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Abstract

The functional Itô formula, firstly introduced by Bruno Dupire for continuous
semimartingales, might be extended in two directions: different dynamics for the
underlying process and/or weaker assumptions on the regularity of the functional.
In this paper, we pursue the former type by proving the functional version of the
Meyer-Tanaka Formula. Following the idea of the proof of the classical time-
dependent Meyer-Tanaka formula, we study the mollification of functionals and
its convergence properties. As an example, we study the running maximum and
the max-martingales of Yor and Obłój.

1 Introduction
Our goal in this article is to prove the functional extension of the well-known Meyer-
Tanaka formula. The theory of functional Itô calculus was presented in the seminal
paper [8] and it was further developed and applied to diverse topics, for instance, in
[9, 10, 26, 18, 4, 3, 23]. Before proceeding, a remark regarding nomenclature. In this
paper, the adjective classical will always refer to the finite-dimensional Itô stochastic
calculus.

The Meyer-Tanaka formula is the extension of Itô formula to convex functions.
More precisely, in the classical case, if f :R−→R is convex and (xt)t≥0 is a continuous
semimartingale, then

f (xt) = f (x0)+
∫ t

0
f ′(xs)dxs +

∫
R

Lx(t,y)d f ′(y), (1.1)

where f ′ is the left-derivative of f and Lx(s,y) is the local time of the process x at y; see
[19], for example. This formula is easily generalized to functions f that are absolutely
continuous with derivative of bounded variation, which is equivalent to say that f is the
difference of two convex functions. We would like to remind the reader that the local
time is defined by the limit in probability:

Lx(t,y) = lim
ε→0+

1
4ε

∫ t

0
1[y−ε,y+ε](xs)d〈x〉s,
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where 〈x〉 is the quadratic variation of the process x. We are adhering the convention
4ε instead of 2ε . The random field (Lx(t,y))t,y is a.s continuous and increasing in t and
càdlàg in y. The following extension to time-dependent functions was established in
[11]:

f (t,xt) = f (0,x0)+
∫ t

0
∂
−
t f (s,xs)ds+

∫ t

0
∂
−
x f (s,xs)dxs (1.2)

+
∫
R

Lx(t,y)dy∂
−
x f (t,y)−

∫
R

∫ t

0
Lx(s,y)ds,y∂

−
x f (s,y),

where ∂
−
t f and ∂−x f are the time and space left-derivatives, respectively. It is as-

sumed that f is absolutely continuous in each variable, ∂
−
t f and ∂−x f exist, are left-

continuous and locally bounded, ∂−x f is of locally bounded variation in R+×R and
∂−x f (0, ·) is of locally bounded variation in R. The notation dy and ds,y mean integra-
tion with respect to the y variable and the (s,y) variables, respectively. We forward the
reader to the reference cited above for some other different generalizations of Meyer-
Tanaka formula (1.1) and for the precise definition of the Lebesgue-Stieltjes integral∫
R
∫ t

0 Lx(s,y)ds,y∂−x f (s,y).
Since a functional extension of the Meyer-Tanaka would be inherently time depen-

dent, Equation (1.2) is of utmost importance for our goal. However, we will not pursue
a functional extension of (1.2) in its full generality of assumptions. It is clear that some
of the technical assumptions of the results presented in our work could be weakened
along the lines of [11], but in order to provide a clear exposition of the subject we
will consider technical assumptions that are general enough to introduce the important
techniques without adding a cumbersome notation.

There are several other generalizations of the Itô formula that could be extended to
the functional framework, for instance, [1, 27, 21, 17, 11, 30, 15, 14, 2]. We will not
pursue them here, of course, but we hope that the foundations laid in this work might
help in this task.

Meyer-Tanaka formula and its generalizations have many interesting applications
in Finance, as, for instance, [22, 6, 5]. Other applications can be found in the theory of
Local Volatility of [7], see for example [20].

The paper is organized as follows: we finish this introduction with a presentation of
functional Itô calculus and we define the mollification of functionals in Section 2. This
is a very important tool that will be used in Section 3 in order to prove the functional
extension of the Meyer-Tanaka formula. In Section 4, we will apply the theory to the
running maximum to find a pathwise version of a famous identity by Paul Lévy and we
will also study the max-martingales of Yor and Obłój in the light of the functional Itô
calculus.

1.1 A Brief Primer on Functional Itô Calculus
In this section we will present a short review of the functional Itô calculus introduced
in [8]. The goal is to familiarize the reader with the notation, main definitions and
theorems needed for the results that follow.
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The space of càdlàg paths in [0, t] will be denoted by Λt . For a fixed time horizon
T > 0, we define the space of paths as

Λ =
⋃

t∈[0,T ]
Λt .

We will denote elements of Λ by upper case letters and often the final time of its
domain will be subscripted, e.g. Y ∈ Λt ⊂ Λ will be denoted by Yt . The value of Yt at a
specific time will be denoted by lower case letters: ys =Yt(s), for any s≤ t. Moreover,
if a path Yt is fixed, the path Ys, for s≤ t, will denote the restriction of the path Yt to the
interval [0,s].

The following important path deformations are always defined in Λ. For Yt ∈Λ and
t ≤ s≤ T , the flat extension of Yt up to time s≥ t is defined as

Yt,s−t(u) =
{

yu, if 0≤ u≤ t,
yt , if t ≤ u≤ s,

see Figure 1. For h ∈ R, the bumped path, see Figure 2, is defined by

Y h
t (u) =

{
yu, if 0≤ u < t,
yt +h, if u = t.

b b

Figure 1: Flat extension of a path.

b

b

b

Figure 2: Bumped path.

For any Yt ,Zs ∈ Λ, where it is assumed without loss of generality that s ≥ t, we
consider the following metric in Λ,

dΛ(Yt ,Zs) = ‖Yt,s−t −Zs‖∞ + |s− t|,

where
‖Yt‖∞ = sup

u∈[0,t]
|yu|.

One could easily show that (Λ,dΛ) is a complete metric space.
Additionally, a functional is any function f : Λ −→ R. Continuity with respect to

dΛ is defined as the usual definition of continuity in a metric space and is denominated
Λ-continuity.

For a functional f and a path Yt with t < T , the time functional derivative of f at Yt
is defined as

∆t f (Yt) = lim
δ t→0+

f (Yt,δ t)− f (Yt)

δ t
, (1.3)
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whenever this limit exists. The space functional derivative of f at Yt is defined as, if
the limit exists,

∆x f (Yt) = lim
h→0

f (Y h
t )− f (Yt)

h
. (1.4)

Finally, for any i, j ∈ {0}∪N∪{+∞}, a functional f : Λ −→ R is said to belong
to Ci, j if it is Λ-continuous and it has Λ-continuous derivatives ∆

(k)
t f and ∆

(m)
x f , for

k = 1, . . . , i and m = 1, . . . , j. Here, clearly, ∆
(k)
t = ∆t(∆

(k−1)
t ) and ∆

(m)
x = ∆x(∆

(m−1)
x ).

