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Abstract

In this paper we consider a jump-diffusion dynamic whose parameters are driven by a
continuous time and stationary Markov Chain on a finite state space as a model for the
underlying of European contingent claims. For this class of processes we firstly outline the
Fourier transform method both in log-price and log-strike to efficiently calculate the value of
various types of options and as a concrete example of application, we present some numerical
results within a two-state regime switching version of the Merton jump-diffusion model. Then
we develop a closed-form solution to the problem of pricing a Forward Starting Option and
use this result to approximate the value of such a derivative in a general stochastic volatility
framework.
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1 Introduction

Since the paper by Naik (1993), the use of continuous time regime-switching processes to model
asset price dynamics stimulated an increasing interest in the context of option pricing. The
empirical evidence of a regime switching behavior of some economic time series was pointed
out by Hamilton (1989, 1990), who suggested the use of an underlying Markov chain switching
between regimes to account for some peculiarities in observed data. The ability of these econo-
metric models to capture specific features such as volatility clustering and structural breaks is
widely recognized (see e.g. Timmermann (2000)). Consequently, they can be considered as an
appealing class of models also in the framework of derivative pricing. In the last decades there
has been a considerable progress in the pricing exercise for plain vanilla European or American
style options: see e.g. Di Masi et al. (1994), Bollen (1998), Guo (2001), Hardy (2001), Duan et
al. (2002), Buffington and Elliott (2002), Konikov and Madan (2002), Guo and Zhang (2004),
Chourdakis (2004,2007), Edwards (2005), Liu et al. (2006), Yao et al. (2006), Jobert and Rogers
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(2006), Elliott and Osakwe (2006), Jiang and Pistorius (2008), Boyarchenko and Levendorskii
(2009), Khaliq and Liu (2009), Di Graziano and Rogers (2009), Ramponi (2009), Liu (2010).
Comparatively few results are available for exotic options: see Boyle and Draviam (2007) and
Elliott et al. (2007). Such results typically differ in the model considered (switching diffusions or
more general Lévy processes), in the technique for solving the pricing problem (direct evaluation
of expectations with respect to the probability density of the underlying, numerical solution of
the associated PDE, recombining trees, Fourier transform methods) or in the type of financial
product to price.

In this paper we consider a quite general underlying dynamic which can be seen as a switching
Lévy process of the I type, or finite activity Lévy process (see e.g. Cont and Tankov (2004)).
In particular, on a filtered probability space (Ω, {Ft},F ,P) the dynamic is of the form

S(t) = s0e
X(t) (1)

where X(t) is specified as a jump-diffusion whose parameters are driven by α(t), a continuous
time and stationary Markov Chain on the state space S = {1, 2, . . . ,M}. This model provides an
example of non-affine and non-Lévy process for which we are able to calculate the characteristic
function (see Prop. 3.1) and therefore the pricing problem for European style options is efficiently
faced through Fourier transform techniques. Such techniques, originated by the works of Heston
(1993) and Carr and Madan (1999), are based on the representation of the value of the option
in a proper Fourier space and have been successfully applied to a variety of pricing problems in
the last years. Among the various contributions to this theory, see Bakshi and Madan (2000),
Raible (2000), Lewis (2002), Lee (2004), Hubalek et al. (2006), Biagini et al. (2008), and more
recently Cherubini et al. (2009), Dufresne et al. (2009), Hurd and Zhou (2010), Eberlein et
al. (2010). Following this approach we can price various types of European options under the
regime-switching dynamic by using the Fourier transform method both in the log-price space and
in the log-strike space, consequently taking advantages from the powerful Fast Fourier Transform
(FFT) computational tool. The case for a switching pure jump process has been considered in
Elliott and Osakwe (2006).

