξ | y1,ξ(ξ, t) = 0}. Assume that α = 1.
Then y1,ξ(ξ, t) = 0 implies that V1,ξ(ξ, t) = 0 and thus V1,ξ(t) = V̄1,ξ(t) almost
everywhere. Assume that 0 ≤ α < 1. Then if y1,ξ(ξ, t) = 0 we have that
t = τ1(ξ). There are two cases to consider. If t = 0 we have by definition that
V1,ξ(ξ, t) = H1,ξ(ξ, t) = H̄1,ξ(ξ, t) = V̄1,ξ(ξ, t). If t > 0, then we have from the time
evolution operator St that V1,ξ(ξ, t) = (1 − α(y1(ξ, τ1(ξ))))H1,ξ(ξ, t) = V̄1,ξ(ξ, t).
Thus V1,ξ(ξ, t) = V̄1,ξ(ξ, t) for almost all ξ ∈ R, and since lim

ξ→−∞
V1(ξ, t) = 0 =

lim
ξ→−∞

V̄1(ξ, t) we have that V1(ξ, t) = V̄1(ξ, t). �

In order to estimate the time evolution of dM (t,X0, X̄0), the following lemma is
essential.

Lemma 4.12 ([16, Lemma 4.8]). If X0, X̄0 ∈ Fα,M
i,0 , then

(4.22) J
(

ΠSt(X0),ΠSt(X̄0)
)

≤ e
1
2 tJ
(

St(X0), St(X̄0)
)

.

Thus we estimate the time evolution of d̃(St(X0), St(X̄0)•f) for X0, X̄0 ∈ Fα,M
i,0

and f ∈ G. First let us see how we can use the function g to bound the time
evolution of ‖Z(t)− Z̄(t)‖2.
Lemma 4.13. Let X(t) and X̄(t) be the solutions with initial data X0, X̄0 ∈ Fα

i ,
then

‖yξ(t)− ȳξ(t)‖2 ≤ ‖y0,ξ − ȳ0,ξ‖2 +
∫ t

0

‖Uξ(s)− Ūξ(s)‖2 ds,(4.23a)

‖Uξ(t)− Ūξ(t)‖2 ≤ ‖U0,ξ − Ū0,ξ‖2 +
1

2
t‖H0,ξ − H̄0,ξ‖2
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+
1

2

∫ t

0

(

‖g(X(s))− g(X̄(s))‖2 + ‖yξ(s)− ȳξ(s)‖2
)

ds,(4.23b)

‖Hξ(t)− H̄ξ(t)‖2 = ‖H0,ξ − H̄0,ξ‖2,(4.23c)

‖r(t)− r̄(t)‖2 = ‖r0 − r̄0‖2.(4.23d)

Proof. To write more concisely we omit ξ from the notation in this proof. We have
that for any ξ ∈ R,

|r(t) − r̄(t)| = |r0 − r̄0|,(4.24a)

|Hξ(t)− H̄ξ(t)| = |H0,ξ − H̄0,ξ|,(4.24b)

|yξ(t)− ȳξ(t)| ≤ |y0,ξ − ȳ0,ξ|+
∫ t

0

|Uξ(s)− Ūξ(s)| ds.(4.24c)

There are three cases to consider for the estimate of |Uξ(t)− Ūξ(t)|.
If ξ ∈ Ωc(X0) ∩Ωc(X̄0), then

(4.25) |Uξ(t)− Ūξ(t)| ≤ |U0,ξ − Ū0,ξ|+
1

2

∫ t

0

|H0,ξ − H̄0,ξ| ds.

Assume that ξ ∈ Ωd(X0) ∩ Ωc(X̄0). Then we have for t < τ that

(4.26) |Uξ(t)− Ūξ(t)| ≤ |U0,ξ − Ū0,ξ|+
1

2

∫ t

0

|H0,ξ − H̄0,ξ| ds.

If t ≥ τ we have

|Uξ(t)− Ūξ(t)| ≤ |U0,ξ − Ū0,ξ|+
1

2

∫ τ

0

|Vξ(s)− H̄0,ξ| ds+
1

2

∫ t

τ

|H0,ξ − H̄0,ξ| ds

≤ |U0,ξ − Ū0,ξ|+
1

2
t|H0,ξ − H̄0,ξ|

+
1

2

∫ t

0

(

|g(X(s))− g(X̄(s))| + |yξ(s)− ȳξ(s)|
)

ds.(4.27)

Let ξ ∈ Ωd(X0) ∩ Ωd(X̄0). If τ ≤ t < τ̄ , then Vξ(s) ≤ H0,ξ, Uξ(t) ≥ 0 ≥ Ūξ(t), and
both Uξ(t), Ūξ(t) are non-decreasing. Hence

0 ≤ Uξ(t)− Ūξ(t) ≤ |U0,ξ − Ū0,ξ|+
1

2
t|H0,ξ − H̄0,ξ|.

If τ ≤ τ̄ ≤ t we have

|Uξ(t)− Ūξ(t)| ≤ |Uξ(τ̄ )− Ūξ(τ̄ )|+
1

2

∫ t

τ̄

|Vξ(s)− V̄ξ(s)| ds

≤ |Uξ(τ̄ )− Ūξ(τ̄ )|+
1

2

∫ t

τ̄

(

|g(X(s))− g(X̄(s))|+ |yξ(s)− ȳξ(s)|
)

ds

≤ |U0,ξ − Ū0,ξ|+
1

2
t|H0,ξ − H̄0,ξ|

+
1

2

∫ t

0

(

|g(X(s))− g(X̄(s))|+ |yξ(s)− ȳξ(s)|
)

ds.(4.28)

Thus we have for any ξ ∈ R that,

|Uξ(t)− Ūξ(t)| ≤ |U0,ξ − Ū0,ξ|+
1

2
t|H0,ξ − H̄0,ξ|
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+
1

2

∫ t

0

(

|g(X(s))− g(X̄(s))| + |yξ(s)− ȳξ(s)|
)

ds.

Applying the L2(R)-norm on both sides to the above inequality and (4.24), we
obtain (4.23). �

To simplify the remaining proofs we split for each time t the real line into three
parts: a continuous part where no wave breaking occured so far, a part where one
solution already experienced wave breaking, and a part where both solutions have
experienced wave breaking.

Definition 4.14. Define the disjoint sets

Rcont(t) = {ξ ∈ R | t < τ(ξ), τ̄ (ξ)},(4.29a)

Rmix(t) = {ξ ∈ R | τ̄(ξ) ≤ t < τ(ξ) or τ(ξ) ≤ t < τ̄ (ξ)},(4.29b)

Rdisc(t) = {ξ ∈ R | τ(ξ), τ̄ (ξ) ≤ t},(4.29c)

where the convention τ(ξ) = ∞ for ξ ∈ Ωc(X0) is used.

Before the remaining terms in d̃(St(X0), St(X̄0)•f) withX0, X̄0 ∈ Fα,M
i,0 and f ∈

G will be handled, an estimate for the integral
∫ t

0 ‖Vξ(s)− V̄ξ(s)‖1 ds is established.

The following observations play an essential role therein. If X0 ∈ Fα,M
i,0 , then

U2
0,ξ ≤ y0,ξV0,ξ ≤ H0,ξ since 0 ≤ y0,ξ ≤ 1. Hence

(4.30) ‖U0,ξ‖2 ≤
√

‖H0,ξ‖1 ≤
√
M,

Moreover, from (2.14) we have that Ut(ξ, t) =
1
2Vξ(ξ, t)− 1

4V∞(t), and thus

(4.31) ‖Ut‖∞ ≤ 1

4
‖V ‖∞ ≤ 1

4
M,

since Vξ(t, ξ) ≤ H0,ξ(ξ) for all ξ ∈ R.

Lemma 4.15. Given any two solutions X(t) and X̄(t) with initial data X0 ∈ Fα,M
i

and X̄0 ∈ Fα,M
i,0 , respectively, one has

∫ t

0

∫

R

|Vξ(ξ, s)− V̄ξ(ξ, s)| dξds ≤ (8 + 3t+ 2t2 +
3

4
t3)‖H0,ξ − H̄0,ξ‖1

+ 2

(

√

1 +
1

4
t2 + (1 +

1

4
t2)

)

√
M‖U0,ξ − Ū0,ξ‖2

+

(

4 + t+ t2 +
1

4
t3
)√

M‖y0,ξ − ȳ0,ξ‖2

+

(

√

1 +
1

4
t2 + 1 +

1

4
t2

)

√
M

×
∫ t

0

‖g(X(s))− g(X̄(s))‖2 + ‖yξ(s)− ȳξ(s)‖2 ds(4.32)

Proof. We omit ξ from the notation in this proof. Let Rcont(t), Rmix(t), and

Rdisc(t) as in Definition 4.14. We want to estimate
∫ t

0

∫

R
|Vξ(ξ, s) − V̄ξ(ξ, s)| dξds

by the terms of d̃(X0, X̄0) and d̃(X(t), X̄(t)). Since Rcont(t), Rmix(t), and Rdisc(t)
are disjoint, we can look at each region separately and add the results.
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If ξ ∈ Rcont(t), then

(4.33)

∫ t

0

|Vξ(ξ, s)− V̄ξ(ξ, s)| ds = t|H0,ξ − H̄0,ξ|.

Let ξ ∈ Rmix(t), then there are two possibilities: either τ ≤ t, or τ̄ ≤ t. The
two possibilities must be treated differently. To that end we split Rmix(t) into two
disjoint sets,

A(t) = {ξ ∈ Rmix(t) | τ(ξ) ≤ t},(4.34)

Ā(t) = {ξ ∈ Rmix(t) | τ̄ (ξ) ≤ t}.(4.35)

Assume first that ξ ∈ Ā(t), then
∫ t

0

|Vξ(s)− V̄ξ(s)| ds =
∫ τ̄

0

|Vξ(s)− V̄ξ(s)| ds+
∫ t

τ̄

|Vξ(s)− V̄ξ(s)| ds

= τ̄ |H0,ξ − H̄0,ξ|+
∫ t

τ̄

|H0,ξ − V̄ξ(s)| ds.(4.36)

If V̄ξ(s) ≥ H0,ξ, then |V̄ξ(s)−H0,ξ| ≤ |H0,ξ − H̄0,ξ|, and we can bound the integral
by

(4.37)

∫ t

0

|Vξ(s)− V̄ξ(s)| ds = t|H0,ξ − H̄0,ξ|.

If H0,ξ > V̄ξ(s), then there are two cases to consider, namely ξ ∈ Ωc(X0) and
ξ ∈ Ωd(X0). If ξ ∈ Ωc(X0) we have for s ≥ τ̄ ,

(4.38) |H0,ξ − V̄ξ(s)| ≤ |g(X(s))− g(X̄(s))|+ |yξ(s)− ȳξ(s)|.
If, on the other hand, ξ ∈ Ωd(X0) we have for s ≥ τ̄

H0,ξ − V̄ξ(s) = H0,ξ − H̄0,ξ + α(ȳ(τ̄ ))H̄0,ξ

=
(

1− α(ȳ(τ̄ ))
) (

H0,ξ − H̄0,ξ

)

+ α(ȳ(τ̄ ))H0,ξ(4.39)

and hence by (2.4) and (2.9),
∫ t

τ̄

|H0,ξ − V̄ξ(s)| ds ≤ (t− τ̄)|H0,ξ − H̄0,ξ|+ α(ȳ(τ̄ ))

∫ t

τ̄

H0,ξ ds

≤ (t− τ̄)|H0,ξ − H̄0,ξ|+ 2Uξ(t)− 2Uξ(τ̄ )

≤ (t− τ̄)|H0,ξ − H̄0,ξ|+ 2
(

Ūξ(τ̄ )− Uξ(τ̄ )
)

≤ (t− τ̄)|H0,ξ − H̄0,ξ|+ 2

(

|U0,ξ − Ū0,ξ|+
1

2
τ̄ |H0,ξ − H̄0,ξ|

)

.(4.40)

Thus for ξ ∈ Ā(t) we have
∫ t

0

|Vξ(s)− V̄ξ(s)| ds ≤ 2t|H0,ξ − H̄0,ξ|+ 2|U0,ξ − Ū0,ξ|

+

∫ t

0

|g(X(s))− g(X̄(s))|+ |yξ(s)− ȳξ(s)| ds.(4.41)

Since (2.32) implies that the measure of Ā(t) is bounded by (1+ 1
4 t

2)M , we obtain

L2(R)-estimates on the right hand side of (4.41) when integrating over Ā(t).
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Assume now that ξ ∈ A(t). Then

(4.42)

∫ t

0

|Vξ(s)− V̄ξ(s)| ds = τ |H0,ξ − H̄0,ξ|+
∫ t

τ

|Vξ(s)− H̄0,ξ| ds.