Moreover, we use the notation ∆xx = ∆
(2)
x .

The attentive reader might have noticed that we have not introduced any probability
notation so far. We start by fixing a probability space (Ω,F,P). We state now the
functional Itô formula. The proof can be found in [8].

Theorem 1.1 (Functional Itô Formula; [8]). Let x be a continuous semimartingale and
f ∈ C1,2. Then, for any t ∈ [0,T ],

f (Xt) = f (X0)+
∫ t

0
∆t f (Xs)ds+

∫ t

0
∆x f (Xs)dxs +

1
2

∫ t

0
∆xx f (Xs)d〈x〉s P−a.s.

One should notice that the Itô formula above is of the same form as the classical
Itô formula for continuous semimartingale, the only change being the definition of the
time and space functional derivatives given by Equations (1.3) and (1.4). This theorem
was extended in terms of weakening the regularity of f and generalizing the dynamics
of x, see [4, 3, 23]. Here, we will examine a different class of functionals than it was
considered in these previous works. We now state the main result of this paper:

Theorem (Functional Meyer-Tanaka Formula). Consider a functional f : Λ −→ R
satisfying Hypotheses 3.5 and let x be a continuous semimartingale. Then

f (Xt) = f (X0)+
∫ t

0
∆t f (Xs)ds+

∫ t

0
∆
−
x f (Xs)dxs (1.5)

+
∫
R

Lx(t,y)dy∂
−
y f (Xy

t−)−
∫ t

0

∫
R

Lx(s,y)ds,y∂
−
y f (Xy

s−) P−a.s.,

where Xy
s− is the path Xs with the value at s substituted by y, see Equation (2.9).

Notation 1.2. dyφ(y) and ds,yφ(s,y) denote the Lebesgue-Stieltjes integration with
respect to the integrator φ(y) and φ(s,y), respectively.

The main example of non-smooth functional to have in mind is the running maxi-
mum:

m(Yt) = sup
0≤s≤t

ys. (1.6)

For more details on this functional, we forward the reader to Section 4.2
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2 Functional Mollification
In this section, we investigate the mollification of functionals. The goal is to create a
sequence of smooth functionals converging to the original one in various senses. This
technique will be used to prove the functional Meyer-Tanaka formula as it is similarly
done in the proof of its classical version.

Definition 2.1. For any functional f : Λ−→ R, we define F : Λ×R−→ R as

F(Yt ,h) = f (Y h
t ). (2.1)

When denoting functionals, capital letters will be used as above, i.e. it will denote a
function with domain Λ×R where the first variable is the path and the second variable
is the bump applied to this path. This notation will be carried out in the remainder of
the paper. We choose to use this notation to help the analysis of the space functional
derivative of the mollification.

A mollifier in R is a positive function ρ : R −→ [0,+∞) such that ρ ∈C∞
c (R), the

space of compactly supported smooth functions;
∫
R ρ(z)dz = 1; and ρn(x) := nρ(nx)

converges to Dirac delta in the sense of distributions. We also refer to the sequence
(ρn)n∈N as the mollifiers. Notice that ρn ∈C∞

c (R).

Definition 2.2. The sequence of mollified functionals is defined as

Fn(Yt ,h) =
∫
R

ρn(h−ξ )F(Yt ,ξ )dξ =
∫
R

ρn(ξ )F(Yt ,h−ξ )dξ . (2.2)

Remark 2.3. This mollification is well-defined as long as the real function F(Yt , ·)
is locally integrable for any path Yt ∈ Λ. See [13], for instance, for details on the
mollification in the case of real functions.

Proposition 2.4. Suppose f is Λ-continuous. Then F(Yt , ·) is continuous for each
Yt ∈ Λ, Fn is well-defined and, as a functional, is infinitely differentiable in space.
Moreover,

∆
(k)
x Fn(Yt ,h) = ∂

(k)
h Fn(Yt ,h),

where ∂
(k)
h denotes the k-th derivative with respect to h. This is the main property of

the mollified functionals.

Proof. Notice that since the functional f is Λ-continuous, F(Yt , ·) is then continu-
ous for fixed Yt ∈ Λ, because dΛ(Y

h1
t ,Y h2

t ) = |h1 − h2|. This implies F(Yt , ·) is lo-
cally integrable, and therefore the mollification Fn is well-defined. Notice now that
F(Y z

t ,h) = F(Yt ,h+ z) and then

Fn(Y z
t ,h) =

∫
R

ρn(h−ξ )F(Yt ,ξ + z)dξ (2.3)

=
∫
R

ρn(h− (ξ − z))F(Yt ,ξ )dξ = Fn(Yt ,h+ z).

Thus, for any k ∈ N,
∆
(k)
x Fn(Yt ,h) = ∂

(k)
h Fn(Yt ,h).
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We would like also to point it out that a particular mollification of the running
maximum was considered in [8] to derive a pathwise version of the famous formula
due to Lévy:

max
0≤s≤t

xs = x0 +Lx−m (t,0) ,

where m is the running maximum process and x is a continuous semimartingale. The
reader is forwarded to [19, Chapter 3 and Chapter 6] for more details on results regard-
ing the relations between local time and the running maximum in the Brownian motion
case.

2.1 Λ-Continuity of the Mollified Functionals and its Derivatives
In this section we will study the relation of continuity of f and of its mollification Fn.

We have already seen that, if F(Yt , ·) is locally integrable for any given Yt ∈Λ, then
Fn(Yt , ·) is infinitely differentiable in R, and therefore it is also continuous. However,
differentiability in the functional sense does not imply Λ-continuity. Hence, it is neces-
sary to consider a slightly stronger assumption on the continuity of the functional f in
order to be able to conclude the Λ-continuity of Fn. We will thus consider the following
stronger criterion:

Definition 2.5. We say that f is Λ-φ -equicontinuous if there exists φ :R−→R positive
and locally integrable depending only on f such that ∀ ε > 0, ∀ Yt ∈ Λ, ∃ δ > 0,

dΛ(Yt ,Zs)< δ ⇒ |F(Yt ,ξ )−F(Zs,ξ )|< εφ(ξ ), ∀ ξ ∈ R. (2.4)

Notice that Λ-φ -equicontinuity implies that f is Λ-continuous. Moreover, if φ ≡ 1,
then the family of functionals {F(·,ξ )}ξ∈R is Λ-equicontinuous.

The weakening of this assumption could be pursued, but it is not in the scope of
this work.

Proposition 2.6. Suppose f is Λ-φ -equicontinuous. Then, for any n ∈ N and h ∈ R,
Fn(·,h) and ∆

(k)
x Fn(·,h) are Λ-continuous, for any k ∈ N.

Proof. By Equation (2.2), we see

|Fn(Yt ,h)−Fn(Zs,h)| ≤
∫
R

ρn(h−ξ )|F(Yt ,ξ )−F(Zs,ξ )|dξ .