As an application we consider the problem of valuing a Forward Starting option (FSO) for
which an almost (i.e. up to numerical integration) closed-form solution is obtained in term of
an integral transform. A similar technique was used in Kruse and Nögel (2005) to price a FSO
in the Heston stochastic volatility model. These options are well-known exotic derivatives (see
e.g. Hull (2009)) characterized by the payoff

ΠT (S(T ), κ) = S(T )− κS(t∗) (2)

where t∗ ∈ (0, T ) is the determination time and κ ∈ (0, 1) is a given percentage. They are the
building blocks of the so-called cliquet options. As it will be shown, our formula is very simple,
being a finite mixture of call prices evaluated at the determination time under each regime,
weighted by the stationary probability of the chain. Furthermore, in Chourdakis (2004) a pro-
cedure to approximate the value of an European option in a model with stochastic volatility and
jumps was proposed by building a continuous-time Markov chain which ”mimics” the volatility
process. The approximating dynamics turns out to be a regime-switching jump-diffusion model.
By using such an approximation, a pricing algorithm for FSO in a general stochastic volatility
model can be designed based on our mixture representation.
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The paper is organized as follows. In Section 2 the dynamic model for the underlying is
presented with a scheme for its numerical simulation and a useful representation through the
sojourn times of the underlying Markov chain is introduced. In Section 3 the Fourier transform
method both in log-price and log-strike is considered and formulas for the price of an European
call option are explicitly derived. A numerical example of calibration on real data for a two-state
regime switching jump diffusion model with gaussian jumps is reported. Finally, in Section 4
the price of a Forward starting option is obtained by using the Fourier transform representation
and an algorithm to get approximate prices in a general stochastic volatility model is outlined.

2 The model

Let us consider on a filtered probability space (Ω, {Ft},F ,P), the asset price dynamic of the
form

S(t) = s0e
X(t) (3)

where X(t) is specified as follows.
Let α(t) be a continuous time, homogeneous and stationary Markov Chain on the state

space S = {1, 2, . . . ,M} with a generator Q ∈ R
M×M ; furthemore ξ : S → R, σ : S → R and

γ : E × S → R are given functions, (E, E) being a measurable mark space. In a given interval
0 ≤ t ≤ T , we consider the following dynamic

dX(t) = ξ(α(t))dt + σ(α(t))dW (t) + dJ(t), X(0) = 0,

J(t) =

∫ t

0

∫

E
γ(y, α(s−))pα(dy, ds)

where pα(dy, ds) is a marked point process (Runggaldier (2003)) characterized by the intensity

λ(α, dy) = λ(α)m(α, dy).

Here λ(·) represents the (regime-switching) intensity of the Poisson process Nt(E), whilem(·, dy)
are a set of probability measures on (E, E), one for each state (regime) i ∈ S of the chain. The
function γ(y, α) represents the jump amplitude relative to the mark y in regime α. Throughout
the paper we assume that the processes α(·) and W (·) are independent and that W (·) and
pα(dy, dt) are conditionally independent given α(t). We denote Fα

t = σ{α(s) : 0 ≤ s ≤ t}
the σ-algebra generated by the Markov chain. Furthermore, we assume that E[eγ(Y (α),α)] ≡
∫

E eγ(y,α)m(α, dy) is finite for each regime α, where Y (α) is the random variable associated to
the measure m(α, dy). We also define the compensated point process qα(dy, dt) = pα(dy, dt) −
λ(α(t−))m(α(t−), dy)dt in such a way

∫ t

0

∫

E
H(y, α(s−))qα(dy, ds)

is a martingale in t for each predictable processH satisfying appropriate integrability conditions.
In particular the jump process

J(t) =

∫ t

0

∫

E
γ(y, α(s−))qα(dy, ds) +

∫ t

0

∫

E
γ(y, α(s))λ(α(s))m(α(s), dy)ds

= J̃(t) +

∫ t

0
λ(α(s))E[γ(Y (α(s)), α(s))]ds, Y (α(s)) ∼ m(α(s), dy)
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is the sum of a martingale and an absolutely continuous process, whenever γ satisfies the proper
conditions.