If Vξ(s) ≥ H̄0,ξ, then |Vξ(s)− H̄0,ξ| ≤ |H0,ξ − H̄0,ξ|, and we can bound the integral
by

(4.43)

∫ t

0

|Vξ(s)− V̄ξ(s)| ds ≤ t|H0,ξ − H̄0,ξ|.

Assume that H̄0,ξ > Vξ(s) and s ≥ τ . Since the measure of A(t) is not bounded
in terms of M and t only, see Corollary 2.4, we cannot use the same argument as

for ξ ∈ Ā(t) to get L2(R)-estimates. For X0 ∈ Fα,M
i there exists X̂0 ∈ Fα,M

i,0 such

that X̂0 • f = X0, where f = y0 +H0 ∈ G. Then (2.30) gives

(4.44) Ĥ0,ξ ◦ f =
1

1 + 1
4 τ̂

2 ◦ f =
1

1 + 1
4τ

2
,

and in particular for t ≥ τ ,

(4.45) 1 ≤ (1 +
1

4
t2)Ĥ0,ξ ◦ f.

We want to estimate H̄0,ξ − Vξ(s). Assume that ξ ∈ Ωd(X̄0), then

H̄0,ξ − Vξ(s) = H̄0,ξ −H0,ξ + α(y(τ))H0,ξ

= (1− α(y(τ)))
(

H̄0,ξ −H0,ξ

)

+ α(y(τ))H̄0,ξ ,(4.46)

and hence by (2.4) and (2.9),
∫ t

τ

|Vξ(s)− H̄0,ξ| ds ≤ (t− τ)|H0,ξ − H̄0,ξ|+
∫ t

τ

H̄0,ξ ds

= (t− τ)|H0,ξ − H̄0,ξ|+ 2
(

Ūξ(t)− Ūξ(τ)
)

≤ (t− τ)|H0,ξ − H̄0,ξ|+ 2
(

Uξ(τ)− Ūξ(τ)
)

≤ (t− τ)|H0,ξ − H̄0,ξ|+ 2|U0,ξ − Ū0,ξ|+ τ |H0,ξ − H̄0,ξ|
≤ t|H0,ξ − H̄0,ξ|+ 2|U0,ξ − Ū0,ξ|.(4.47)

Since t ≥ s ≥ τ we have that

|U0,ξ − Ū0,ξ| ≤
(

1 +
1

4
t2
)

Ĥ0,ξ ◦ f |U0,ξ − Ū0,ξ|

=

(

1 +
1

4
t2
)

∣

∣

∣
Û0,ξ ◦ ffξĤ0,ξ ◦ f − Ū0,ξĤ0,ξ ◦ f

∣

∣

∣

=

(

1 +
1

4
t2
)

∣

∣

∣
Û0,ξ ◦ f(Ĥ0,ξ ◦ ffξ − H̄0,ξ)

+ Û0,ξ ◦ fH̄0,ξ − Ū0,ξĤ0,ξ ◦ f
∣

∣

∣

≤
(

1 +
1

4
t2
)

(

|Û0,ξ ◦ f ||Ĥ0,ξ ◦ ffξ − H̄0,ξ|

+ |Û0,ξ ◦ fH̄0,ξ − Ū0,ξĤ0,ξ ◦ f |
)

.(4.48)
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By definition Ĥ0,ξ ◦ ffξ = H0,ξ and |Û0,ξ ◦ f | ≤ 1, and thus

(4.49) |U0,ξ − Ū0,ξ| ≤
(

1 +
1

4
t2
)

(∣

∣

∣
Û0,ξ ◦ fH̄0,ξ − Ū0,ξĤ0,ξ ◦ f

∣

∣

∣
+ |H0,ξ − H̄0,ξ|

)

.

To estimate the first term on the right hand side of (4.49) we note that 1 =
1− fξ + fξ, and hence

∣

∣

∣
Û0,ξ ◦ fH̄0,ξ − Ū0,ξĤ0,ξ ◦ f

∣

∣

∣
=
∣

∣

∣
Û0,ξ ◦ fH̄0,ξ − Ū0,ξĤ0,ξ ◦ f

∣

∣

∣
((1− fξ) + fξ)

≤
(

|Û0,ξ ◦ fH̄0,ξ|+ |Ū0,ξĤ0,ξ ◦ f |
)

(1 − fξ)

+
∣

∣

∣
Û0,ξ ◦ ffξH̄0,ξ − Ū0,ξĤ0,ξ ◦ ffξ

∣

∣

∣

≤ (|Ū0,ξ|+ H̄0,ξ)(1− fξ) + |Ū0,ξ||H0,ξ − H̄0,ξ|
+ H̄0,ξ|U0,ξ − Ū0,ξ|.(4.50)

Since X̄0 ∈ Fα,M
i,0 , and f = y0 +H0 we have that

(4.51) 1− fξ = ȳ0,ξ + H̄0,ξ − y0,ξ −H0,ξ,

and thus

|U0,ξ − Ū0,ξ| ≤
(

1 +
1

4
t2
)

(

4|H0,ξ − H̄0,ξ|+ (|Ū0,ξ|+ H̄0,ξ)|y0,ξ − ȳ0,ξ|

+ H̄0,ξ|U0,ξ − Ū0,ξ|
)

.(4.52)

Inserting (4.52) into (4.47) and subsequently into (4.42), we end up with
∫ t

0

|Vξ(s)− H̄0,ξ| ds ≤
(

8 + 2t+ 2t2
)

|H0,ξ − H̄0,ξ|

+ 2

(

1 +
1

4
t2
)

(

(|Ū0,ξ|+ H̄0,ξ)|y0,ξ − ȳ0,ξ|

+ H̄0,ξ|U0,ξ − Ū0,ξ|
)

.(4.53)

Assume that ξ ∈ Ωc(X̄0). Then, by a similar argument as for (4.49),

H̄0,ξ − Vξ(s) ≤ (H̄0,ξ − Vξ(s))

(

1 +
1

4
t2
)

Ĥ0,ξ ◦ f

=

(

1 +
1

4
t2
)

(

H̄0,ξĤ0,ξ ◦ f − V̂ξ ◦ f(s)Ĥ0,ξ ◦ ffξ
)

=

(

1 +
1

4
t2
)

(

H̄0,ξ(Ĥ0,ξ ◦ f − V̂ξ ◦ f(s)) + V̂ξ ◦ f(s)(H̄0,ξ −H0,ξ)
)

≤
(

1 +
1

4
t2
)

(

|H0,ξ − H̄0,ξ|+ H̄0,ξ(Ĥ0,ξ ◦ f − V̂ξ ◦ f(s))
)

.(4.54)

Since X̄0 ∈ Fα,M
i,0 , and f = y0 +H0 we have that

(4.55) 1− fξ = ȳ0,ξ + H̄0,ξ − y0,ξ −H0,ξ,

and thus,
(

Ĥ0,ξ ◦ f − V̂ξ ◦ f(s)
)

H̄0,ξ = (Ĥ0,ξ ◦ f − V̂ξ ◦ f(s))H̄0,ξ(1− fξ)

+ (H0,ξ − Vξ(s))H̄0,ξ
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≤ H̄0,ξ|1− fξ|+ |H0,ξ − H̄0,ξ|+ H̄0,ξ(H̄0,ξ − Vξ(s))

≤ (H̄0,ξ|yξ(s)− ȳξ(s)|+ H̄0,ξ|g(X(s))− g(X̄(s))|)
+ 2|H0,ξ − H̄0,ξ|+ H̄0,ξ|y0,ξ − ȳ0,ξ|.(4.56)

Hence,
∫ t

0

|Vξ(s)− H̄0,ξ| ds ≤ 3t

(

1 +
1

4
t2
)

|H0,ξ − H̄0,ξ|

+ t

(

1 +
1

4
t2
)

H̄0,ξ|y0,ξ − ȳ0,ξ|

+

(

1 +
1

4
t2
)

H̄0,ξ

∫ t

0

|g(X(s))− g(X̄(s))|+ |yξ(s)− ȳξ(s)| ds.(4.57)

From (4.43), (4.53), and (4.57) we get that for ξ ∈ A(t) the estimate
∫ t

0

|Vξ(s)− V̄ξ(s)| ds ≤
(

8 + 3t+ 2t2 +
3

4
t3
)

|H0,ξ − H̄0,ξ|

+ 2

(

1 +
1

4
t2
)

H̄0,ξ|U0,ξ − Ū0,ξ|

+

(

1 +
1

4
t2
)

(

2|Ū0,ξ|+ (2 + t)|H̄0,ξ|
)

|y0,ξ − ȳ0,ξ|

+

(

1 +
1

4
t2
)

H̄0,ξ

∫ t

0

|g(X(s))− g(X̄(s))| ds

+

(

1 +
1

4
t2
)

H̄0,ξ

∫ t

0

|yξ(s)− ȳξ(s)| ds,(4.58)

holds.
Assume finally that ξ ∈ Rdisc(t). Recall that according to (2.32) the measure of

Rdisc(t) is less than or equal to
(

1 + 1
4 t

2
)

M . Since (4.40) and (4.47) give the same
estimate we can assume without loss of generality that τ ≤ τ̄ ≤ t. By (4.47) we
have

∫ t

0

|Vξ(s)− V̄ξ(s)| ds =
∫ τ

0

|H0,ξ − H̄0,ξ| ds+
∫ τ̄

τ

|Vξ(s)− H̄0,ξ| ds

+

∫ t

τ̄

|Vξ(s)− V̄ξ(s)| ds

= (τ̄ + τ)|H0,ξ − H̄0,ξ|+ 2|U0,ξ − Ū0,ξ|

+

∫ t

τ̄

|Vξ(s)− V̄ξ(s)| ds.(4.59)

For s ≥ τ̄ we have

(4.60) |Vξ(s)− V̄ξ(s)| ≤ |g(X(s))− g(X̄(s))|+ |yξ(s)− ȳξ(s)|.
Thus

∫ t

0

|Vξ(s)− V̄ξ(s)| ds ≤ 2t|H0,ξ − H̄0,ξ|+ 2|U0,ξ − Ū0,ξ|

+

∫ t

0

|g(X(s))− g(X̄(s))|+ |yξ(s)− ȳξ(s)| ds.(4.61)
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If we collect the estimates (4.33), (4.41), (4.58), and (4.61) we get

∫ t

0

∫

R

|Vξ(ξ, s)− V̄ (ξ, s)|dξ ds ≤
(

8 + 3t+ 2t2 +
3

4
t3
)

|H0,ξ − H̄0,ξ|

+ 2

∫

Ā(t)∪Rdisc(t)

|U0,ξ − Ū0,ξ| dξ

+

∫

Ā(t)∪Rdisc(t)

∫ t

0

|g(X(s))− g(X̄(s))| dsdξ

+

∫

Ā(t)∪Rdisc(t)

∫ t

0

|yξ(s)− ȳξ(s)| dsdξ

+ 2

(

1 +
1

4
t2
)
∫

A(t)

|U0,ξ − Ū0,ξ|H̄0,ξ dξ

+ 2

(

1 +
1

4
t2
)

×
∫

A(t)

(|Ū0,ξ|+ (1 +
1

2
t)|H̄0,ξ|)|y0,ξ − ȳ0,ξ| dξ

+

(

1 +
1

4
t2
)

H̄0,ξ

×
∫

A(t)

∫ t

0

|g(X(s))− g(X̄(s))| dsdξ

+

(

1 +
1

4
t2
)

H̄0,ξ

∫

A(t)

∫ t

0

|yξ(s)− ȳξ(s)| dsdξ(4.62)

From (2.32) we have that m(Ā(t)∪Rdisc(t)) ≤ (1 + 1
4 t

2)M , while (4.30) ensures

that ‖Ū0,ξ‖2 ≤
√
M . Thus

∫ t

0

∫

R

|Vξ(ξ, s)− V̄ (ξ, s)| dξds ≤ (8 + 3t+ 2t2 +
3

4
t3)‖H0,ξ − H̄0,ξ‖1

+ 2

(

√

1 +
1

4
t2 + (1 +

1

4
t2)