Hence, fixing ε > 0, n∈N and h∈R, and choosing δ > 0 from the Λ-φ -equicontinuity
of f with ε equals

ε∫
R ρn(h−ξ )φ(ξ )dξ

,

we have, for Yt ,Zs ∈ Λ satisfying dΛ(Yt ,Zs)< δ ,

|Fn(Yt ,h)−Fn(Zs,h)| ≤
∫
R

ρn(h−ξ )|F(Yt ,ξ )−F(Zs,ξ )|dξ < ε.
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Therefore, we conclude that Fn(·,h) is Λ-continuous for any n ∈N and h ∈R. Consid-
ering now the derivatives of Fn, we see

∆
(k)
x Fn(Yt ,h) = ∂

(k)
h Fn(Yt ,h) =

∫
R

∂
(k)
h (ρn(h−ξ ))F(Yt ,ξ )dξ ,

and since ∂
(k)
h (ρn(h− ·)) are in C∞

c (R), the same argument employed above for the

Λ-continuity of Fn can be used to conclude the Λ-continuity of ∆
(k)
x Fn(·,h).

2.2 The Issue with the Time Derivative
As we have seen, the functional Fn is smooth with respect to the space variable. In this
section, we will study the question of the existence of the time functional derivative.
Notice that

Fn(Yt,δ t ,h) =
∫
R

ρn(h−ξ )F(Yt,δ t ,ξ )dξ .

When is Fn time functional differentiable as in Equation (1.3)?

Definition 2.7. We say a functional f is h-time functional differentiable if F(·,h) is
time functional differentiable for every h ∈ R, i.e.

∆tF(Yt ,h) = lim
δ t→0+

F(Yt,δ t ,h)−F(Yt ,h)
δ t

= lim
δ t→0+

f ((Yt,δ t)
h)− f (Y h

t )

δ t
, (2.5)

exists for every Yt ∈ Λ and h ∈ R.

We are then ready to answer the previous question:

Proposition 2.8. If f is h-time functional differentiable, then ∆tFn exists,

∆tFn(Yt ,h) = (∆tF)n(Yt ,h),

for any Yt ∈ Λ and h ∈ R, and

∆
(k)
x ∆tFn(Yt ,h) = ∂

(k)
h (∆tF)n(Yt ,h).

Moreover, if ∆tF is Λ-φ -equicontinuous, then ∆tFn(·,h) is Λ-continuous, and hence in
C0,∞.

Proof. For fixed Yt ∈ Λ and ξ ∈ R, define ψ(δ t) = F(Yt,δ t ,ξ ). By Definition 2.7,
ψ ∈C1(R+) and therefore,

∆tFn(Yt ,h) =
∫
R

ρn(h−ξ )∆tF(Yt ,ξ )dξ = (∆tF)n(Yt ,ξ ).

Since ∆tF is Λ-φ -equicontinuous and ∆tFn(Yt ,h) = (∆tF)n(Yt ,ξ ), by Proposition 2.6,
we conclude that ∆tFn is Λ-continuous.
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Remark 2.9. We would like to point out the similarity of the Equation (2.5) and the
limit characterization of the Lie bracket given in [18, Lemma 3.2]:

[∆t ,∆x] f (Yt) = lim
δ t→0+

h→0

f ((Yt,δ t)
h)− f ((Y h

t )t,δ t)

hδ t
.

However, it is obvious that Definition 2.7 does not require the functional f to be locally
weakly path-dependent ([∆t ,∆x] f = 0, as defined in [18]). Definition 2.7 is indeed just a
technicality and encompasses many interesting functionals. For example, the running
integral ( f (Yt) =

∫ t
0 ysds) satisfies Assumption 2.7 and it is not locally weakly path-

dependent.

2.2.1 Time and Joint Mollification

We will not pursue this here, but it is important to mention two different mollification
possibilities:

(i) Time Mollification:

Fn(Yt ,δ t) =
∫
R

ρn(δ t−η) f (Yt,η)dη . (2.6)

(ii) Joint Mollification:

Fn(Yt ,δ t,h) =
∫
R

∫
R

ρn(h−ξ )ρn(δ t−η) f ((Yt,η)
ξ )dξ dη . (2.7)

An obvious issue with the joint mollification is the choice between f ((Yt,η)
ξ ) and

f ((Y ξ

t )t,η); both would be initially valid choices. This is not a problem when we restrict
ourselves to the path-independent case: f (Yt) = h(t,yt). However, as it was noted in
[18], the different ordering of bump and flat extension is a very important aspect of the
functional Itô calculus.

Additionally, as it happened in the aforesaid reference in a different circumstance,
the Lie bracket of the operators ∆t and ∆x would probably play an important role if the
joint mollification were used.

2.3 Integration by Parts
We will now derive some integration by parts computations that will be useful later in
the proof of the functional Meyer-Tanaka formula.

First some definitions. For any Yt ∈ Λ and y ∈ R,

Y y
t−(u) =

{
yu, if 0≤ u < t,
y, if u = t. (2.8)

Notice that Y y
t− = Y y−yt

t ∈ Λt and it is different than (Yt−)
y = Y y−yt+yt−

t . Moreover,
define

F (Yt ,y) = f (Y y
t−). (2.9)

8



The definition of the function F above serves two purposes. Firstly, alleviates no-
tation. Secondly, it helps us take derivatives with respect to the Yt and the last value
y separately. Capital calligraphic letters will always be used as above meaning that it
will denote a function with domain Λ×R where the first variable is the path and the
second variable is the value will replace the last value of the path. We will keep this
notation through out the paper.

We start by noticing that, for any function q : R2 −→ R regular enough for the
computations to follow, the subsequent identity is obviously true:∫

R

(∫ t

0
F (Ys,y)dsq(s,y)

)
dy =

∫
R

F (Yt ,y)q(t,y)dy

−
∫
R

(∫ t

0
∂tF (Ys,y)q(s,y)ds

)
dy,

where F is given by Equation (2.9) and

∂tF (Ys,y) = lim
u→s

F (Ys,y)−F (Yu,y)
s−u

,

the usual time derivative of a function. Let us now verify that this derivative exists
under certain regularity assumptions. Notice that F (Ys,y) does not depend on the last
value of the path Ys, and hence ∆xF (Ys,y) = ∆xxF (Ys,y) = 0. So, if f satisfies Def-
inition 2.7, ∆tF (Ys,y) exists. Assuming Lambda-continuity of F (·,y) and ∆tF (·,y)
implies that F (·,y) ∈ C1,2. Then, one can show, by the functional Itô formula, Theo-
rem 1.1, that for any continuous semimartingale x,

F (Xs,y) = F (Xu,y)+
∫ t

u
∆tF (Xr,y)dr,

which implies that

∂tF (Xs,y) = ∆tF (Xs,y), ∀ s≥ 0, P− a.s.

Moreover,

F (Yt ,y+h) = F(Y y
t−,h) = f (Y y+h

t− ), (2.10)

and then
∂
(k)
y F (Yt ,y) = ∂

(k)
h F(Y y

s−,0) = ∆
(k)
x f (Y y

s−).