A sample path of this process is generated as follows (see Fig.1):

1. generate a path of the Markov chain, i.e. a set of switching times τ0 = 0, τ1, . . . , τL, τL+1 =
T and the corresponding states α(t) = αk ∈ S, τk ≤ t < τk+1, k = 0, . . . , L;

2. generate the jump times υkj of the Poisson process in each interval [τk, τk+1) according to
the intensity λ(αk) and let Nk be the number of jumps;

3. for any k = 0, . . . , L generate Nk i.i.d. samples Y (α(υkj )), j = 1, . . . , Nk distributed
according to the probability m(αk, dy);

4. on a given time grid t0, . . . , tn of [0, T ] built as the superposition of a deterministic grid
and the jump times υj, let X(t0) = 0 and

X(ti+1−) = X(ti) + ξ(α(ti))(ti+1 − ti) + σ(α(ti))(W (ti+1 −W (ti)), (4)

X(ti+1) = X(ti+1−) +

∫

E
γ(y, α(ti+1))p(dy, ti+1). (5)

If ti+1 is actually a point of the Poisson random measure, the magnitude of the jump is
sampled, that is

∫

E
γ(y, α(ti+1)p(dy, ti+1) = γ(Y (α(ti+1)), α(ti+1)),

otherwise the jump term is zero.

In view of our pricing application, from now on we assume to specify our model in a prob-

ability space where the ”discounted” asset price S̃(t) = S(t)e−
∫ t
0 µ(α(s))ds is a martingale. In

particular, we keep the function µ : S → R unspecified in order to cope with slightly different
types of contracts: for example, given the risk-free rate r, we can set µ(α) = µ with µ = r − q,
q being the (continuous) dividend rate, µ = r − rf , rf being the foreign risk-free rate or more
generally µ(α) = r(α)− q(α) if rates and dividend are regime-switching too.

We therefore consider the following model

X(t) =

∫ t

0

(

µ(α(s))−
1

2
σ2(α(s)) − λ(α(s))κ(α(s))

)

ds+

∫ t

0
σ(α(s))dW (s)

+

∫ t

0

∫

E
γ(y, α(s−))pα(dy, ds), (6)

where
κ(α) = E[(eγ(Y (α),α) − 1)], α ∈ S.

An application of the generalized Ito’s Formula gives

dS̃(t) = S̃(t−)

(

−λ(α(t))κ(α(t))dt + σ(α(t))dW (t) +

∫

E
(eγ(y,α(t−)) − 1)pα(dy, dt)

)

= S̃(t−)

(

σ(α(t))dW (t) +

∫

E
(eγ(y,α(t−)) − 1)qα(dy, dt)

)

,
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Figure 1: A sample path of the RSJD - Example 2.1. Red cross are the switching times, circles represent
the jump times for the two regimes.

where qα(dy, dt) = pα(dy, dt) − λ(α(t−))κ(α(t−))dt is the compensated process. Hence, S̃(t) is
a martingale. The corresponding jump-diffusion SDE for the asset price is therefore

dS(t)

S(t−)
= (µ(α(t))−λ(α(t))κ(α(t)))dt+σ(α(t))dW (t)+

∫

E
(eγ(y,α(t−))−1)pα(dy, dt), S(0) = s0.

(7)

Example 2.1 As a working example we consider a two-state regime switching version of the
Merton jump-diffusion model. This is defined by taking γ(y, α) = y and two kinds of normal
jumps, i.e. Y (i) ∼ N (ai, bi) from which κ(i) = E[(eY (i) − 1)] = eai+b2i /2 − 1, i = 1, 2. The two

state Markov chain α(t) ∈ S = {1, 2} has generator Q =

(

−q1 q1
q2 −q2

)

. Let σi, λi > 0 and

µi, i = 1, 2 be given parameters: the regime switching jump-diffusion Merton model is defined as

dX(t) = [µ(α(t)) −
1

2
σ2(α(t) − λ(α(t))κ(α(t))]dt + σ(α(t))dW (t) + dJ(t)

J(t) =

∫ t

0

∫

E
ypα(dy, ds), λ(t, α(t), dy) = λ(α(t))φα(t)(y)dy

where λ(α(t)) ∈ {λ1, λ2}, σ(α(t)) ∈ {σ1, σ2}, µ(α(t)) ∈ {µ1, µ2} and λ(t, α(t), dy) is the intensity
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process of the Poisson jump component, φi(y) being the density of a normal distribution N (ai, bi),
i = 1, 2. ✷

Next Proposition gives a useful representation for X(T ). A sketch of the proof is reported
in the Appendix.