)

√
M‖U0,ξ − Ū0,ξ‖2

+

(

4 + t+ t2 +
1

4
t3
)√

M‖y0,ξ − ȳ0,ξ‖2

+

(

1 +
1

4
t2 +

√

1 +
1

4
t2

)

√
M

×
∫ t

0

‖g(X(s))− g(X̄(s))‖2 + ‖yξ(s)− ȳξ(s)‖2 ds(4.63)

�

The system (2.14) and Lemma 4.15 can now be used to estimate the time evolu-
tion of ‖y(t)− ȳ(t)‖∞, ‖U(t)− Ū(t)‖∞, and ‖U(t)H0,ξ− Ū(t)H̄0,ξ‖2. Note that it is
not necessary to derive an estimate for ‖Hξ(t) − H̄ξ(t)‖1, since Hξ(ξ, t) = H0,ξ(ξ)
and H̄ξ(ξ, t) = H̄0,ξ(ξ).
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Lemma 4.16. Let X(t), X̄(t) be solutions with initial data X0 ∈ Fα,M
i and X̄0 ∈

Fα,M
i,0 , respectively. Then

‖U(t)− Ū(t)‖∞ ≤ ‖U0 − Ū0‖∞ +
1

4

∫ t

0

∫

R

|Vξ(ξ, s)− V̄ξ(ξ, s)| dξ ds,(4.64)

‖y(t)− ȳ(t)‖∞ ≤ ‖y(0)− ȳ(0)‖∞ +

∫ t

0

‖U(s)− Ū(s)‖∞ ds(4.65)

‖U(t)Hξ − Ū(t)H̄ξ‖2 ≤ ‖U0H0,ξ − Ū0H̄0,ξ‖2 +
1

4
Mt‖H0,ξ − H̄0,ξ‖2

+
1

4

√
M

∫ t

0

∫

R

|Vξ(ξ, s)− V̄ξ(ξ, s)| dξ ds.(4.66)

Proof. We omit ξ from the notation in this proof. It suffices to show the inequalities
for ‖U(t) − Ū(t)‖∞ and ‖U(t)H0,ξ − Ū(t)H̄0,ξ‖2, since (4.65) follows immediately
from (2.14). We have

d

dt
|U(t)− Ū(t)| ≤

∣

∣

∣

∣

1

2

(

V (t)− V̄ (t)
)

+
1

4

(

V∞(t)− V̄∞(t)
)

∣

∣

∣

∣

≤ 1

4

∫ ∞

−∞

|Vξ(t)− V̄ξ(t)| dξ,(4.67)

and from (4.31) there is

d

dt
|U(t)H0,ξ − Ū(t)H̄0,ξ| ≤ |Ut(t)− Ūt(t)|H̄0,ξ + |Ut(t)||H0,ξ − H̄0,ξ|

≤ 1

4

∫ ∞

−∞

|Vξ(t)− V̄ξ(t)| dξH̄0,ξ +
1

4
M |H0,ξ − H̄0,ξ|(4.68)

Since ‖H̄0,ξ‖2 ≤
√

‖H̄0,ξ‖1 ≤
√
M the lemma follows by applying the L2(R)-norm

to both sides of (4.67) and (4.68). �

It remains to estimate the norms ‖g(X(t))− g(X̄(t))‖2, ‖g2(X(t))− g2(X̄(t))‖2,
and ‖g3(X(t))− g3(X̄(t))‖2.
Lemma 4.17. Let X(t), X̄(t) be the solutions with initial data X0 ∈ Fα,M

i and

X̄0 ∈ Fα,M
i,0 , respectively. Then

‖g2(X(t))− g2(X̄(t))‖2 ≤ ‖g2(X0)− g2(X̄0)‖2 +
√
M‖α′‖∞‖H0,ξ − H̄0,ξ‖1

+ ‖α′‖∞M(‖U0,ξ − Ū0,ξ‖2 +
1

2
t‖H0,ξ − H̄0,ξ‖2),(4.69)

‖g3(X(t))− g3(X̄(t))‖2 ≤ ‖g3(X0)− g3(X̄0)‖2 +
1

4
t‖g2(X0)− g2(X̄0)‖2

+
1

2
t‖α′‖∞‖U0H0,ξ − Ū0H̄0,ξ‖2

+
1

4
‖α′‖∞Mt‖U0,ξ − Ū0,ξ‖2

+
1

8
‖α′‖∞Mt2‖H0,ξ − H̄0,ξ‖2

+
1

4
t‖α′‖∞

√
M‖H0,ξ − H̄0,ξ‖1

+
1

4
‖α′‖∞

√
M

∫ t

0

∫

R

|Vξ(ξ, s)− V̄ξ(ξ, s)| dξds,(4.70)
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‖g(X(t))− g(X̄(t))‖2 ≤ ‖g(X0)− g(X̄0)‖2 + ‖y0,ξ − ȳ0,ξ‖2

+
1

2
t‖α′‖∞M‖U0,ξ − Ū0,ξ‖2

+ (1 +
1

4
‖α′‖∞Mt2)‖H0,ξ − H̄0,ξ‖2

+ ‖α′‖∞
√
M‖y0 − ȳ0‖∞

+ t‖α′‖∞‖U0H0,ξ − Ū0H̄0,ξ‖2
+ 2‖g3(X0)− g3(X̄0)‖2

+
1

4
t‖g2(X0)− g2(X̄0)‖2

+
1

4
t‖α′‖∞

√
M‖H0,ξ − H̄0,ξ‖1

+

∫ t

0

‖Uξ(s)− Ūξ(s)‖2 ds

+ ‖α′‖∞
√
M

∫ t

0

‖U(s)− Ū(s)‖∞ ds.(4.71)

Proof. We omit ξ from the notation in this proof. Recall the splitting of R into
Rcont(t), Rmix(t), and Rdisc(t) given in Definition 4.14.

Let us prove the estimate for g2. Assume that ξ ∈ Rcont(t), then if ξ ∈ Ωc(X0)∩
Ωc(X̄0) we have

(4.72) g2(X(t))− g2(X̄(t)) = 0− 0 = 0.

We can assume without loss of generality that ξ ∈ Ωc(X0) ∩ Ωd(X̄0) in the mixed
case since the argument does not use the property ȳ0 + H̄0 = id. We have

(4.73) |g2(X(t))− g2(X̄(t))| = ‖α′‖∞H̄∞|Ūξ(t)|,
and from (2.9) we know that |Ūξ(t)| ≤ |Ū0,ξ|, and hence

(4.74) |g2(X(t))− g2(X̄(t))| ≤ |g2(X0)− g2(X̄0)|.
If ξ ∈ Ωd(X0) ∩Ωd(X̄0), then (2.9) implies that

|g2(X(t))− g2(X̄(t))| ≤ ‖α′‖∞|H∞ − H̄∞||Ūξ(t)|+ ‖α′‖∞H∞|Uξ(t)− Ūξ(t)|
≤ ‖α′‖∞|Ū0,ξ||H∞ − H̄∞|

+ ‖α′‖∞M(|U0,ξ − Ū0,ξ|+
1

2
t|H0,ξ − H̄0,ξ|).(4.75)

Assume that ξ ∈ Rmix(t). Then if ξ ∈ Ωc(X0)∩Ωd(X̄0) or ξ ∈ Ωd(X0)∩Ωc(X̄0)
we have that

(4.76) g2(X(t))− g2(X̄(t)) = 0− 0 = 0.

If ξ ∈ Ωd(X0)∩Ωd(X̄0), and if we assume without loss of generality that τ ≤ t < τ̄ ,
then we have

(4.77) |g2(X(t))− g2(X̄(t))| = ‖α′‖∞H̄∞|Ūξ(t)|,
and from (2.9) we know that |Ūξ(t)| ≤ |Ūξ(τ)|, and hence

(4.78) |g2(X(t))− g2(X̄(t))| ≤ ‖α′‖∞H̄∞|Ūξ(τ)− Uξ(τ)|.
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Thus following the same line as in (4.75), we end up with

(4.79) |g2(X(t))− g2(X̄(t))| ≤ ‖α′‖∞M(|U0,ξ − Ū0,ξ|+
1

2
t|H0,ξ − H̄0,ξ|).

Assume that ξ ∈ Rdisc(t). Then

(4.80) g2(X(t))− g2(X̄(t)) = 0− 0 = 0.

From (4.72), (4.74), (4.75), (4.76), (4.79), and (4.80) we get

|g2(X(t))− g2(X̄(t))| ≤ |g2(X0)− g2(X̄0)|
+ ‖α′‖∞|Ū0,ξ||H∞ − H̄∞|
+ ‖α′‖∞M |U0,ξ − Ū0,ξ|

+
1

2
‖α′‖∞Mt|H0,ξ − H̄0,ξ|.(4.81)

The estimate (4.69) is obtained after some direct computations by taking the L2(R)-
norm on both sides.

Next we show the inequality for g3. Assume that ξ ∈ Rcont(t), then if ξ ∈
Ωc(X0) ∩ Ωc(X̄0) we have

(4.82) g3(X(t))− g3(X̄(t)) = 0− 0 = 0.

For the mixed case assume without loss of generality ξ ∈ Ωc(X0) ∩ Ωd(X̄0) since
the argument does not depend on the property ȳ0 + H̄0 = id. We have

(4.83) |g3(X(t))− g3(X̄(t))| = ‖α′‖∞|Ū(t)||Ūξ(t)|,

and from (2.9) we know that |Ūξ(t)| ≤ |Ū0,ξ|, and hence by (4.31) we have

|g3(X(t))− g3(X̄(t))| = ‖α′‖∞|Ū(t)||Ūξ(t)|
≤ ‖α′‖∞|Ū(t)||Ū0,ξ|

≤ ‖α′‖∞|Ū0||Ū0,ξ|+
1

4
t‖α′‖H̄∞|Ū0,ξ|

≤ |g3(X0)− g3(X̄0)|+
1

4
t|g2(X0)− g2(X̄0)|.(4.84)

If ξ ∈ Ωd(X0) ∩ Ωd(X̄0), then

g3(X(t))− g3(X̄(t)) = ‖α′‖∞U(t)Uξ(t)− ‖α′‖∞Ū(t)Ūξ(t)

= ‖α′‖∞
(

U0 +

∫ t

0

Ut(s) ds

)(

U0,ξ +
1

2
tH0,ξ

)

− ‖α′‖∞
(

Ū0 +

∫ t

0

Ūt(s) ds

)(

Ū0,ξ +
1

2
tH̄0,ξ

)

= g3(X0)− g3(X̄0) +
1

2
t‖α′‖∞

(

U0H0,ξ − Ū0H̄0,ξ

)

+

(

Ū0,ξ +
1

2
tH̄0,ξ

)

‖α′‖∞
∫ t

0

(

Ut(s)− Ūt(s)
)

ds

+ ‖α′‖∞
∫ t

0

Ut(s) ds

(

U0,ξ +
1

2
tH0,ξ − Ū0,ξ −

1

2
tH̄0,ξ

)

.(4.85)
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Since (2.9) implies that |Ūξ(t)| = |Ū0,ξ +
1
2 tH̄0,ξ| is decreasing in time and due to

(4.31) we have that

|g3(X(t))− g3(X̄(t))| ≤ |g3(X0)− g3(X̄0)|+
1

2
t‖α′‖∞|U0H0,ξ − Ū0H̄0,ξ|

+
1

4
‖α′‖∞Mt|U0,ξ − Ū0,ξ|+

1

8
‖α′‖∞Mt2|H0,ξ − H̄0,ξ|

+
1

4
‖α′‖∞|Ū0,ξ +

1

2
tH̄0,ξ|

∫ t

0

∫

R

|Vξ(ξ, s)− V̄ξ(ξ, s)| dξds(4.86)

≤ |g3(X0)− g3(X̄0)|+
1

2
t‖α′‖∞|U0H0,ξ − Ū0H̄0,ξ|

+
1

4
‖α′‖∞Mt|U0,ξ − Ū0,ξ|+

1

8
‖α′‖∞Mt2|H0,ξ − H̄0,ξ|

+
1

4
‖α′‖∞|Ū0,ξ|

∫ t

0

∫

R

|Vξ(ξ, s)− V̄ξ(ξ, s)| dξds.(4.87)

Note that we can rewrite (4.85) in the following way,

g3(X(t))− g3(X̄(t)) = g3(X0)− g3(X̄0) +
1

2
t‖α′‖∞

(

U0H0,ξ − Ū0H̄0,ξ

)

+ ‖α′‖∞
(

U0,ξ +
1

2
tH0,ξ

)
∫ t

0

(

Ut(s)− Ūt(s)
)

ds

+ ‖α′‖∞
∫ t

0

Ūt(s) ds

(

U0,ξ +
1

2
tH0,ξ − Ū0,ξ −

1

2
tH̄0,ξ

)

,(4.88)

and hence

|g3(X(t))− g3(X̄(t))| ≤ |g3(X0)− g3(X̄0)|+
1

2
t‖α′‖∞|U0H0,ξ − Ū0H̄0,ξ|

+
1

4
‖α′‖∞Mt|U0,ξ − Ū0,ξ|+

1

8
‖α′‖∞Mt2|H0,ξ − H̄0,ξ|

+
1

4
‖α′‖∞|U0,ξ +

1

2
tH0,ξ|

∫ t

0

∫

R

|Vξ(ξ, s)− V̄ξ(ξ, s)| dξds.(4.89)

Assume that ξ ∈ Rmix(t). If ξ ∈ Ωc(X0)∩Ωd(X̄0) or ξ ∈ Ωd(X0)∩Ωc(X̄0), then

(4.90) g3(X(t))− g3(X̄(t)) = 0− 0 = 0.