Before proceeding, we would like to comment on the commutation of ∂t and ∂y. It
is well-known now that ∆t and ∆x do not commute. However, we do not experience
a similar problem here. ∂t and ∂y do commute: ∂y∂tF (Yt ,y) = ∂t∂yF (Yt ,y), as one
can easily verify by direct computation and assuming these derivatives exist and are
continuous. The reason is that in the definition of F (Yt ,y) it is implied that the bump y
happens always at the end of the path Yt . Therefore, there is no ambiguity in the order
of the time perturbation and the bump that we experience in the case of ∆x and ∆t .
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If g ∈C1
c (R) and ∂yyF (Yt ,y) exists, then∫

R
g(y)∆xx f (Y y

t−)dy =
∫
R

g(y)∂yyF (Yt ,y)dy (2.11)

=−
∫
R

g′(y)∂yF (Yt ,y)dy

Furthermore, if we consider q : R2 −→ R smooth with compact support and assume
∂t∂yyF (Yt ,y) exists, we find∫ t

0

∫
R

∂t∆xx f (Y y
s−)q(s,y)dyds =

∫ t

0

∫
R

∂t∂yyF (Ys,y)q(s,y)dyds

=
∫ t

0

∫
R

∂y∂t∂yF (Ys,y)q(s,y)dyds

=−
∫ t

0

∫
R

∂t∂yF (Ys,y)∂yq(s,y)dyds

=−
∫
R

∂yF (Ys,y)∂yq(s,y)
∣∣∣∣t
0

dy+
∫ t

0

∫
R

∂yF (Ys,y)∂syq(s,y)dyds,

where

ψ(s,y)
∣∣∣∣t
0
= ψ(t,y)−ψ(0,y).

3 Functional Meyer-Tanaka Formula

3.1 Local Time
The local time of the process x at level y, denoted by Lx(s,y), is defined as the limit in
probability:

Lx(t,y) = lim
ε→0+

1
4ε

∫ t

0
1[y−ε,y+ε](xs)d〈x〉s.

A very important identity related to the local time is the occupation times formula,
[29, Corollary 1.6, Chapter VI], which says that if ϕ : R+×R −→ R is bounded and
measurable, then∫ t

0
ϕ(s,xs)d〈x〉s = 2

∫
R

(∫ t

0
ϕ(s,y)dsLx(s,y)

)
dy, ∀ t ≥ 0, P− a.s. (3.1)

The following extension of the occupation time formula will be fundamental in the
following, see [29, Exercise 1.15, Chapter VI].

Lemma 3.1. For any bounded measurable function ψ : R+×Ω×R−→ R,∫ t

0
ψ(s,ω,xs)d〈x〉s = 2

∫
R

(∫ t

0
ψ(s,ω,y)dsLx(s,y)

)
dy, ∀ t ≥ 0, P−a.s. (3.2)

10



Proof. By Equation (3.1), for any ϕ : R+×R −→ R bounded and measurable, there
exists Ωϕ ∈ F with P(Ωϕ) = 1 such that, for each ω ∈Ωϕ ,∫ t

0
ϕ(s,xs(ω))d〈x〉(ω)s = 2

∫
R

(∫ t

0
ϕ(s,y)dsLx(ω)(s,y)

)
dy, ∀ t ≥ 0,

where 〈x〉(ω) and Lx(ω) are the realizations of the quadratic variation and the local
time, respectively. Moreover, since ψ(·,ω, ·) is bounded and measurable, it can be
uniformly approximated by simple functions of the form:

ψn(t,ω,y) =
bn

∑
k=1

ak,n(t,y)1Ak,n(ω).

Define now Ωψ =
⋂+∞

n=1
⋂bn

k=1 Ωk,n, where Ωk,n is defined as Ωϕ for ϕ = ak,n. Therefore,
P(Ωψ) = 1 and, by the occupation time formula for functions on R+×R, we find, for
ω ∈Ωψ ,∫ t

0
ψn(s,ω,xs(ω))d〈x(ω)〉s =

bn

∑
k=1

1Ak,n(ω)
∫ t

0
ak,n(s,xs(ω))d〈x(ω)〉s

=
bn

∑
k=1

1Ak,n(ω)2
∫
R

(∫ t

0
ak,n(s,y)dsLx(ω)(s,y)

)
dy

= 2
∫
R

(∫ t

0
ψn(s,ω,y)dsLx(ω)(s,y)

)
dy.

Letting n→+∞ and using the uniformity of the convergence ψn→ ψ , we have found
the desired result.

For a given functional f , we would like to apply the proposition above to ψ f (s,ω,y)=
F (Xs(ω),y), where F is defined in Equation (2.9). Then, for every functional f such
that ψ f above is bounded and measurable, we have∫ t

0
f (Xs)d〈x〉s = 2

∫
R

(∫ t

0
F (Xs,y)dsLx(s,y)

)
dy. (3.3)

Example 3.2 (Running Integral). Consider the running integral functional f (Yt) =∫ t
0 yudu. We clearly have F (Ys,y) = f (Ys) and moreover, we find

•
∫ t

0
f (Xs)d〈x〉s =

∫ t

0

(∫ s

0
xudu

)
d〈x〉s =

∫ t

0
(〈x〉t −〈x〉u)xudu,

•
∫
R

(∫ t

0
F (Xs,y)dsLx(s,y)

)
dy =

∫
R

(∫ t

0

(∫ s

0
yudu

)
dsLx(s,y)

)
dy

=
∫ t

0

(∫
R

Lx(t,y)dy−
∫
R

Lx(u,y)dy
)

xudu.

Therefore, since
〈x〉t = 2

∫
R

Lx(t,y)dy,

we verify Equation (3.3) for this particular example.
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3.2 Convergence Properties
The idea behind the proof of the classical Meyer-Tanaka formula (see [19] and [11],
for example) is to apply Itô formula to the smooth mollification of the function in
consideration, let n go to infinity to approximate the original function and then analyze
the limit of all the terms of the Itô formula. Having this strategy in mind, in this section
we will investigate the convergence of certain quantities that will be important when
proving the functional Meyer-Tanaka formula.

We firstly define the functional fn : Λ−→ R as

fn(Yt) = Fn(Yt ,0) =
∫
R

ρn(ξ )F(Yt ,−ξ )dξ , (3.4)

where Fn is the mollification of F given in Equation (2.2).

Remark 3.3. In what follows, we will explicitly use the fact that the mollifier ρ has
compact support. Without loss of generality, we may assume that its support is inside
[ρmin,ρmax], where ρmin < 0 and ρmax > 0.

Proposition 3.4. Assume ∂
−
h F(Yt , ·) exists. The following facts hold true:

1. For each Yt ∈ Λ, if F(Yt , ·) and ∂
−
h F(Yt , ·) are continuous at 0, then

lim
n→+∞

fn(Yt) = f (Yt),

lim
n→+∞

∆x fn(Yt) = lim
n→+∞

∂hFn(Yt ,0) = ∂
−
h F(Yt ,0) = ∆

−
x f (Yt).