Proposition 2.1 Let Ti =
∫ T
0 Iα(s)=ids, i = 1, . . . ,M be the occupation times of the Markov

chain and let us define ξ(α) = µ(α)− 1
2σ

2(α)− λ(α)κ(α) and

ΞT (T1, . . . , TM ) =

∫ T

0
ξ(α(s))ds =

M
∑

i=1

ξ(i)Ti.

Then the process X(T ) admits the following representation:

X(T ) = ΞT (T1, . . . , Tm) +

M
∑

i=1

σ(i)Z(∆i) +

M
∑

i=1

N(∆i)
∑

k=1

Y
(i)
k , (8)

where N(∆i) and Z(∆i) are distributed as Poisson variables Poiss(λiTi) and as Normal variables
N (0, Ti), respectively, i = 1, . . . ,M .

It is readly seen that by defining Xt,T = X(T )−X(t) we have

Xt,T = Ξt,T (T
t,T
1 , . . . , T t,T

M ) +

M
∑

i=1

σ(i)Z(∆i) +

M
∑

i=1

N(∆i)
∑

k=1

Y
(i)
k , (9)

where T t,T
j =

∫ T
t Iα(s)=jds, j = 1, . . . ,M , and the random variables N(∆i) and Z(∆i) have

conditional distributions Poiss(λi(Ti−t)) and N (0, Ti−t). Correspondingly we can write S(T ) =
S(t) exp(Xt,T ).

Remark 2.1 Notice that for a Lévy process XL(t) having characteristic function

E[eiuXL(t)] = exp

(

t(iξu−
σ2u2

2
+

∫

R

(eiux − 1)β(dx))

)

the expected value is E[XL(T )] = T (ξ+
∫

R
xβ(dx)). For our RS model, it follows from (2.1) that

E[X(T )] =

m
∑

i=1

(ξ(i) + λ(i)µY (i))E[Ti] =

m
∑

i=1

(ξ(i) + λ(i)µY (i))

∫ T

0
P(α(s) = i|α(0))ds.

This quantity can be easily evaluated for a two-state MC, since we have Ps = eQs =

1
µ+ν

(

µe−s(µ+ν) + ν µ(1− e−s(µ+ν))

ν(1− e−s(µ+ν)) νe−s(µ+ν) + µ

)

. This implies that, starting e.g. from α(0) = 1

E[X(T )] = (ξ(1) + λ(1)µY (1))(
µ

µ + ν

1− e−T (µ+ν)

µ+ ν
+

ν

µ+ ν
T )

+ (ξ(2) + λ(2)µY (2))(−
µ

µ + ν

1− e−T (µ+ν)

µ+ ν
+

µ

µ+ ν
T ).
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3 The transform method

Our main interest is the efficient numerical evaluation of the price Π0 of an European contingent
claim specified by the payoff function Π(s,K), exercised at the future time T , K being a trigger
parameter. By letting r(t) be the interest rate process, B(t) = exp(

∫ t
0 r(u)du) the usual money

market account and P (t, T ) the time-t value of a discount bond maturing at T , arbitrage pricing
theory and a change-of-numeraire technique give the well-known characterization of prices

Π0 = EP [B(T )−1Π(S(T ),K)] = P (0, T )EQ[Π(S(T ),K)], P (0, T ) = EP [B(T )−1],

where P is the risk-neutral measure and Q is known as T -forward measure. When interest rates
are deterministic, the two measures are equal. In the following we assume that our dynamic
model is given under the measure Q. All the expected values will be considered with respect to
this measure.