Let ξ ∈ Ωd(X0) ∩ Ωd(X̄0) and assume without loss of generality that τ ≤ t < τ̄ .
Then from (2.9) we know that |Ūξ(t)| ≤ |Ūξ(τ)|, and hence by (4.31)

|g3(X(t))− g3(X̄(t))| = ‖α′‖∞|Ū(t)||Ūξ(t)|
≤ ‖α′‖∞|Ū(t)||Ūξ(τ)|

≤ ‖α′‖∞|Ū(τ)||Ūξ(τ)| +
1

4
(t− τ)‖α′‖H̄∞|Ūξ(τ)|

≤ |g3(X(τ)) − g3(X̄(τ))| + 1

4
(t− τ)|g2(X(τ)) − g2(X̄(τ))|.(4.91)

Combining (4.75) and (4.87) then yields

|g3(X(t))− g3(X̄(t))| ≤ |g3(X0)− g3(X̄0)|+
1

2
τ‖α′‖∞|U0H0,ξ − Ū0H̄0,ξ|

+
1

4
‖α′‖∞Mτ |U0,ξ − Ū0,ξ|+

1

8
‖α′‖∞Mτ2|H0,ξ − H̄0,ξ|
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+
1

4
‖α′‖∞|Ū0,ξ|

∫ τ

0

∫

R

|Vξ(ξ, s)− V̄ξ(ξ, s)| dξds

+
1

4
‖α′‖∞|Ū0,ξ|(t− τ)|H∞ − H̄∞|

+
1

4
‖α′‖∞M(t− τ)(|U0,ξ − Ū0,ξ|+

1

2
τ |H0,ξ − H̄0,ξ|),(4.92)

and thus

|g3(X(t))− g3(X̄(t))| ≤ |g3(X0)− g3(X̄0)|+
1

2
t‖α′‖∞|U0H0,ξ − Ū0H̄0,ξ|

+
1

4
‖α′‖∞Mt|U0,ξ − Ū0,ξ|+

1

8
‖α′‖∞Mt2|H0,ξ − H̄0,ξ|

+
1

4
‖α′‖∞|Ū0,ξ|t|H∞ − H̄∞|

+
1

4
‖α′‖∞|Ū0,ξ|

∫ t

0

∫

R

|Vξ(ξ, s)− V̄ξ(ξ, s)| dξds.(4.93)

Assume that ξ ∈ Rdisc(t). Then

(4.94) g3(X(t))− g3(X̄(t)) = 0− 0 = 0.

From (4.82), (4.84), (4.87), (4.90), (4.93), and (4.94) we get

|g3(X(t))− g3(X̄(t))| ≤ |g3(X0)− g3(X̄0)|+
1

4
t|g2(X0)− g2(X̄0)|

+
1

2
t‖α′‖∞|U0H0,ξ − Ū0H̄0,ξ|

+
1

4
‖α′‖∞Mt|U0,ξ − Ū0,ξ|

+
1

8
‖α′‖∞Mt2|H0,ξ − H̄0,ξ|

+
1

4
‖α′‖∞|Ū0,ξ|t|H∞ − H̄∞|

+
1

4
‖α′‖∞|Ū0,ξ|

∫ t

0

∫

R

|Vξ(ξ, s)− V̄ξ(ξ, s)| dξds.(4.95)

The estimate (4.70) is obtained after some direct computations by taking the L2(R)-
norm on both sides.

We prove the estimate for g. Assume that ξ ∈ Rcont(t), and let ξ ∈ Ωc(X0) ∩
Ωc(X̄0). Then

|g(X(t))− g(X̄(t))| = |H0,ξ − H̄0,ξ + yξ(t)− ȳξ(t)|

≤ |g(X0)− g(X̄0)|+
∫ t

0

|Uξ(s)− Ūξ(s)| ds.(4.96)

For the mixed case assume without loss of generality ξ ∈ Ωd(X0) ∩Ωc(X̄0), then
(4.97)

g(X(t))−g(X̄(t)) = g(X0)−g(X̄0)+

∫ t

0

(

Uξ(s)− Ūξ(s)
)

ds−
∫ t

0

d

ds
α(y(s))H0,ξ ds.

We have
∫ t

0

d

ds
α(y(s))H0,ξ ds ≤

∫ t

0

‖α′‖∞|U(s)|H0,ξ ds
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≤
∫ t

0

‖α′‖∞|U0 +

∫ s

0

Ut(σ) dσ|H0,ξ ds

≤ ‖α′‖∞
(

|U0|t+
1

8
H∞t2

)

H0,ξ

≤ 2‖α′‖∞|U0|(Uξ(t)− U0,ξ)

+
1

4
‖α′‖∞tH∞(Uξ(t)− U0,ξ)

≤ −2‖α′‖∞|U0|U0,ξ −
1

4
t‖α′‖∞H∞U0,ξ

≤ 2|g3(X0)− g3(X̄0)|+
1

4
t|g2(X0)− g2(X̄0)|,(4.98)

hence

|g(X(t))− g(X̄(t))| ≤ |g(X0)− g(X̄0)|+
∫ t

0

|Uξ(s)− Ūξ(s)| ds

+ 2|g3(X0)− g3(X̄0)|+
1

4
t|g2(X0)− g2(X̄0)|.(4.99)

Here we used that U0,ξ ≤ Uξ(t) ≤ 0.
If ξ ∈ Ωd(X0) ∩Ωd(X̄0) we have

|g(X(t))− g(X̄(t))| = |yξ(t)− ȳξ(t) + (1− α(y(t)))H0,ξ − (1− α(ȳ(t)))H̄0,ξ|

≤ |y0,ξ − ȳ0,ξ|+
∫ t

0

|Uξ(s)− Ūξ(s)| ds

+ |H0,ξ − H̄0,ξ|+ ‖α′‖∞H̄0,ξ‖y0 − ȳ0‖∞

+

∫ t

0

‖α′‖∞H̄0,ξ‖U(s)− Ū(s)‖∞ ds.(4.100)

Assume that ξ ∈ Rmix(t), and let ξ ∈ Ωc(X0) ∩Ωd(X̄0). Then

|g(X(t))− g(X̄(t))| = |yξ(t)− ȳξ(t) +H0,ξ − V̄ξ(t)|

≤ |g(X(τ̄ ))− g(X̄(τ̄ ))|+
∫ t

τ̄

|Uξ(s)− Ūξ(s)| ds

≤ |g(X0)− g(X̄0)|+ 2|g3(X0)− g3(X̄0)|

+
1

4
t|g2(X0)− g2(X̄0)|+

∫ t

0

|Uξ(s)− Ūξ(s)| ds,(4.101)

where we used (4.99) in the last step. Both the argument and the result are the
same in the case ξ ∈ Ωd(X0) ∩Ωc(X̄0).

If ξ ∈ Ωd(X0) ∩Ωd(X̄0), then if τ̄ ≤ t < τ ,

g(X(t))− g(X̄(t)) = yξ(t)− ȳξ(t) +H0,ξ − H̄0,ξ + α(ȳ(τ̄ ))H̄0,ξ − α(y(t))H0,ξ

= g(X(τ̄ ))− g(X̄(τ̄ )) +

∫ t

τ̄

(

Uξ(s)− Ūξ(s)
)

ds

−
∫ t

τ̄

d

ds
α(y(s))H0,ξ ds.(4.102)

Then we can proceed as in (4.98), and apply (4.75), (4.86), and (4.100), to obtain

|g(X(t))− g(X̄(t))| ≤ |g(X(τ̄))− g(X̄(τ̄ ))|+ 2|g3(X(τ̄ ))− g3(X̄(τ̄ ))|
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+
1

4
(t− τ̄ )|g2(X(τ̄ ))− g2(X̄(τ̄ ))|+

∫ t

τ̄

|Uξ(s)− Ūξ(s)| ds

≤ |y0,ξ − ȳ0,ξ|+
∫ τ̄

0

|Uξ(s)− Ūξ(s)|ds+ |H0,ξ − H̄0,ξ|

+ ‖α′‖∞H̄0,ξ‖y0 − ȳ0‖∞

+ ‖α′‖∞H̄0,ξ

∫ τ̄

0

‖U(s)− Ū(s)‖∞ds

+ 2|g3(X0)− g3(X̄0)|+ τ̄‖α′‖∞|U0H0,ξ − Ū0H̄0,ξ|

+
1

2
‖α′‖∞Mτ̄ |U0,ξ − Ū0,ξ|+

1

4
‖α′‖∞Mτ̄2|H0,ξ − H̄0,ξ|

+
1

2
‖α′‖∞|Ū0,ξ +

1

2
τ̄ H̄0,ξ|

∫ τ̄

0

∫

R

|Vξ(ξ, s)− V̄ξ(ξ, s)| dξds

+
1

4
‖α′‖∞|Ū0,ξ|(t− τ̄)|H∞ − H̄∞|

+
1

4
‖α′‖∞M(t− τ̄ )(|U0,ξ − Ū0,ξ|+

1

2
τ̄ |H0,ξ − H̄0,ξ|)

+

∫ t

τ̄

|Uξ(s)− Ūξ(s)| ds

≤ |y0,ξ − ȳ0,ξ|+
1

2
‖α′‖∞Mt|U0,ξ − Ū0,ξ|

+

(

1 +
1

4
‖α′‖∞Mt2

)

|H0,ξ − H̄0,ξ|

+ 2|g3(X0)− g3(X̄0)|+ t‖α′‖∞|U0H0,ξ − Ū0H̄0,ξ|
+ ‖α′‖∞H̄0,ξ‖y0 − ȳ0‖∞

+
1

4
‖α′‖∞|Ū0,ξ|t|H∞ − H̄∞|

+ ‖α′‖∞H̄0,ξ

∫ t

0

‖U(s)− Ū(s)‖∞ ds

+

∫ t

0

|Uξ(s)− Ūξ(s)| ds.(4.103)

The term

(4.104)
1

2
‖α′‖∞|Ū0,ξ +

1

2
τ̄ H̄0,ξ|

∫ t

0

∫

R

|Vξ(ξ, s)− V̄ξ(ξ, s)| dξds,

vanishes since Ū0,ξ +
1
2 τ̄ H̄0,ξ = 0 by the definition of τ̄ .