2. If f satisfies Definition 2.7, we have

lim
n→+∞

∆t fn(Yt) = ∆t f (Yt),

lim
n→+∞

∫ t

0
∆t fn(Ys)ds =

∫ t

0
∆t f (Ys)ds,

for any Yt ∈ Λ.

3. If (∂−h F(Xs,−h))s∈[0,T ] is bounded in h ∈ [ρmin,ρmax] by an x-integrable process,
then

lim
n→+∞

∫ t

0
∆x fn(Xs)dxs =

∫ t

0
∆
−
x f (Xs)dxs u.c.p.,

where u.c.p. means uniformly on compacts in probability.

Proof.

1. It follows easily from standard results in mollification theory.

12



2. The first limit follows from Proposition 2.8. Moreover, one can easily notice∫ t

0
∆t fn(Ys)ds =

∫ t

0

∫
R

ρn(−ξ )∆tF(Ys,ξ )dξ ds

=
∫
R

ρn(−ξ )

(∫ t

0
∆tF(Ys,ξ )ds

)
dξ .

Therefore,

lim
n→+∞

∫ t

0
∆t fn(Ys)ds =

∫ t

0
∆tF(Ys,0)ds =

∫ t

0
∆t f (Ys)ds.

3. Notice that

∆x fn(Yt) =
∫

ρmax

ρmin

ρ(ξ )∂−h F
(

Yt ,−
ξ

n

)
dξ . (3.5)

The boundedness assumptions means there exists an x-integrable process (ψs)s∈[0,T ]
such that

max
h∈[ρmin,ρmax]

∣∣∂−h F(Xs,−h)
∣∣≤ ψs.

Hence,

|∆x fn(Yt)| ≤
∫

ρmax

ρmin

ρ(ξ )

∣∣∣∣∂−h F
(

Yt ,−
ξ

n

)∣∣∣∣dξ ≤
∫

ρmax

ρmin

ρ(ξ )ψsdξ = ψs.

Therefore, by the Dominated Convergence Theorem for stochastic integrals, see [28,
Theorem 32, Chapter IV], we have the desired convergence.

3.3 The Functional Meyer-Tanaka Formula
We start this section by stating the assumptions on the functional f such that the Meyer-
Tanaka formula will hold.

Hypotheses 3.5.

1. f h-time functional differentiable as in Definition 2.7;

2. f and ∆tF are Λ-φ -equicontinuous as in Definition 2.5;

3. ∂−y F (Yt ,y) exists and is of bounded variation for (t,y) jointly and for y sepa-
rately, for any Yt ∈ Λ.

4. (∂−h F(Xt ,−h))t∈[0,T ] is bounded in h ∈ [ρmin,ρmax] by an x-integrable process.

13



We are ready then to prove the main result of this paper.

Theorem 3.6 (Functional Meyer-Tanaka Formula). Suppose f satisfies Hypotheses 3.5
and let x be a continuous semimartingale. Then, the functional Meyer-Tanaka formula
holds

f (Xt) = f (X0)+
∫ t

0
∆t f (Xs)ds+

∫ t

0
∆
−
x f (Xs)dxs (3.6)

+
∫
R

Lx(t,y)dy∂
−
y F (Xt ,y)−

∫ t

0

∫
R

Lx(s,y)ds,y∂
−
y F (Xs,y) P−a.s.

Proof. As we studied in Section 2, fn belongs to C1,∞ and by the functional Itô formula,
Theorem 1.1, we find

fn(Xt) = fn(X0)+
∫ t

0
∆t fn(Xs)ds+

∫ t

0
∆x fn(Xs)dxs +

1
2

∫ t

0
∆xx fn(Xs)d〈x〉s.

Moreover, by what was shown in Proposition 3.4, the following convergences hold

lim
n→+∞

fn(Yt) = f (Yt), (3.7)

lim
n→+∞

∫ t

0
∆t fn(Ys)ds =

∫ t

0
∆t f (Ys)ds, (3.8)

lim
n→+∞

∫ t

0
∆x fn(Xs)dxs =

∫ t

0
∆
−
x f (Xs)dxs u.c.p. (3.9)

for any Yt ∈ Λ. Let us now analyse the Itô term. Remember F is defined by Equation
(2.9). If we denote the mollification of F with respect to the y variable by Fn, we can
easily conclude, by Equation (2.10),

Fn(Y
y

t−,h) = Fn(Yt ,y+h)

and then

∂
(k)
h Fn(Y

y
t−,h) = ∂

(k)
y Fn(Yt ,y+h).

In particular, ∆
(k)
x fn(Y

y
t−) = ∂

(k)
h Fn(Y

y
t−,0) = ∂

(k)
y Fn(Yt ,y). So, by Equation (3.3),

1
2

∫ t

0
∆xx fn(Xs)d〈x〉s =

∫
R

(∫ t

0
∂yyFn(Xs,y)dsLx(s,y)

)
dy

=
∫
R

∂yyFn(Xt ,y)Lx(t,y)dy−
∫ t

0

∫
R

∆t∂yyFn(Xs,y)Lx(s,y)dyds,

Hence, for g : R −→ R and q : R2 −→ R smooth and compactly supported, we
have, by the computations performed in Section 2.3,∫

R
∂yyFn(Yt ,y)g(y)dy =−

∫
R

g′(y)∂yFn(Yt ,y)dy (3.10)

n→+∞−→ −
∫
R

g′(y)∂−y F (Yt ,y)dy =
∫
R

g(y)dy∂
−
y F (Yt ,y),
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and ∫ t

0

∫
R

∆t∆xx fn(Y
y
s−)q(s,y)dyds =−

∫
R

∂yFn(Ys,y)∂yq(s,y)
∣∣∣t
0
dy (3.11)

+
∫ t

0

∫
R

∂yFn(Ys,y)∂tyq(s,y)dyds

n→+∞−→ −
∫
R

∂
−
y F (Ys,y)∂yq(s,y)

∣∣∣t
0
dy

+
∫ t

0

∫
R

∂
−
y F (Ys,y)∂tyq(s,y)dyds

=
∫ t

0

∫
R

q(s,y)ds,y∂
−
y F (Ys,y),

where the last equalities in (3.10) and (3.11) follow from item 3 of Hypotheses 3.5.
Therefore, using well-known arguments along the lines of [11, Proof of Theorem 2.1],
we can extend the formulas above for g(y) = Lx(t,y) and q(s,y) = Lx(s,y), and finally
conclude

lim
n→+∞

1
2

∫ t

0
∆xx fn(Xs)d〈x〉s =

∫
R

Lx(t,y)dy∂
−
y F (Xt ,y)

−
∫ t

0

∫
R

Lx(s,y)ds,y∂
−
y F (Xs,y),

as desired.

Remark 3.7. By the same arguments presented in [12], we could show that
∫
R Lx(t,y)

dy∂−y F (Xt ,y) is of bounded variation in t in [0,T ]. Therefore, ( f (Xt))t∈[0,T ] is a semi-
martingale.