It is well known that Fourier transform methods can be efficiently used for the valuation of
European style options. Two main variants have been developed depending on which variable
of the payoff is transformed into the Fourier space. In view of the structure assumed for the
dynamic of the underlying price S(T ) and our next applications, we consider instead log(S(T )) =
X(T ) + log(s0) as the state variable and k = log(K) for the trigger parameter, in such a way
for any payoff Π(s,K) = Π(elog(s), elog(K)) ≡ Π(y, k). Correspondingly, we can consider the
generalized Fourier transform with respect to the state variable y, Π̂k(z) =

∫

R
eizyΠ(y, k)dy

(log-price transform), or w.r.t. the trigger k, Π̂y(z) =
∫

R
eizkΠ(y, k)dk (log-strike transform),

z ∈ C. In general we assume that these transforms exist in some strip SΠ = {z ∈ C : −∞ ≤
a < ℑ(z) < b ≤ +∞}1 of the complex plane. Examples of payoffs are reported in Table (1).
The first approach was proposed in this form in Raible (2000) (but the representation of option
prices through inversion of characteristic function appeared for the first time in Heston (1993)),
while the second was introduced in Carr and Madan (1999).

Formally, Fourier inversion gives

Π(y, k) =











1
2π

∫ iν+∞

iν−∞
e−izyΠ̂k(z)dz, log-price transform

1
2π

∫ iν+∞

iν−∞
e−izkΠ̂y(z)dz, log-strike transform

where integrals are considered along the straight line ℑ(z) = ν in the complex plane. By letting
ϕT (z) = E[eizX(T )], z ∈ C be the (generalized) Fourier transform (or characteristic function) of
X(T ), we have

Π0/P (0, T ) = EQ[Π(X(T ) + log(s0), k)] =

∫

R

Π(y, k)QT (dy)

=











∫

R

1
2π

∫ iν+∞

iν−∞
e−izyΠ̂k(z)dzQT (dy)

∫

R

1
2π

∫ iν+∞

iν−∞
e−izkΠ̂y(z)dzQT (dy)

=











1
2π

∫ iν+∞

iν−∞
Π̂k(z)

∫

R
e−izyQT (dy)dz

1
2π

∫ iν+∞

iν−∞
e−izk

∫

R
Π̂y(z)QT (dy)dz

1
ℑ(z) and ℜ(z) stand for the imaginary and real part of a complex number, z = ℜ(z) + iℑ(z) ∈ C.
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Payoff GFT in log-price Strip of regularity GFT in log-strike Strip of regularity

(ey − ek)+ ek(iz+1)

iz−z2
ℑ(z) > 1 ey(iz+1)

iz−z2
ℑ(z) < 0

(ek − ey)+ ek(iz+1)

iz−z2
ℑ(z) < 0 ey(iz+1)

iz−z2
ℑ(z) > 1

eayIby>κ − e(a+iz)κ/b

a+iz ℑ(z) > a e(a+izb)y

iz ℑ(z) > 0

min(ey, ek) ek(iz+1)

z2−iz 0 < ℑ(z) < 1 ey(iz+1)

z2−iz 0 < ℑ(z) < 1

Table 1: Generalized Fourier transforms of typical payoffs.

=











1
2π

∫ iν+∞

iν−∞
e−iz log(s0)Π̂k(z)ϕT (−z)dz, log-price transform

1
2π

∫ iν+∞

iν−∞
e−izkEQ[Π̂X(T )+log(s0)(z)]dz, log-strike transform.

(10)

In order to justify the previous equalities, some conditions are required: existence of the
generalized Fourier transform Π̂, integrability along the contour ℑ(z) = ν in some strip SΠ in
order to guarantee the Inversion Theorem and existence of the expectation EQ[eνX(T )] (see Lee
(2004) for log-strike transform, Lewis (2002) or the recent Eberlein et al. (2009) for log-price
transform). Notice that the use of generalized Fourier transform permits to exploit contour
variations by means of the residue theorem, as it will be seen in next paragraphs.