The case τ ≤ t < τ̄ is similar. Combining (4.89) and U0,ξ +
1
2τH0,ξ = 0, we get

that

|g3(X(τ)) − g3(X̄(τ))| ≤ |g3(X0)− g3(X̄0)|+
1

2
τ‖α′‖∞

∣

∣U0H0,ξ − Ū0H̄0,ξ

∣

∣

+
1

4
‖α′‖∞Mτ

(

|U0,ξ − Ū0,ξ|+
1

2
τ |H0,ξ − H̄0,ξ|

)

.(4.105)

Thus, following the same lines as in (4.103) yields,

|g(X(t))− g(X̄(t))| ≤ |y0,ξ − ȳ0,ξ|+
1

2
‖α′‖∞Mt|U0,ξ − Ū0,ξ|
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+

(

1 +
1

4
‖α′‖∞Mt2

)

|H0,ξ − H̄0,ξ|

+ 2|g3(X0)− g3(X̄0)|+ t‖α′‖∞|U0H0,ξ − Ū0H̄0,ξ|
+ ‖α′‖∞H̄0,ξ‖y0 − ȳ0‖∞

+
1

4
‖α′‖∞|Ū0,ξ|t|H∞ − H̄∞|

+ ‖α′‖∞H̄0,ξ

∫ t

0

‖U(s)− Ū(s)‖∞ ds

+

∫ t

0

|Uξ(s)− Ūξ(s)| ds.(4.106)

Assume that ξ ∈ Rdisc(t), and assume without loss of generality that τ̄ ≤ τ ,
then

(4.107) |g(X(t))− g(X̄(t))| ≤ |g(X(τ))− g(X̄(τ))| +
∫ t

τ

|Uξ(s)− Ūξ(s)| ds.

Thus, from (4.103) and (4.106), we get that

|g(X(t))− g(X̄(t))| ≤ |y0,ξ − ȳ0,ξ|+
1

2
‖α′‖∞Mt|U0,ξ − Ū0,ξ|

+

(

1 +
1

4
‖α′‖∞Mt2

)

|H0,ξ − H̄0,ξ|

+ 2|g3(X0)− g3(X̄0)|+ t‖α′‖∞|U0H0,ξ − Ū0H̄0,ξ|
+ ‖α′‖∞H̄0,ξ‖y0 − ȳ0‖∞

+
1

4
‖α′‖∞|Ū0,ξ|t|H∞ − H̄∞|

+ ‖α′‖∞H̄0,ξ

∫ t

0

‖U(s)− Ū(s)‖∞ ds

+

∫ t

0

|Uξ(s)− Ūξ(s)| ds.(4.108)

Combining (4.96), (4.99), (4.100), (4.101), (4.103), (4.106), and (4.108) yields

|g(X(t))− g(X̄(t))| ≤ |y0,ξ − ȳ0,ξ|

+
1

2
‖α′‖∞Mt|U0,ξ − Ū0,ξ|

+ (1 +
1

4
‖α′‖∞Mt2)|H0,ξ − H̄0,ξ|

+ ‖α′‖∞H̄0,ξ‖y0 − ȳ0‖∞
+ t‖α′‖∞|U0H0,ξ − Ū0H̄0,ξ|
+ |g(X0)− g(X̄0)|+ 2|g3(X0)− g3(X̄0)|

+
1

4
t|g2(X0)− g2(X̄0)|

+

∫ t

0

|Uξ(s)− Ūξ(s)| ds

+
1

4
‖α′‖∞|Ū0,ξ|t‖H0,ξ − H̄0,ξ‖1
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+ ‖α′‖∞H̄0,ξ

∫ t

0

‖U(s)− Ū(s)‖∞ ds.(4.109)

The result is obtained after some direct computations by applying the L2(R)-norm
to both sides of the above estimate and using (4.30). �

A Lipschitz theorem can now be stated for the flow in Lagrangian coordinates.
The idea is to apply the estimates in Lemmas 4.13, 4.15, 4.16, and 4.17 together
with Gronwall’s inequality.

Theorem 4.18. For solutions X(t), X̄(t) of (2.14) with initial data X0 ∈ Fα,M
i

and X̄0 ∈ Fα,M
i,0 the estimate

(4.110) d̃(X(t), X̄(t)) ≤ CM,α(t)d̃(X0, X̄0),

holds, with CM,α(t) = C̃M,α(t)e
tC̄M,α(t), where

C̃M,α(t) = 3 +
3

2
t+

1

2
t2 +

3

16
t3 +

√
M

(

1 +
1

4
t+

1

4
t2 +

1

16
t3
)

+ ‖α′‖∞
√
M

(

5 + 2t+ t2 +
3

8
t3
)

+ ‖α′‖∞M

(

3 +
5

4
t+

1

2
t2 +

1

8
t3
)

,(4.111)

C̄M,α(t) = 2 + ‖α′‖∞
√
M +

√
M

(

1

2
+

1

8
t+

1

16
t2
)

+ ‖α′‖∞M

(

1 +
1

4
t+

1

8
t2
)

.

(4.112)

Proof. Combining Lemma 4.13, 4.16, and 4.17 we end up with

d̃(X(t), X̄(t)) ≤ d̃(X0, X̄0)

+ ‖y0,ξ − ȳ0,ξ‖2

+ ‖α′‖∞M

(

1 +
3

4
t

)

‖U0,ξ − Ū0,ξ‖2

+

(

1 +
1

2
t+ ‖α′‖∞M

(

3

4
t+

3

8
t2
))

‖H0,ξ − H̄0,ξ‖2

+ ‖α′‖∞
√
M‖y0 − ȳ0‖∞

+ ‖α′‖∞
√
M

(

1 +
1

2
t

)

‖H0,ξ − H̄0,ξ‖1

+
3

2
t‖α′‖∞‖U0H0,ξ − Ū0H̄0,ξ‖2

+
1

2
t‖g2(X0)− g2(X̄0)‖2

+ 2‖g3(X0)− g3(X̄0)‖2

+ 2

∫ t

0

‖Uξ(s)− Ūξ(s)‖2 ds

+
(

1 + ‖α′‖∞
√
M
)

∫ t

0

‖U(s)− Ū(s)‖∞ ds

+
1

2

∫ t

0

(‖g(X(s))− g(X̄(s))‖2 + ‖yξ(s)− ȳξ(s)‖2) ds

+

(

1

4
+

1

2
‖α′‖∞

√
M

)
∫ t

0

∫

R

|Vξ(ξ, s)− V̄ξ(ξ, s)|dξ ds.(4.113)
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Inserting the estimate from Lemma 4.15 yields

(4.114) d̃(X(t), X̄(t)) ≤ C̃M,α(t)d̃(X0, X̄0) + C̄M,α(t)

∫ t

0

d̃(X(s), X̄(s)) ds,

with

C̃M,α(t) = 3 +
3

2
t+

1

2
t2 +

3

16
t3 +

√
M

(

1 +
1

4
t+

1

4
t2 +

1

16
t3
)

+ ‖α′‖∞
√
M

(

5 + 2t+ t2 +
3

8
t3
)

+ ‖α′‖∞M

(

3 +
5

4
t+

1

2
t2 +

1

8
t3
)

,(4.115)

C̄M,α(t) = 2 + ‖α′‖∞
√
M +

√
M

(

1

2
+

1

8
t+

1

16
t2
)

+ ‖α′‖∞M

(

1 +
1

4
t+

1

8
t2
)

.

(4.116)

The theorem follows from Gronwall’s inequality with CM,α(t) = C̃M,α(t)e
tC̄M,α(t).

�

We are now ready to prove the Lipschitz continuity on Fα,M
i,0 . The ingredients

for the proof are Theorem 4.18 and Lemma 4.12.

Theorem 4.19. Let X, X̄ ∈ Fα,M
i,0 , then for all t ≥ 0 it holds that

(4.117) dM
(

t,X, X̄
)

≤ ĈM,α(t)dM (0, X, X̄),

where ĈM,α(t) is given by ĈM,α = e
1
2 tC̃M,α(t)e

tC̄M,α(t),

C̃M,α(t) = 3 +
3

2
t+

1

2
t2 +

3

16
t3 +

√
M

(

1 +
1

4
t+

1

4
t2 +

1

16
t3
)

+ ‖α′‖∞
√
M

(

5 + 2t+ t2 +
3

8
t3
)

+ ‖α′‖∞M

(

3 +
5

4
t+

1

2
t2 +

1

8
t3
)

,(4.118)

C̄M,α(t) = 2 + ‖α′‖∞
√
M +

√
M

(

1

2
+

1

8
t+

1

16
t2
)

+ ‖α′‖∞M

(

1 +
1

4
t+

1

8
t2
)

.

(4.119)

Proof. Let 1 > ε > 0 and X, X̄ ∈ Fα,M
i,0 be given and choose {Xn}Nn=0 in Fα,M

i,0 ,

{fn}Nn=1, and {gn}N−1
n=0 in G such that X0 = X,XN = X̄ and dM (0, X, X̄) + ε ≥

∑N
n=1 d̃(Xn • fn, Xn−1) + d̃(Xn, Xn−1 • gn−1). Then from the definition of dM we

have

dM
(

t,X, X̄
)

≤
N
∑

n=1

J
(

ΠSt(Xn),ΠSt(Xn−1)
)

≤ e
1
2 t

N
∑

n=1

J
(

St(Xn), St(Xn−1)
)

,(4.120)

by Lemma 4.12. From the definition of J and Theorem 4.18 we get

dM
(

t,X, X̄
)

≤ e
1
2 t

N
∑

n=1

J
(

St(Xn), St(Xn−1)
)

≤ e
1
2 tCM,α(t)

N
∑

n=1

(

d̃(Xn • fn, Xn−1) + d̃(Xn, Xn−1 • gn−1)
)
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≤ ĈM,α(t)
(

dM (0, X, X̄) + ε
)

.(4.121)

The inequality holds for each ε in the range (0, 1), which implies that

(4.122) dM
(

ΠSt(X(t)),ΠSt(X̄(t))
)

≤ ĈM,α(t)dM (0, X, X̄).

�

Since Fα,M
i,0 is in one to one correspondance with Dα,M

0 the metric dM on Fα,M
i,0

induces a metric dDM
on Dα,M

0 .

Definition 4.20. Let (u, ρ, ν, µ), (ū, ρ̄, ν̄, µ̄) ∈ Dα,M
0 , then define dDα,M

0
: [0,∞)×

Dα,M
0 ×Dα,M

0 → R by

(4.123) dDα,M
0

(t, (u, ρ, ν, µ), (ū, ρ̄, ν̄, µ̄)) = dM (t, L((u, ρ, ν, µ)), L((ū, ρ̄, ν̄, µ̄)))

for any (u, ρ, ν, µ), (ū, ρ̄, ν̄, µ̄) ∈ Dα,M
0 and t ≥ 0.

Theorem 4.21. The α-dissipative solution operator Tt is Lipschitz continuous in

the sense that for any (u0, ρ0, ν0, µ0), (ū0, ρ̄0, ν̄0, µ̄0) ∈ Dα,M
0 the inequality

dDα,M
0

(

t, (u0, ρ0, ν0, µ0), (ū0, ρ̄0, ν̄0, µ̄0)
)

≤ ĈM,α(t)dDα,M
0

(

0, (u0, ρ0, ν0, µ0), (ū0, ρ̄0, ν̄0, µ̄0)
)

(4.124)

holds. The Lipschitz constant ĈM,α(t) is given inTheorem 4.19.

Proof. The theorem follows from Theorem 3.14 and Theorem 4.19. �

Appendix A. Examples

Example A.1. In this example we construct an α-dissipative solution. Let the
initial data (u0, ρ0, ν0, µ0) ∈ Dα

0 be given by

u0(x) =



















0, x ≤ −1,

x+ 1, −1 ≤ x ≤ 0,

−x+ 1, 0 ≤ x ≤ 1,

0, 1 ≤ x,

(A.1)

ρ0(x) = 0,(A.2)

ν0 = µ0,ac = u2
0,x(x) dx = µ0,(A.3)

and α(x) = x2

x2+1 . Then the initial data in Lagrangian coordinates is given by

(y0, U0, H0, r0, V0) = L((u0, ρ0, ν0, µ0)) where

y0(ξ) =











ξ, ξ ≤ −1,
1
2 (ξ − 1), −1 ≤ ξ ≤ 3,

ξ − 2, 3 ≤ ξ,

(A.4)

H0(ξ) =











0, ξ ≤ −1,
1
2 (ξ + 1), −1 ≤ ξ ≤ 3,

2, 3 ≤ ξ,

(A.5)



42 K. GRUNERT AND A. NORDLI

U0(ξ) =



















0, ξ ≤ −1,
1
2 (ξ + 1), −1 ≤ ξ ≤ 1,
1
2 (−ξ + 3), 1 ≤ ξ ≤ 3,

0, 3 ≤ ξ,

(A.6)

r0(ξ) = 0,(A.7)

V0(ξ) = H0(ξ).(A.8)

(A.9)

Moreover the wave breaking time τ as a function of ξ is given by

(A.10) τ(ξ) =











∞, ξ < 1,

2, 1 < ξ < 3,

∞, 3 < ξ.