Remark 3.8. Following the idea of [11, Theorem 2.3], we could consider the process
x?t = xt −at , where (at)t≥0 is a continuous process of finite variation. It is obvious that
x? is also a semimartingale. Denote the local time of x? by Lx−a. Therefore, the same
argument of [11, Theorem 2.3] applied to the computation we have just performed
in (3.10) and (3.11) gives us the following version of the functional Meyer-Tanaka
formula

f (Xt) = f (X0)+
∫ t

0
∆t f (Xs)ds+

∫ t

0
∆
−
x f (Xs)dxs (3.12)

+
∫
R

Lx−a(t,y)dy∂
−
y F (Xt ,y+at)−

∫ t

0

∫
R

Lx−a(s,y)ds,y∂
−
y F (Xs,y+as).

This version of the formula will be used in the running maximum example in Section
4.2.

4 Applications

4.1 Convex Functionals
In this section we define the notion of convexity for functionals and then discuss some
of its basic properties. The main interesting consequence is that some of the technical
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assumptions in Hypotheses 3.5 can be weakened.

Definition 4.1 (Convex Functionals). We say f is a convex functional if F(Yt , ·) is a
convex real function for any Yt ∈ Λ.

Notice that, for f ∈ C1,2, convexity implies that ∆xx f (Yt)≥ 0, for any Yt ∈ Λ.

Remark 4.2. Another possible definition for convexity of a functional would be

f (λYt +(1−λ )Zt)≤ λ f (Yt)+(1−λ ) f (Zt), (4.1)

for all λ ∈ [0,1] and Yt ,Zt ∈ Λ. Observe Yt and Zt must be in the same Λt space. This
clearly implies the previous definition of convexity because

F(Yt ,λh1 +(1−λ )h2) = f (λY h1
t +(1−λ )Y h2

t ).

However, condition (4.1) is stronger than necessary for what follows.

For a convex functional f , for any Yt ∈ Λ, F(Yt , ·) is continuous, ∂
±
h F(Yt ,h) exist

for any h ∈ R and is non-decreasing in h. Moreover, ∂
±
h F(Yt ,h) = ∆±x F(Yt ,h), where

these one-sided functional derivatives are obviously defined as

∆
±
x f (Yt) = lim

h→0±

f (Y h
t )− f (Yt)

h
.

Proposition 4.3. Assume f is convex. The following facts hold true:

1. fn is convex. Moreover, ∆x fn(Yt) increasingly converges to ∆−x f (Yt).

2. If (∂−h F(Xs,−h))s∈[0,T ] is x-integrable for h = ρmin and h = ρmax, then

lim
n→+∞

∫ t

0
∆x fn(Xs)dxs =

∫ t

0
∆
−
x f (Xs)dxs u.c.p.

Proof.

1. Indeed,

Fn(Yt ,λh1 +(1−λ )h2) =
∫
R

F(Yt ,(λh1 +(1−λ )h2)− y)ρn(y)dy

=
∫
R

F(Yt ,(λ (h1− y)+(1−λ )(h2− y))ρn(y)dy

≤ λFn(Yt ,h1)+(1−λ )Fn(Yt ,h2).

Hence, since fn is smooth, ∆xx fn(Yt)≥ 0. The second affirmation follows from:

∆x fn(Yt) =
∫

ρmax

ρmin

ρ(ξ )∂−h F
(

Yt ,−
ξ

n

)
dξ , (4.2)

and it is easy to see the desired result using the fact that ∂
−
h F(Yt ,h) is non-decreasing

in h, because of the convexity of f .
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2. Since ∂
−
h F(Yt ,h) is non-decreasing in h, by Equation (4.2),

∂
−
h F(Ys,−ρmax)≤ ∂

−
h F
(

Ys,−
ρmax

n

)
≤ ∂

−
h F
(

Ys,−
ξ

n

)
,

∂
−
h F
(

Ys,−
ξ

n

)
≤ ∂

−
h F
(

Ys,−
ρmin

n

)
≤ ∂

−
h F(Ys,−ρmin),

where we are using the fact that ρmin < 0 and ρmax > 0; see Remark 3.3. Hence

|∆x fn(Ys)| ≤ |∂−h F(Ys,−ρmin)|+ |∂−h F(Ys,−ρmax)|,

and the convergence follows as in Proposition 3.4

Therefore, we might then consider the following class of convex functionals, where
we have weakened conditions 3 and 4 of Hypotheses 3.5:

Hypotheses 4.4.

1. f h-time functional differentiable as in Definition 2.7;

2. f and ∆tF are Λ-φ -equicontinuous as in Definition 2.5;

3. ∂−y F (Ys,y) is of bounded variation for (s,y) jointly, for any Y ∈ Λ;

4. (∂−h F(Xs,−h))s∈[0,T ] is x-integrable for h = ρmin and h = ρmax;

5. f is convex;

Remark 4.5. It is straightforward to notice that if f satisfies Hypotheses 4.4, then f
also satisfies Hypotheses 3.5. So, the functional Meyer-Tanaka formula, Theorem 3.6,
holds for f .

Similarly as in [28], we may analyze the limit of fn(Yt) without identifying the limit
of the Itô term.

Theorem 4.6. Let f be a functional satisfying Hypotheses 4.4 and x a continuous
semimartingale. Then

f (Xt) = f (X0)+
∫ t

0
∆t f (Xs)ds+

∫ t

0
∆
−
x f (Xs)dxs +

1
2

A f
t P−a.s., (4.3)

where A f
t is a continuous and increasing process.
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Proof. As we have seen in the proof of Theorem 3.6,

fn(Xt) = fn(X0)+
∫ t

0
∆t fn(Xs)ds+

∫ t

0
∆x fn(Xs)dxs +

1
2

∫ t

0
∆xx fn(Xs)d〈x〉s.

Consider now the continuous process

An
t =

∫ t

0
∆xx fn(Xs)d〈x〉s.

This process is increasing because fn is convex, which means ∆xx fn ≥ 0. Hence, by
Equations (3.7)–(3.8), An

t converges u.c.p. to a continuous increasing process A f
t that

satisfies Equation (4.3).

Remark 4.7. As in the classical case, Equation (4.3) shows that the convex functional
of a continuous semimartingale is also a continuous semimartingale.

4.2 The Running Maximum
The running maximum (or more precisely, supremum) is defined as

m(Yt) = sup
0≤s≤t

ys, (4.4)

for any Yt ∈ Λ.

Let us first verify that m is Λ-continuous. Notice m(Yt) = m(Yt,r), for any Yt ∈ Λ

and r ≥ 0. Hence, if we fix Yt ,Zs ∈ Λ with s≥ t, we find

|m(Yt)−m(Zs)|= |m(Yt,s−t)−m(Zs)|

=

∣∣∣∣ sup
0≤u≤s

Yt,s−t(u)− sup
0≤u≤s

Zs(u)
∣∣∣∣

≤ sup
0≤u≤s

|Yt,s−t(u)−Zs(u)| ≤ dΛ(Yt ,Zs).