Due to the exponential structure of the GFT of typical payoffs (see Table (1)), also for the
log-strike transform it is required the calculation of ϕT (z) appearing through the expectation
EQ[Π̂X(T )+log(s0)(z)]. Next Proposition gives the GFT of our process. Similar results are avail-
able (see Chourdakis (2004)) where a particular structure of the generator Q is considered: for
completeness, we report the proof in the Appendix.

Proposition 3.1 Let φj(z) = E[eizγ(Y (j),j)] be the generalized Fourier transform of the jump
magnitude. Then, by letting

ϑj(z) = zξ(j) +
1

2
iz2σ2(j)− iλ(j)(φi(z)− 1) (11)

and ϑ̃i(z) = ϑj(z) − ϑM (z), we have

ϕT (z) = eiϑM (z)T
(

1′ · e(Q
′+i diag(ϑ̃1(z),...,ϑ̃M−1(z),0))T · I(0)

)

= 1′ · e(Q
′+i diag(ϑ1(z),...,ϑM (z)))T · I(0),

(12)

where 1 = (1, . . . , 1)′ ∈ R
M×1, I(0) = (Iα(0)=1, . . . , Iα(0)=M )′ ∈ R

M×1 and Q′ is the transpose of
Q.

Remark 3.1 Notice that ϕT (0) = 1 and ϕT (−i) = E
[

e
∑M

j=1 µ(j)Tj

]

. Furthermore, if µ(α) ≡ µ,

then ϕT (−i) = eµT since
∑m

i=1 Ti = T .
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More generally, we get from (9) and (12)

ϕt,T (z) = Et[e
izXt,T ] =

(

1′ · e(Q
′+i diag(ϑ1(z),...,ϑM (z)))(T−t) · I(t)

)

=
∑M

j=1 Iα(t)=jq
t,T
j (z), qt,Tj (z) =

∑M
k=1

(

e(Q
′+i diag(ϑ1(z),...,ϑM (z)))(T−t)

)

kj
,

(13)

for any t ∈ [0, T ), Et being the conditional expectation up to time t. Notice that the charac-
teristic function of X(T ) and Xt,T depends on the state of the Markov chain α(0) and α(t),
respectively.

The conditions for applying the transform method both in log-price and log-strike depend on
the properties of the GTF of X(T ), which in turn depend on that of φj(z) through Proposition
3.1. In general, these functions are well defined (and analytic) in some strips of the complex
plane

Sj = {z ∈ C : EQ[eℑ(z)γ(Y (j),j)] < ∞}, j = 1, . . . ,M.

Let us define the matrix A(z) = Q′ + i diag(ϑ1(z), . . . , ϑM (z)): clearly the elements of
A(z)n, n = 1, 2, . . . are polynomials in the ϑj(z)’s and therefore these are well defined in the
intersection of the Sj, j = 1, . . . ,M . From the properties of the matrix exponential function

eA(z) =
∑+∞

n=1
A(z)n

n! and since the GTF of X(T ) is a linear combination of its elements, it im-

mediately follows that (12) and (13) are well defined in
⋂M

j=1 Sj and consequently the transform

methods can be applied, provided
⋂M

j=1 Sj 6= ∅ and the payoffs satisfy the proper conditions.

Remark 3.2 If we set µ(i) = µ, σ(i) = σ, λ(i) = λ and φi(z) = φ(z) we have that ϑ̃i(z) = 0,
i = 1, . . . ,m − 1, and the term exp(Q′T ) is the transpose of the transition semi-group of the
Markov chain. Under these choices we are implicitly assuming a unique regime and eq. (13)
becomes the well-known characteristic function of the (single-regime) jump-diffusion dynamic

(6), ϕT (z) = exp(zξ+ 1
2 iz

2σ2−iλ(φ(z)−1)). This is because 1′ ·e(Q
′+i diag(ϑ̃1(z),...,ϑ̃M−1(z),0))(T−t) ·

I(t) = 1′ · eQ
′(T−t) · I(t) =

∑M
i=1 Iα(t)=i = 1. Hence, with simple linear constraints on the full

parameter set of our dynamic (6) we can recover several models:

1. Black & Scholes model (BS): µi = r, σi = σ > 0, λi = 0 (we consequently set to zero the
jump variables Y (i)), i = 1, . . . ,M ;

2. Black & Scholes with regime switching model (RSBS): µi ∈ R, σi > 0, qij > 0, i 6= j,
λi = 0 (Y (i) ≡ 0), i = 1, . . . ,M ;

3. Merton jump-diffusion model (JDM): µi = r, σi = σ > 0, λi = λ > 0 and the parameters
of the jump variables Yi ≡ Y , i = 1, . . . ,M ;

4. Merton jump-diffusion model with regime switching (RSJDM): µi ∈ R, σi > 0, qij > 0, i 6=
j, λi > 0 and the parameters of the jump variables Y (i) for each regime, i = 1, . . . ,M .

From a computational viewpoint, for a fixed complex z the calculation of ϕT (z) requires the
following steps:
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1. calculate ϑj(z), j = 1, . . . ,M (eq. (11));

2. form the matrix A(z) = Q′ + i diag(ϑ1(z), . . . , ϑM (z));

3. calculate the matrix exponential Φ(z) = exp(A(z) T );

4. for each starting state of the chain α(0) = j, j = 1, . . . ,M , calculate qTj (z) =
∑M

k=1Φkj(z).

For M > 2 the cumbersome task is the calculation of Φ for which efficient numerical tech-
niques are available (see Higham (2009)).

The case M=2. In this case it is possible to give a closed form solution to the matrix expo-
nential, therefore obtaining an easy-to-implement formula for the characteristic function. The
following result can be proved either by solving a couple of ODE, as in Buffington and Elliott
(2002) - Appendix 1, or through a Laplace Transform - based technique, as in Liu et al. (2006).

Proposition 3.2 Let y1,2 be the solutions of the quadratic equation y2+(q1+q2− iθ)y− iθq2 = 0
and

qt,T1 (θ) = 1
y1−y2

(

ey1(T−t)(y1 + q1 + q2)− ey2(T−t)(y2 + q1 + q2)
)

qt,T2 (θ) = 1
y1−y2

(

ey1(T−t)(y1 + q1 + q2 − iθ)− ey2(T−t)(y2 + q1 + q2 − iθ)
)

.

Then

Et[e
iθT1 ] = Iα(t)=1q

t,T
1 (θ) + Iα(t)=2q

t,T
2 (θ).

✷

It is easy to prove that the functions qt,T1 and qt,T2 are invariant by changing the order of the
roots y1 and y2. The characteristic function follows from the proof of Prop. 3.1 (see (32)):

ϕt,T (z) = eiϑ2(z)(T−t)
(

Iα(t)=1q
t,T
1 (θ(z)) + Iα(t)=2q

t,T
2 (θ(z))

)

. (14)

Example 3.1 In our regime switching version of the Merton model we have φi(z) = eizai−
1
2
z2b2i ,

i = 1, . . . ,M. Then, from (11)

ϑi(z) = zξi +
1

2
iz2σ2

i − iλi(e
izai−

1
2
z2b2i − 1), i = 1, . . . ,M. (15)

It follows that in such a case the characteristic function ϕT (z) is well defined for all z ∈ C. In
the two state model the GFT is easily obtained from (14).

Some examples of payoff transforms for the typical claims are recalled in Table 1. In view of
our next applications, we show in some details how to get the price of call and put options both
in log-price and in log-strike transform. Pricing formulas for the other payoffs are reported in
Table 2.
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Call/Put value in log-price transform. From formula (10) and Table 1 we get for the call
option

C0 =
P (0, T )

2π

∫ iν+∞

iν−∞

e−iz log(s0)ϕT (−z)
ek(iz+1)

iz − z2
dz, ν > 1, (16)

=
P (0, T )

2π
eν log(s0)+k(1−ν)

∫ +∞

−∞

e−iu(log(s0)−k) ϕT (−u− iν)

ν2 − ν − u2 + iu(1− 2ν)
du

=
P (0, T )

2π
sν0K

1−ν

∫ +∞

−∞

e−iu log(s0/K) ϕT (−u− iν)