Then for t < 2 the solution is given by

y(ξ, t) =



















ξ − 1
4 t

2, ξ ≤ −1,
1
2 (ξ − 1) + 1

2 (ξ + 1)t+ 1
8 (ξ − 1)t2, −1 ≤ ξ ≤ 1,

1
2 (ξ − 1)− 1

2 (ξ − 3)t+ 1
8 (ξ − 1)t2, 1 ≤ ξ ≤ 3,

ξ − 2 + 1
4 t

2, 3 ≤ ξ,

(A.11)

U(ξ, t) =



















− 1
2 t, ξ ≤ −1,

1
2 (ξ + 1) + 1

4 (ξ − 1)t, −1 ≤ ξ ≤ 1,

− 1
2 (ξ − 1) + 1

4 (ξ − 1)t, 1 ≤ ξ ≤ 3,
1
2 t, 3 ≤ ξ,

(A.12)

H(ξ, t) = H0(ξ),(A.13)

r(ξ, t) = 0,(A.14)

V (ξ, t) = H0(ξ).(A.15)

In Eulerian coordinates the solution for t < 2 is given by

u(x, t) =























− 1
2 t, x ≤ − 1

4 t
2 − 1,

x− 1
2 t+1

1+ 1
2 t

, − 1
4 t

2 − 1 ≤ x ≤ t,

−x+ 1
2 t+1

1− 1
2 t

, t ≤ x ≤ 1
4 t

2 + 1,

1
2 t,

1
4 t

2 + 1 ≤ x,

(A.16)

dν(t) = dµ(t) = u2
x(t) dx.(A.17)

As t → 2 we note that y(ξ, t) → 2 for ξ ∈ (1, 3). Hence all wave breaking takes
place at the coordinates (x = 2, t = 2). We have

(A.18) α(2) =
4

5
.

At t = 2 the solution in Lagrangian coordinates reads

y(ξ, 2) =



















ξ − 1, ξ ≤ −1,

2ξ, −1 ≤ ξ ≤ 1,

2, 1 ≤ ξ ≤ 3,

ξ − 1, 3 ≤ ξ,

(A.19)
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U(ξ, 2) =



















−1, ξ ≤ −1,

ξ, −1 ≤ ξ ≤ 1,

1, 1 ≤ ξ ≤ 3,

1, 3 ≤ ξ,

(A.20)

H(ξ, 2) = H0(ξ),(A.21)

r(ξ, 2) = 0,(A.22)

V (ξ, 2) =



















0, ξ ≤ −1,
1
2 (ξ + 1), −1 ≤ ξ ≤ 1,
1
10 (ξ + 9), 1 ≤ ξ ≤ 3,
6
5 , 3 ≤ ξ,

(A.23)

and thus the solution in Lagrangian coordinates for t ≥ 2 is given by

y(ξ, t) =



















− 3
20 t

2 − 2
5 t+ ξ + 2

5 , ξ ≤ −1,
1
2 (ξ − 1

5 ) +
1
2 (ξ +

1
5 )t+

1
8 (ξ − 1

5 )t
2, −1 ≤ ξ ≤ 1,

1
10 (ξ + 3)− 1

10 (ξ − 7)t+ 1
40 (ξ + 3)t2, 1 ≤ ξ ≤ 3,

3
20 t

2 + 2
5 t+ ξ − 12

5 , 3 ≤ ξ,

(A.24)

U(ξ, t) =



















− 3
10 t− 2

5 , ξ ≤ −1,
1
2 (ξ +

1
5 ) +

1
4 (ξ − 1

5 )t, −1 ≤ ξ ≤ 1,

− 1
10 (ξ − 7) + 1

20 (ξ + 3)t, 1 ≤ ξ ≤ 3,
3
10 t+

2
5 , 3 ≤ ξ,

(A.25)

H(ξ, t) = H(ξ, 0),(A.26)

r(ξ, t) = 0,(A.27)

V (ξ, t) =



















0, ξ ≤ −1,
1
2 (ξ + 1), −1 ≤ ξ ≤ 1,
1
10 (ξ + 9), 1 ≤ ξ ≤ 3,
6
5 , 3 ≤ ξ.

(A.28)

The solution in Eulerian coordinates for t ≥ 2 is then given by

u(x, t) =























− 3
10 t− 2

5 , x ≤ − 3
20 t

2 − 2
5 t− 3

5 ,
x+ 1

5 (1−
1
2 t)

1+ 1
2 t

, − 3
20 t

2 − 2
5 t− 3

5 ≤ x ≤ 1
10 t

2 + 3
5 t+

2
5 ,

x− 1
2 t−1

1
2 t−1

, 1
10 t

2 + 3
5 t+

2
5 ≤ x ≤ 3

20 t
2 + 2

5 t+
3
5 ,

3
10 t+

2
5 ,

3
20 t

2 + 2
5 t+

3
5 ≤ x,

(A.29)

ρ(x, t) = 0,(A.30)

dν(t) = ux(x, t)
2dx

+ δ(x=2,t=2) +
4

(12 t− 1)2
1[ 1

10 t
2+ 3

5 t+
2
5 ,

3
20 t

2+ 2
5 t+

3
5 ]
dx(A.31)

dµ(t) = ux(x, t)
2 dx+

1

5
δ(x=2,t=2).(A.32)

In Figure 2 curves of y(ξ, t) are drawn for ξ = −1, 1, 3. The cumulative energy
function for the measures µ and ν are plotted for t = 0, 2, 4 in Figure 3.
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Figure 2. Plots of y(ξ, t) in Example A.1 for ξ = −1, 1, 3.
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Figure 3. Plots of the cumulative energy functions in Example
A.1 for t = 0, 2, 4.
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Example A.2. In this example we show that the function g in the construction of
the metric is necessary. Let α ∈ [0, 1] be a given constant, choose ε ∈ (0, 1), and
let (u0, ρ0, ν0, µ0) and (ū0, ρ̄0, ν̄0, µ̄0) be given by

u0(x) =



















0, x ≤ −1,

x+ 1, −1 ≤ x ≤ 0,

1− x, 0 ≤ x ≤ ε,

1− ε, ε ≤ x,

(A.33)

ū0(x) =











−2ε, x ≤ −1,

x+ 1− 2ε, −1 ≤ x ≤ ε,

1− ε, ε ≤ x,

(A.34)

ρ0 = ρ̄0 = 0,(A.35)

ν0 = ν̄0 = u2
0,x dx = µ̄0 = µ0.(A.36)

Then X0 = L((u0, ρ0, ν0, µ0)) and X̄0 = L((ū0, ρ̄0, ν̄0, µ̄0)) are given by

y0(ξ) = ȳ0(ξ) =











ξ, ξ ≤ −1,
1
2 (ξ − 1), −1 ≤ ξ ≤ 1 + 2ε,

ξ − 1− ε, 1 + 2ε ≤ ξ,

(A.37)

U0(ξ) =



















0, ξ ≤ −1,
1
2 (ξ + 1), −1 ≤ ξ ≤ 1,

− 1
2 (ξ − 3), 1 ≤ ξ ≤ 1 + 2ε,

1− ε, 1 + 2ε ≤ ξ,

(A.38)

Ū0(ξ) =











−2ε, ξ ≤ −1,
1
2 (ξ + 1− 4ε), −1 ≤ ξ ≤ 1 + 2ε,

1− ε, 1 + 2ε ≤ ξ,

(A.39)

H0(ξ) = H̄0(ξ) =











0, ξ ≤ −1,
1
2 (ξ + 1), −1 ≤ ξ ≤ 1 + 2ε,

1 + ε, 1 + 2ε ≤ ξ,

(A.40)

r0(ξ) = r̄0(ξ) = 0.(A.41)

Let X(t) = St(X0) and X̄(t) = St(X̄0), then for 0 ≤ t < 2 we have

y(ξ, t) =



















ξ − 1
8 (1 + ε)t2, ξ ≤ −1,

1
2 (ξ − 1) + 1

2 (ξ + 1)t+ 1
8 (ξ − ε)t2, −1 ≤ ξ ≤ 1,

1
2 (ξ − 1)− 1

2 (ξ − 3)t+ 1
8 (ξ − ε)t2, 1 ≤ ξ ≤ 1 + 2ε,

ξ − 1− ε+ (1− ε)t+ 1
8 (1 + ε)t2, 1 + 2ε ≤ ξ,

(A.42)

ȳ(ξ, t) =











ξ − 2εt− 1
8 (1 + ε)t2, ξ ≤ −1,

1
2 (ξ − 1) + 1

2 (ξ + 1− 4ε)t+ 1
8 (ξ − ε)t2, −1 ≤ ξ ≤ 1 + 2ε,

ξ − 1− ε+ (1− ε)t+ 1
8 (1 + ε)t2, 1 + 2ε ≤ ξ,

(A.43)
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U(ξ, t) =



















− 1
4 (1 + ε)t, ξ ≤ −1,

1
2 (ξ + 1) + 1

4 (ξ − ε)t, −1 ≤ ξ ≤ 1,

− 1
2 (ξ − 3) + 1

4 (ξ − ε)t, 1 ≤ ξ ≤ 1 + 2ε,

1− ε+ 1
4 (1 + ε)t, 1 + 2ε ≤ ξ,

(A.44)

Ū(ξ, t) =











−2ε− 1
4 (1 + ε)t, ξ ≤ −1,

1
2 (ξ + 1)− 2ε+ 1

4 (ξ − ε)t, −1 ≤ ξ ≤ 1 + 2ε,

1− ε+ 1
4 (1 + ε)t, 1 + 2ε ≤ ξ.

(A.45)

Then M(X(t)), and M(X̄(t)), the solutions in Eulerian coordinates, are given by

x1(t) = −1− 1

8
(1 + ε)t2,(A.46)

x2(t) = t+
1

8
(1− ε)t2,(A.47)

x3(t) = ε+ (1− ε)t+
1

8
(1 + ε)t2,(A.48)

u(x, t) =























− 1
4 (1 + ε)t, x ≤ x1(t),
1

1+ 1
2 t

(

x+ 1− 1
4 (1 + ε)t

)

, x1(t) ≤ x ≤ x2(t),

1
1− 1

2 t

(

1− x+ 1
4 (3− ε)t

)

, x2(t) ≤ x ≤ x3(t),

1− ε+ 1
4 (1 + ε)t, x3(t) ≤ x,

(A.49)

ρ(x, t) = 0,(A.50)

dν(t) =
1

1 + t+ 1
4 t

2
1[x1(t),x2(t)] dx+

1

1− t+ 1
4 t

2
1[x2(t),x3(t)] dx,(A.51)

µ(t) = ν(t),(A.52)

x̄1(t) = −1− 2εt− 1

8
(1 + ε)t2,(A.53)

x̄2(t) = ε+ (1− ε)t+
1

8
(1 + ε)t2,(A.54)

ū(x, t) =











−2ε− 1
4 (1 + ε)t, x ≤ x̄1(t),

1
1+ 1

2
t

(

x+ 1− 2ε− 1
4 t(1 − 3ε)

)

, x̄1(t) ≤ x ≤ x̄2(t),

1− ε+ 1
4 (1 + ε)t, x̄2(t) ≤ x,

(A.55)

ρ̄(x, t) = 0,(A.56)

dν̄(t) =
1

1 + t+ 1
4 t

2
1[x̄1(t),x̄2(t)] dx,(A.57)

µ̄(t) = ν̄(t),(A.58)

For 2 ≤ t the solutions in Lagrangian coordinates are given by

y(ξ, t) =































ξ + αε
2 − αε

2 t− 1
8 (1 + (1− α)ε)t2, ξ ≤ −1,

1
2 (ξ − 1) + αε

2 + 1
2 (ξ + 1− αε)t+ 1

8 (ξ − (1− α)ε)t2, −1 ≤ ξ ≤ 1,
1−α
2 (ξ − 1) + αε

2 + (− 1−α
2 (ξ − 1) + 1− αε

2 )t

+ 1
8 ((1− α)(ξ − 1− ε) + 1)t2, 1 ≤ ξ ≤ 1 + 2ε,

ξ − 1− ε− αε
2 + (1− ε+ αε

2 )t+ 1
8 (1 + (1− α)ε)t2, 1 + 2ε ≤ ξ,

(A.59)
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ȳ(ξ, t) =











ξ − 2εt− 1
8 (1 + ε)t2, ξ ≤ −1,

1
2 (ξ − 1) + 1

2 (ξ + 1− 4ε)t+ 1
8 (ξ − ε)t2, −1 ≤ ξ ≤ 1 + 2ε,

ξ − 1− ε+ (1− ε)t+ 1
8 (1 + ε)t2, 1 + 2ε ≤ ξ,

(A.60)