Therefore, the running maximum is (Lipschitz) Λ-continuous. Moreover, one could
also verify that ∆tm(Yt) = 0. Define now the subset of Λ where the supremum is at-
tained at the last value:

S = {Yt ∈ Λ ; m(Yt) = yt} .

For paths in S , the space functional derivative is not defined: the right derivative is
1 and the left derivative is 0. For paths outside S , the space functional derivative is
well-defined and it is 0: ∆xm(Yt) = 0, for Yt /∈S .

We show below that the running maximum is Λ-equicontinuous according to Defi-
nition 2.5. One can easily see that

M(Yt ,ξ ) = m(Y ξ

t ) = max
{

m(Yt),yt +ξ
+
}
.
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Moreover, for any Yt ,Zs ∈ Λ,

|M(Yt ,ξ )−M(Zs,ξ )| ≤ dΛ(Y
ξ

t ,Zξ
s ) = dΛ(Yt ,Zs).

Since the bound above is independent of ξ , the running maximum is Λ-equicontinuous.
Besides, we notice that

m((Yt,δ t)
ξ ) = max

{
m(Yt),yt +ξ

+
}
= m((Y ξ

t )t,δ t),

and therefore, m satisfies Definition 2.7. Furthermore, this shows that the running
maximum is locally weakly path-dependent, i.e. the Lie bracket is zero (in the limit
characterization), see Remark 2.9.

Additionally, one can easily prove that the running maximum m(Yt) is a (non-
smooth) convex functional. It is actually convex in the stronger sense of (4.1). Ad-
ditionally, ∂

−
h M(Yt ,h) = ∆−x m(Y h

t ) = 0.

Finally, we are ready to employ the functional Meyer-Tanaka formula, Theorem
(3.6), to the running maximum. Firstly, we have already shown that

∆tm(Yt) = 0 and ∆
−
x m(Yt) = 0, ∀ Yt ∈ Λ.

Notice now
m(Yt−) = sup

0≤s<t
yu

(time t is not allowed in the supremum) and notice that

M (Yt ,y+h) = m(Y y+h
t− ) = max{y+h,m(Yt−)}.

Hence, we can compute

∂
−
y M (Yt ,y) = 1{y>m(Yt−)}⇒ dy∂

−
y M (Yt ,y) = δm(Yt−)(dy),

where δc is the Dirac mass concentrated at c ∈ R. We then face a problem, because
dt,y∂−y M (Yt ,y) is not easily computed. However, we notice that

∂
−
y M (Yt ,y+m(Yt−)) = 1{y>0}⇒ dy∂

−
y M (Yt ,y+m(Yt−)) = δ0(dy)

and dt,y∂
−
y M (Yt ,y+m(Yt−)) = 0.

Hence, we have seen that m satisfies Hypotheses 4.4. We will then apply formula (3.12)
with at = m(Xt) = m(Xt−), which is clearly a continuous process of finite variation,
since (xt)t≥0 is a continuous semimartingale. These equalities hold because the process
x is continuous. Therefore, by Equation (3.12), we finally find the pathwise version of
the important formula of Lévy:

mt = max
0≤s≤t

xs = x0 +Lx−m(t,0),
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where Lx−m is the local time of the process (xt −mt)t∈[0,T ].

Furthermore, the same analysis could be performed for the running minimum. In-
deed,

m(Yt) = inf
0≤s≤t

ys =−m(−Yt), (4.5)

where −Yt(u) =−yu, for all u≤ t. Therefore, m satisfies Hypotheses 4.4 as well and

M (Yt ,y) =−M (−Yt ,−y)⇒ ∂
−
y M (Yt ,y) = 1{y<m(Yt−)},

where
m(Yt−) = inf

0≤s<t
yu.

Then,

mt = min
0≤s≤t

xs = x0−Lx−m(t,0),

4.3 Characterization of Local Martingales Functions of the Run-
ning Maximum

In the articles [24, 25], the authors studied the problem of complete characterization of
local martingales that are functions of the current state of a continuous local martingale
and its running maximum. In this section, we will show how the functional Itô calculus
framework can be used to study this problem.

Theorem 4.8. Let (xt)t≥0 be a continuous local martingale and consider a functional
f satisfying Hypotheses 3.5. Then ( f (Xt))t≥0 is a local martingale if and only if∫ t

0
∆t f (Xs)ds+

∫
R

Lx(t,y)dy∂
−
y F (Xt ,y) (4.6)

=
∫ t

0

∫
R

Lx(s,y)ds,y∂
−
y F (Xs,y), ∀ t ≥ 0, P−a.s.

hen, if ∆t f (Xs) = 0, ∀ s ≥ 0, P-a.s. and if ∂y∂−y F (Xs,y) exists, Equation (4.6) is
equivalent to ∫

R

∫ t

0
∂y∂

−
y F (Xs,y)dsLx(s,y)dy = 0. (4.7)

Proof. By the functional Meyer-Tanaka formula, Equation (3.6), we find

f (Xt) = f (X0)+
∫ t

0
∆t f (Xs)ds+

∫ t

0
∆
−
x f (Xs)dxs

+
∫
R

Lx(t,y)dy∂
−
y F (Xt ,y)−

∫ t

0

∫
R

Lx(s,y)ds,y∂
−
y F (Xs,y).

20



Hence, ( f (Xt))t≥0 is a local martingale if and only if∫ t

0
∆t f (Xs)ds+

∫
R

Lx(t,y)dy∂
−
y F (Xt ,y) =

∫ t

0

∫
R

Lx(s,y)ds,y∂
−
y F (Xs,y).

Furthermore, Equation (4.7) follows from∫ t

0

∫
R

Lx(s,y)ds,y∂
−
y F (Xs,y) =

∫
R

∫ t

0
Lx(s,y)ds∂y∂

−
y F (Xs,y)dy

=
∫
R

(
Lx(t,y)∂y∂

−
y F (Xt ,y)−

∫ t

0
∂y∂

−
y F (Xs,y)dsLx(s,y)

)
dy.

Remark 4.9. Let (xt)t≥0 be a continuous local martingale. Denote

C =
⋃
t>0

supp(mt)⊂ R,

where supp(z) is the support of the random variable z. By the Dambis-Dubins-Schwarz
Theorem [19, Theorem 4.6, Chapter 3], xt = b〈x〉t , where b is a Brownian motion, which
implies that C = R+ for any continuous local martingale. This will be useful in the
proof of the next theorem.

Theorem 4.10. Let (xt)t≥0 be a continuous local martingale with x0 = 0 and consider
H : R2 −→R in C1(R2). Then (H(xt ,mt))t≥0 is a right-continuous local martingale in
the natural filtration of x if and only if there exists ψ : R−→ R in C1(R) such that

H(x1,x2) =
∫ x2

0
ψ(s)ds−ψ(x2)(x2− x1)+H(0,0), ∀ (x1,x2) ∈ R2. (4.8)

Proof. We start by defining the functional f (Yt) = H(yt ,m(Yt)).