U(ξ, t) =



















−αε
2 − 1

4 (1 + (1− α)ε)t, ξ ≤ −1,
1
2 (ξ + 1− αε) + 1

4 (ξ − (1− α)ε)t, −1 ≤ ξ ≤ 1,

− 1−α
2 (ξ − 1) + 1− αε

2 + 1
4 ((1 − α)(ξ − 1− ε) + 1)t, 1 ≤ ξ ≤ 1 + 2ε,

1− ε+ αε
2 + 1

4 (1 + (1− α)ε)t, 1 + 2ε ≤ ξ,

(A.61)

Ū(ξ, t) =











−2ε− 1
4 (1 + ε)t, ξ ≤ −1,

1
2 (ξ + 1)− 2ε+ 1

4 (ξ − ε)t, −1 ≤ ξ ≤ 1 + 2ε,

1− ε+ 1
4 (1 + ε)t, 1 + 2ε ≤ ξ,

(A.62)

V (ξ, t) =



















0, ξ ≤ −1,
1
2 (ξ + 1), −1 ≤ ξ ≤ 1,
1−α
2 ξ + 1+α

2 , 1 ≤ ξ ≤ 1 + 2ε,

1 + (1 − α)ε, 1 + 2ε ≤ ξ,

(A.63)

V̄ (ξ, t) = H̄0(ξ),

(A.64)

H(ξ, t) = H0(ξ),

(A.65)

H̄(ξ, t) = H̄0(ξ).

(A.66)

The solutions in Eulerian coordinates for 2 ≤ t are given by

x1(t) = −1 +
αε

2
− αε

2
t− 1

8
(1 + (1− α)ε)t2,(A.67)

x2(t) =
αε

2
+ (1− αε

2
)t+

1

8
(1− (1− α)ε)t2,(A.68)

x3(t) = ε− αε

2
+ (1 − ε+

αε

2
)t+

1

8
(1 + (1− α)ε)t2,(A.69)

u(x, t) =























−αε
2 − 1

4 (1 + (1− α)ε)t, x ≤ x1(t),
x−x1(t)

(1+ 1
2 t)

2 − αε
2 − 1

4 (1 + (1− α)ε)t, x1(t) ≤ x ≤ x2(t),

− 1
1− 1

2 t

(

x− 2− 1
2 (1− ε)t+ 1

8 (1− ε)t2
)

, x2(t) ≤ x ≤ x3(t),

1− ε+ αε
2 + 1

4 (1 + (1− α)ε)t, x3(t) ≤ x,

(A.70)

ρ(x, t) = 0,(A.71)

dν(t) =
1

1 + t+ 1
4 t

2
1[x1(t),x2(t)] dx+

1

(1− α)(1 − t+ 1
4 t

2)
1[x2(t),x3(t)] dx

+ εδ(x=2+ 1−ε
2 ,t=2),(A.72)



48 K. GRUNERT AND A. NORDLI

dµ(t) =
1

1 + t+ 1
4 t

2
1[x1(t),x2(t)] dx+

1

(1− t+ 1
4 t

2)
1[x2(t),x3(t)] dx

+ (1− α)εδ(x=2+ 1−ε
2 ,t=2),(A.73)

x̄1(t) = −1− 2εt− 1

8
(1 + ε)t2,(A.74)

x̄2(t) = ε+ (1− ε)t+
1

8
(1 + ε)t2,(A.75)

ū(x, t) =











−2ε− 1
4 (1 + ε)t, x ≤ x̄1(t),

1
1+ 1

2 t

(

x+ 1− 2ε− 1
4 t(1− 3ε)

)

, x̄1(t) ≤ x ≤ x̄2(t),

1− ε+ 1
4 (1 + ε)t, x̄2(t) ≤ x,

(A.76)

ρ̄(x, t) = 0,(A.77)

dν̄(t) =
1

1 + t+ 1
4 t

2
1[x̄1(t),x̄2(t)] dx,(A.78)

µ̄(t) = ν̄(t),(A.79)

The curves tracking the break points, x1, x2, x3, x̄1, and x̄2, is drawn in Figure
4. In Figure 5 the cumulative function of the measures µ and µ̄ are plotted for
t = 0, 2, 4. Note that they do not coincide after wave breaking.

For t < 2 the norms of X(t)− X̄(t) are given by

‖y(t)− ȳ(t)‖∞ = 2εt,(A.80)

‖U(t)− Ū(t)‖∞ = 2ε,(A.81)

‖yξ(t)− ȳξ(t)‖2 =
√
2εt,(A.82)

‖Uξ(t)− Ūξ(t)‖2 =
√
2ε,(A.83)

‖Vξ(t)− V̄ξ(t)‖2 = 0,(A.84)

‖g(X(t))− g(X̄)‖2 =
√
2ε
(

t+
α

2

)

,(A.85)

‖g2(X(t))− g2(X̄(t))‖2 = 0,(A.86)

‖g3(X(t))− g3(X̄(t))‖2 = 0,(A.87)

‖α′‖∞‖U(t)H0,ξ − Ū(t)H̄0,ξ‖2 = 0,(A.88)

while for 2 ≤ t we have

‖y(t)− ȳ(t)‖∞ = ε
(

2t+
α

8
(t− 2)2

)

,(A.89)

‖U(t)− Ū(t)‖∞ = 2ε+
αε

4
(t− 2),(A.90)

‖yξ(t)− ȳξ(t)‖2 =
√
2ε
(

t+
α

8
(t− 2)2

)

,(A.91)

‖Uξ(t)− Ūξ(t)‖2 =
√
2ε
(

1 +
α

4
(t− 2)

)

,(A.92)

‖Vξ(t)− V̄ξ(t)‖2 =
√
2ε

α

2
,(A.93)

‖g(X)− g(X̄)‖2 =
√
2ε
(α

2
+ t+

α

8
(t− 2)2

)

,(A.94)

‖g2(X(t))− g2(X̄(t))‖2 = 0,(A.95)

‖g3(X(t))− g3(X̄(t))‖2 = 0,(A.96)
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Figure 4. A plot of characteristic curves xi(ξ, t), i = 1, 2, 3 and
x̄i(t), t = 1, 2 from (A.67) in Example A.2.

‖α′‖∞‖U(t)H0,ξ − Ū(t)H̄0,ξ‖2 = 0.(A.97)

That is, at t = 2 the norm ‖Uξ(t)− Ūξ(t)‖2 suddenly starts to grow, and the growth
depends on α. Moreover, there is a jump in ‖Vξ(t) − V̄ξ(t)‖2 at t = 2, so that
term cannot be a part of the metric. Note that since H0 = H̄0 all terms involving
differences in H or Hξ vanish.

Example A.3. In this example we demonstrate the iteration scheme from the proof
of Lemma 2.3. In particular we illustrate how the scheme reaches the limit in a
finite number of iterations for multipeakon initial data. Let X0 ∈ F0 be given by

y0(ξ) =



















ξ, ξ ≤ −1,
1
2 (ξ − 1), −1 ≤ ξ ≤ 1,
4
5 (ξ − 1), 1 ≤ ξ ≤ 7

2 ,

ξ − 3
2 ,

7
2 ≤ ξ,

(A.98)

U0(ξ) =



















1, ξ ≤ −1,

− 1
2 (ξ − 1), −1 ≤ ξ ≤ 1,

− 2
5 (ξ − 1), 1 ≤ ξ ≤ 7

2 ,

−1, 7
2 ≤ ξ,

(A.99)

H0(ξ) =



















0, ξ ≤ −1,
1
2 (ξ + 1), −1 ≤ ξ ≤ 1,
1
5 (ξ + 4), 1 ≤ ξ ≤ 7

2 ,
3
2 ,

7
2 ≤ ξ,

(A.100)

V0 = H0,(A.101)
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Figure 5. Plots of the cumulative energy functions in Example
A.2 for t = 0, 2, 4 .

r0 = 0,(A.102)

which gives

(A.103) τ(ξ) =



















∞, ξ ≤ −1,

2, −1 ≤ ξ ≤ 1,

4, 1 ≤ ξ ≤ 7
2 ,

∞, 7
2 ≤ ξ.

Choose α(x) such that

(A.104) α(x) =











0, x ≤ 0,
1
4x, 0 ≤ x ≤ 3,
3
4 , 3 ≤ x.

Then, in the notation of the proof of Lemma 2.3, we have X1(t) = X0. For t < 2
the next term is given by

y2(ξ, t) =



















ξ + t− 3
16 t

2, ξ ≤ −1,
1
2 (ξ − 1)− 1

2 (ξ − 1)t+ 1
8 (ξ − 1

2 )t
2, −1 ≤ ξ ≤ 1,

4
5 (ξ − 1)− 2

5 (ξ − 1)t+ 1
20 (ξ +

1
4 )t

2, 1 ≤ ξ ≤ 7
2 ,

ξ − 3
2 − t+ 3

16 t
2, 7

2 ≤ ξ,

(A.105)

U2(ξ, t) =



















1− 3
8 t, ξ ≤ −1,

− 1
2 (ξ − 1) + 1

4 (ξ − 1
2 )t, −1 ≤ ξ ≤ 1,

− 2
5 (ξ − 1) + 1

10 (ξ +
1
4 )t, 1 ≤ ξ ≤ 7

2 ,

−1 + 3
8 t,

7
2 ≤ ξ,

(A.106)
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H2(ξ, t) =



















0, ξ ≤ −1,
1
2 (ξ + 1), −1 ≤ ξ ≤ 1,
1
5 (ξ + 4), 1 ≤ ξ ≤ 7

2 ,
3
2 ,

7
2 ≤ ξ,

(A.107)

V2(t) = H0,(A.108)

r2(t) = 0.(A.109)

The amount of energy dissipated at t = 2 is given by

(A.110) α(y1(ξ, τ(ξ))) = 0, −1 ≤ ξ ≤ 1,

and hence we have for 2 ≤ t < 4 that

y2(ξ, t) =



















ξ + t− 3
16 t

2, ξ ≤ −1,
1
2 (ξ − 1)− 1

2 (ξ − 1)t+ 1
8 (ξ − 1

2 )t
2, −1 ≤ ξ ≤ 1,

4
5 (ξ − 1)− 2

5 (ξ − 1)t+ 1
20 (ξ +

1
4 )t

2, 1 ≤ ξ ≤ 7
2 ,

ξ − 3
2 − t+ 3

16 t
2, 7

2 ≤ ξ,

(A.111)

U2(ξ, t) =



















1− 3
8 t, ξ ≤ −1,

− 1
2 (ξ − 1) + 1

4 (ξ − 1
2 )t, −1 ≤ ξ ≤ 1,

− 2
5 (ξ − 1) + 1

10 (ξ +
1
4 )t, 1 ≤ ξ ≤ 7

2 ,

−1 + 3
8 t,

7
2 ≤ ξ,

(A.112)

H2(ξ, t) =



















0, ξ ≤ −1,
1
2 (ξ + 1), −1 ≤ ξ ≤ 1,
1
5 (ξ + 4), 1 ≤ ξ ≤ 7

2 ,
3
2 ,

7
2 ≤ ξ,

(A.113)

V2(t) = H0,(A.114)

r2(t) = 0.(A.115)

The amount dissipated at t = 4 is given by

(A.116) α(y1(ξ, τ(ξ))) =
1

5
(ξ − 1), 1 ≤ ξ ≤ 7

2
.

Thus, for t ≥ 4,

y2(ξ, t) =



















ξ + 1− 1
2 (t− 4)− 11

64 (t− 4)2, ξ ≤ −1,
1
2 (ξ + 1) + 1

2ξ(t− 4) + 1
8 (ξ − 3

8 )(t− 4)2, −1 ≤ ξ ≤ 1,

1 + 1
2 (t− 4) + 1

200 (
37
8 + 12ξ − ξ2)(t− 4)2, 1 ≤ ξ ≤ 7

2 ,

ξ − 5
2 + 1

2 (t− 4) + 11
64 (t− 4)2, 7

2 ≤ ξ,

(A.117)

U2(ξ, t) =



















− 1
2 − 11

32 (t− 4), ξ ≤ −1,
1
2ξ +

1
4 (ξ − 3

8 )(t− 4), −1 ≤ ξ ≤ 1,
1
2 + 1

100 (
37
8 + 12ξ − ξ2)(t− 4), 1 ≤ ξ ≤ 7

2 ,
1
2 + 11

32 (t− 4), 7
2 ≤ ξ,

(A.118)
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H2(ξ, t) =



















0, ξ ≤ −1,
1
2 (ξ + 1), −1 ≤ ξ ≤ 1,
1
5 (ξ + 4), 1 ≤ ξ ≤ 7

2 ,
3
2 ,

7
2 ≤ ξ,

(A.119)

V2(ξ, t) =



















0, ξ ≤ −1,
1
2 (ξ + 1), −1 ≤ ξ ≤ 1,
1
50 (39 + 12ξ − ξ2), 1 ≤ ξ ≤ 7

2 ,
11
8 , 7

2 ≤ ξ,

(A.120)

r2(t) = 0.(A.121)

Then

(A.122) α(y2(ξ, τ(ξ))) =

{

1
16 , −1 ≤ ξ ≤ 1,
1
4 , 1 ≤ ξ ≤ 7

2 ,

and X3(t) can be computed as follows. For t < 2 we have X3(t) = X2(t). For
2 ≤ t < 4 we have,

y3(ξ, t) =



















ξ + 5
4 + 1

4 (t− 2)− 23
128 (t− 2)2, ξ ≤ −1,

1
4 + 1

4 (t− 2) + 1
128 (15ξ − 8)(t− 2)2, −1 ≤ ξ ≤ 1,

1
5 (ξ +

1
4 )− 1

5 (ξ − 9
4 )(t− 2) + 1

20 (ξ +
3
32 )(t− 2)2, 1 ≤ ξ ≤ 7

2 ,

ξ − 11
4 − 1

4 (t− 2) + 23
128 (t− 2)2, 7

2 ≤ ξ,

(A.123)

U3(ξ, t) =



















1
4 − 23

64 (t− 2), ξ ≤ −1,
1
4 + 1

8 (
15
8 ξ − 1)(t− 2), −1 ≤ ξ ≤ 1,

− 1
5 (ξ − 9

4 ) +
1
10 (ξ +

3
32 )(t− 2), 1 ≤ ξ ≤ 7

2 ,

− 1
4 + 23

64 (t− 2), 7
2 ≤ ξ,

(A.124)

H3(ξ, t) =



















0, ξ ≤ −1,
1
2 (ξ + 1), −1 ≤ ξ ≤ 1,
1
5 (ξ + 4), 1 ≤ ξ ≤ 7

2 ,
3
2 ,

7
2 ≤ ξ,

(A.125)

V3(ξ, t) =



















0, ξ ≤ −1,
15
32 (ξ + 1), −1 ≤ ξ ≤ 1,
1
5ξ +

59
80 , 1 ≤ ξ ≤ 7

2 ,
23
16 ,

7
2 ≤ ξ,

(A.126)

r3(t) = 0.(A.127)
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At t = 4 there is wave breaking for 1 < ξ < 7
2 , and one fourth of the energy is

dissipated. Thus for t ≥ 4 we have

y3(ξ, t) =



















ξ + 33
32 − 15

32 (t− 4)− 21
128 (t− 4)2, ξ ≤ −1,

15
32ξ +

1
2 + 15

32 ξ(t− 4) + 1
128 (15ξ − 6)(t− 4)2, −1 ≤ ξ ≤ 1,

31
32 + 15

32 (t− 4) + 3
80 (ξ +

7
8 )(t− 4)2, 1 ≤ ξ ≤ 7

2 ,

ξ − 81
32 + 15

32 (t− 4) + 21
128 (t− 4)2, 7

2 ≤ ξ,

(A.128)

U3(ξ, t) =



















− 15
32 − 21

64 (t− 4), ξ ≤ −1,
15
32ξ +

1
64 (15ξ − 6)(t− 4), −1 ≤ ξ ≤ 1,

15
32 + 3

40 (ξ +
7
8 )(t− 4), 1 ≤ ξ ≤ 7

2 ,
15
32 + 21

64 (t− 4), 7
2 ≤ ξ,

(A.129)

H3(ξ, t) =



















0, ξ ≤ −1,
1
2 (ξ + 1), −1 ≤ ξ ≤ 1,
1
5 (ξ + 4), 1 ≤ ξ ≤ 7

2 ,
3
2 ,

7
2 ≤ ξ,

(A.130)

V3(ξ, t) =



















0, ξ ≤ −1,
15
32 (ξ + 1), −1 ≤ ξ ≤ 1,
3
20 (ξ +

21
4 ), 1 ≤ ξ ≤ 7

2 ,
21
16 ,

7
2 ≤ ξ,

(A.131)

r3(t) = 0.(A.132)

Then

(A.133) α(y3(ξ, τ(ξ))) =

{

1
16 , −1 ≤ ξ ≤ 1,
31
128 , 1 ≤ ξ ≤ 7

2 ,

and we have that X4(t) = X3(t) for t < 4. When t ≥ 4, then

y4(ξ, t) =



















ξ + 33
32 − 15

32 (t− 4)− 337
2048 (t− 4)2, ξ ≤ −1,

15
32ξ +

1
2 + 15

32ξ(t− 4) + 1
2048 (240ξ − 97)(t− 4)2, −1 ≤ ξ ≤ 1,

31
32 + 15

32 (t− 4) + 1
10240 (388ξ + 327)(t− 4)2, 1 ≤ ξ ≤ 7

2 ,

ξ − 81
32 + 15

32 (t− 4) + 337
2048 (t− 4)2, 7

2 ≤ ξ,

(A.134)

U4(ξ, t) =



















− 15
32 − 337

1024 (t− 4), ξ ≤ −1,
15
32ξ +

1
1024 (240ξ − 97)(t− 4), −1 ≤ ξ ≤ 1,

15
32 + 1

5120 (388ξ + 327)(t− 4), 1 ≤ ξ ≤ 7
2 ,

15
32 + 337

1024 (t− 4), 7
2 ≤ ξ,

(A.135)

H4(ξ, t) =



















0, ξ ≤ −1,
1
2 (ξ + 1), −1 ≤ ξ ≤ 1,
1
5 (ξ + 4), 1 ≤ ξ ≤ 7

2 ,
3
2 ,

7
2 ≤ ξ,

(A.136)
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Figure 6. A plot of characteristic curves yi(ξ, t), i = 1, 2, 3, 4 in
Example A.3 corresponding to ξ = −1, ξ = 1, and ξ = 7

2 from left
to right.

V4(ξ, t) =



















0, ξ ≤ −1,
15
32 (ξ + 1), −1 ≤ ξ ≤ 1,
1

640 (97ξ + 503), 1 ≤ ξ ≤ 7
2 ,

337
256 ,

7
2 ≤ ξ,

(A.137)

r4(t) = 0.(A.138)

Since X5(t) = X4(t) for all t > 0, the α-dissipative solution with initial data X0 at
time t is given by X5(t). In Figure 6 yi(ξ, t) has been plotted for i = 1, 2, 3, 4 and
ξ = −1, 1, 72 .

Example A.4. In this example we demonstrate why it is necessary to restrict alpha
to [0, 1). Select α such that α(14 ) = 1, and α(12 ) =

1
2 . Let (u0, ρ0, ν0, µ0) be given

by ρ0 = 0, ν0 = µ0 = (ν0)ac, and

(A.139) u0(x) =



















1, x ≤ −1,

−x, −1 ≤ x ≤ 0,

− 1
2x, 0 ≤ x ≤ 2,

−1, 2 ≤ x.
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Then X0 = L((u0, ρ0, ν0, µ0)) is given by

y0(ξ) =



















ξ, ξ ≤ −1,
1
2 (ξ − 1), −1 ≤ ξ ≤ 1,
4
5 (ξ − 1), 1 ≤ ξ ≤ 7

2 ,

ξ − 3
2 ,

7
2 ≤ ξ,

(A.140)

U0(ξ) =



















1, ξ ≤ −1,

− 1
2 (ξ − 1), −1 ≤ ξ ≤ 1,

− 2
5 (ξ − 1), 1 ≤ ξ ≤ 7

2 ,

−1, 7
2 ≤ ξ,

(A.141)

H0(ξ) =



















0, ξ ≤ −1,
1
2 (ξ + 1), −1 ≤ ξ ≤ 1,
1
5 (ξ + 4), 1 ≤ ξ ≤ 7

2 ,
3
2 ,

7
2 ≤ ξ,

(A.142)

V0 = H0,(A.143)

r0 = 0.(A.144)

We claim that L ◦M ◦ S4(X0) 6= Π ◦ S4(X0). Note that S4(X0) does not belong to
the set Fα, since we choose an invalid α. However the mappings L and M can still
be applied in this more general case. For t = 4, S4(X0) reads

y(ξ, 4) =











ξ + 3
2 , ξ ≤ −1,

1
2 , −1 ≤ ξ ≤ 7

2 ,

ξ − 3, 7
2 ≤ ξ,

(A.145)

U(ξ, 4) = 0,(A.146)

H(ξ, 4) =



















0, ξ ≤ −1,
1
2 (ξ + 1), −1 ≤ ξ ≤ 1,
1
5 (ξ + 4), 1 ≤ ξ ≤ 7

2 ,
3
2 ,

7
2 ≤ ξ,

(A.147)

V (ξ, 4) =











0, ξ ≤ 1,
1
10 (ξ − 1), 1 ≤ ξ ≤ 7

2 ,
1
4 ,

7
2 ≤ ξ.

(A.148)

ad X̃ = Π ◦ S4(X0) is given by

ỹ(ξ) =











ξ, ξ ≤ 1
2 ,

1
2 ,

1
2 ≤ ξ ≤ 2,

ξ − 3
2 , 2 ≤ ξ,

(A.149)

Ũ(ξ) = 0,(A.150)

H̃(ξ) =











0, ξ ≤ 1
2 ,

ξ − 1
2 ,

1
2 ≤ ξ ≤ 2,

3
2 , 2 ≤ ξ,

(A.151)
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Ṽ (ξ) =











0, ξ ≤ 3
2 ,

1
2ξ − 3

4 ,
3
2 ≤ ξ ≤ 2,

1
4 , 2 ≤ ξ.

(A.152)

On the other hand let X̄ = L ◦M ◦ S4(X0), then we get

ȳ(ξ) =











ξ, ξ ≤ 1
2 ,

1
2 ,

1
2 ≤ ξ ≤ 2,

ξ − 3
2 , 2 ≤ ξ,

(A.153)

Ū(ξ) = 0,(A.154)

H̄(ξ) =











0, ξ ≤ 1
2 ,

ξ − 1
2 ,

1
2 ≤ ξ ≤ 2,

3
2 , 2 ≤ ξ,

(A.155)

V̄ (ξ) =











0, ξ ≤ 1
2 ,

1
6ξ − 1

12 ,
1
2 ≤ ξ ≤ 2,

1
4 , 2 ≤ ξ.

(A.156)

Since Ṽ 6= V̄ we have that if we allow that α(x) = 1 for some x and α(x̄) < 1 for
some other x̄, then we cannot guarantee that L ◦M = idF0 . By passing to Eulerian
coordinates and back some information about V is lost. In Figure 8 the cumulative
function for ν is plotted at t = 0, 2, 4. We see that the jump at t = 4 contains two
jumps, one created at t = 2, the other at t = 4. Uniqueness is lost for t > 4 since
we are unable to separate the jumps in a systematic way. This can be seen from
Figure 9 where cumulative functions for ν and ν̄ have been plotted at t = 6. The
measure ν is obtained by M ◦S6 ◦L, while ν̄ is obtained by M ◦S2 ◦L◦M ◦S4 ◦L. It
should be pointed out that non-uniquenss after wave breaking for ν does not affect
(u, ρ, µ) in any way.
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Figure 8. A plot of the cumulative total energy function Fν in
Example A.4 at t = 0, t = 2, and t = 4.
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