Since m(Yt,δ t) = m(Yt) and ∆−x m(Yt) = 0, we easily conclude that ∆t f (Yt) = 0 and
∆−x f (Yt) = ∂1H(yt ,m(Yt)), where ∂i denotes the derivative with respect to ith variable
of H, i = 1,2. Smoothness of H implies that f satisfies Hypotheses 3.5.

To ease the burden of notation, notice that m(Xt−) = m(Xt) = mt , since x is con-
tinuous almost surely. By Theorem 4.8, ( f (Xt))t≥0 is a local martingale if and only
if ∫

R

∫ t

0
∂y∂

−
y F (Xt ,y+mt)dsLx(s,y)dy = 0, ∀ t ≥ 0, P− a.s. (4.9)

By a mollification argument, we may assume for the moment that H ∈C2(R2) and then
we are able to directly compute ∂y∂−y F (Xt ,y+mt).

Note that F (Xt ,y + mt) = H(y + mt ,max{y + mt ,mt}). Hence, since max{y +
mt ,mt}= mt + y+, we find

∂
−
y F (Xt ,y+mt) = ∂1H(y+mt ,mt + y+)

+∂2H(y+mt ,mt + y+)1{y>0},
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which implies that

∂y∂
−
y F (Xt ,y+mt) = ∂11H(y+mt ,mt + y+)

+1{y>0}(2∂12 +∂22)H(y+mt ,mt + y+)

+∂2H(y+mt ,mt + y+)δ0.

Therefore, ∫
R

∫ t

0
∂y∂

−
y F (Xt ,y+mt)dsLx−m(s,y)dy

=
∫
R

∫ t

0
∂11H(y+mt ,mt + y+)dsLx−m(s,y)dy

+
∫ +∞

0

∫ t

0
(2∂12 +∂22)H(y+mt ,mt + y)dsLx−m(s,y)dy

+
∫ t

0
∂2H(mt ,mt)dsLx−m(s,0)

=
∫ 0

−∞

∫ t

0
∂11H(y+mt ,mt + y+)dsLx−m(s,y)dy

+
∫ t

0
∂2H(mt ,mt)dsLx−m(s,0)

since Lx−m(t,y) = 0, for y > 0. Then, by Equation (4.9) and Remark 4.9 and since the
measures dsLx−m(s,y) have disjoint supports for different y < 0, we must have, for all
(x1,x2) ∈ R×R+,

∂11H(x1,x2) = 0 and ∂2H(x2,x2) = 0. (4.10)

These equations can be solved analytically. The first equation above implies there
exists ψ,ϕ ∈C1(R) such that

H(x1,x2) = ψ(x2)x1 +ϕ(x2).

Then, by the first equation in (4.10) we find that

ψ
′(x2)x2 +ϕ

′(x2) = 0,

which means

ϕ(x2) = ϕ(0)−
∫ x2

0
ψ
′(s)sds = ϕ(0)−ψ(x2)x2 +

∫ x2

0
ψ(s)ds.

Moreover, notice that ϕ(0) = H(0,0). Therefore, a function H ∈C1(R2) is such that
(H(xt ,mt))t≥0 is a local martingale if and only if there exists ψ ∈C1(R) such that

H(x1,x2) =
∫ x2

0
ψ(s)ds−ψ(x2)(x2− x1)+H(0,0), ∀ (x1,x2) ∈ R2.
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Remark 4.11. It is proved in [24] that

ψ(ξ ) =
d〈x,H(x,m)〉t

d〈x〉t

∣∣∣∣
t=Tξ

,

where Tξ = inf{t;xt = ξ}. Within the functional framework, it easy to see that

ψ(m(Yt)) = ∆
−
x H(yt ,m(Yt)). (4.11)

This formula could be evaluated pathwise to find ψ(ξ ).

4.4 Quadratic Variation
The functional Meyer-Tanaka formula, Theorem 3.6, could provide interesting results
even when applied to smooth functionals. As an illustrative example, let us consider
the quadratic variation functional QV, see [23] for the proper pathwise definition and
discussion on its smoothness. It is straightforward and intuitive that ∆tQV = 0 and that
QV(Y y

t−) = QV(Yt−) + (y− yt−)
2. Therefore, the functional Meyer-Tanaka formula

gives us the well-known formula

〈x〉t = 2
∫
R

Lx(t,y)dy,

for any continuous semimartingale x.

4.5 Increasing Functionals
Definition 4.12. A functional f : Λ−→ R is called increasing if f (Yt)≥ f (Ys), for all
Yt ∈ Λ and s≤ t, where Ys is the restriction of Yt to [0,s].

Consider now an increasing functional f in C1,2 with ∆x f ∈ C1,1. Then, we find
that ∆t f ≥ 0 and that the path ( f (Yt))t∈[0,T ] is of finite variation for any YT ΛT . Hence,
if (wt)t∈[0,T ] is a Brownian motion in (Ω,F,P), by the Functional Itô Formula,

f (Wt) = f (W0)+
∫ t

0
∆t f (Wu)du+

∫ t

0
∆x f (Wu)dwu +

1
2

∫ t

0
∆xx f (Wu)du.

Now, since the increasing process ( f (Wt))t≥0 is of finite variation, by the uniqueness
of the semimartingale decomposition, we conclude that ∆x f (Wu) = 0, for u ∈ [0,T ].
Since ∆x f ∈ C1,1 and the support of Brownian paths is the set of continuous paths, we
have ∆xx f (Yt) = 0 for any continuous path Yt , see [16, Theorem 2.2]. Therefore,

f (Wt) = f (W0)+
∫ t

0
∆t f (Wu)du.

Furthermore, by the Λ-continuity of the functionals involved in the equality above, we
conclude that

f (Yt) = f (Y0)+
∫ t

0
∆t f (Yu)du,
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for any continuous path Yt . What happens if the functional f is not smooth, but satisfies
Hypotheses 3.5? In this case, for any local martingale x,

f (Xt) = f (X0)+
∫ t

0
∆t f (Xs)ds+

∫ t

0
∆
−
x f (Xs)dxs

+
∫
R

Lx(t,y)dy∂
−
y F (Xt ,y)−

∫ t

0

∫
R

Lx(s,y)ds,y∂
−
y F (Xs,y),

and, for the same reason, the stochastic integral term vanishes and we conclude that

f (Xt) = f (X0)+
∫ t

0
∆t f (Xs)ds+

∫
R

Lx(t,y)dy∂
−
y F (Xt ,y)

−
∫ t

0

∫
R

Lx(s,y)ds,y∂
−
y F (Xs,y).
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Time Lebesgue–Stieltjes Integrals of Local Times: Corrected. 2015. Available at
arXiv: https://arxiv.org/abs/math/0505195.

[13] L. C. Evans. Partial Differential Equations. American Mathematical Society,
second edition, 2010.

[14] C. Feng and H. Zhao. A Generalized Itô’s Formula in Two-Dimensions and
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