ν2 − ν − u2 + iu(1− 2ν)
du,

provided the characteristic function evaluated in the integral (16) is well defined for z ∈ C

such that ℑ(z) > 1. By switching from ℑ(z) > 1 to ℑ(z) < 0 we get the value for the put
option: notice that the put-call parity relation is recovered by moving the integration contour.
As a matter of fact, alternative formulas can be derived by using residue calculus (see e.g.
Lewis(2002)), under the proper conditions for ϕT (z). The GFT of this payoff has two simple

poles at z = 0 and z = i with residue −Ki
2π and s0ϕT (−i)i

2π , respectively: by moving the integration
contour and since the integral must be real, we obtain the following general formula in which
we stress the dependence on s0, α0 and K:

C0(s0, α0,K) = P (0, T )

(

Rν +
1

2π

∫ iν+∞

iν−∞

e−iz log(s0)ϕT (−z)
ek(iz+1)

iz − z2
dz

)

(17)

= P (0, T )

(

Rν +
1

π
sν0K

1−ν

∫ +∞

0
ℜ

[

e−iu log(s0/K) ϕT (−u− iν)

ν2 − ν − u2 + iu(1− 2ν)

]

du

)

= P (0, T )



Rν +
1

π
sν0K

1−ν
M
∑

j=1

Iα(0)=j

∫ +∞

0
ℜ

[

e−iu log(s0/K)q0,Tj (−u− iν)

ν2 − ν − u2 + iu(1 − 2ν)

]

du



 , (18)

Rν =



























0 ν > 1

s0
ϕT (−i)

2 ν = 1
s0ϕT (−i) 0 < ν < 1

s0ϕT (−i)− ek

2 ν = 0
s0ϕT (−i)− ek ν < 0

where ϕT (−i) = E[e
∑m

i=1 µiTi ] according to Remark (3.1) and the functions q0,Ti (·) are defined in
(13).

Call/Put value in log-strike transform. As before, if the GFT φj(·) are well defined func-
tions in a properly defined strip of C, from formula (10) and Table 1, we get for the call option

EQ[Π̂X(T )+log(s0)(z)] =
E[e(X(T )+log(s0))(iz+1)]

iz − z2
=

elog(s0)(1+iz)ϕT (z − i)

iz − z2
ℑ(z) < 0

from which

C0 =
P (0, T )

2π

∫ iν+∞

iν−∞

e−izk e
log(s0)(1+iz)ϕT (z − i)

iz − z2
dz ν < 0. (19)
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=
P (0, T )

2π
e(1−ν) log(s0)+νk

∫ +∞

−∞

eiu(k−log(s0)) ϕT (u+ i(ν − 1))

ν2 − ν − u2 + iu(1 − 2ν)
du

=
P (0, T )

2π
s1−ν
0 Kν

∫ +∞

−∞

e−iu log(K/s0)) ϕT (u+ i(ν − 1))

ν2 − ν − u2 + iu(1− 2ν)
du.

The value for the put option and the related put-call parity are obtained again by moving
the integration contour. Since the residues at the poles z = 0 and z = i of the integrand are
s0ϕT (−i)

i and iek respectively, the application of the residue Theorem gives the following general
formula for the call price in our RSJD model:

C0(s0, α0,K) = P (0, T )

(

Rν +
1

2π

∫ iν+∞

iν−∞

e−izk e
log(s0)(1+iz)ϕT (z − i)

iz − z2
dz

)

(20)

= P (0, T )

(

Rν +
1

π
s1−ν
0 Kν

∫ +∞

0
ℜ

[

e−iu log(K/s0)) ϕT (u+ i(ν − 1))

ν2 − ν − u2 + iu(1− 2ν)

]

du

)

= P (0, T )



Rν +
1

π
s1−ν
0 Kν

M
∑

j=1

Iα(0)=j

∫ +∞

0
ℜ

[

e−iu log(K/s0)q0,Tj (u+ i(ν − 1))

ν2 − ν − u2 + iu(1− 2ν)

]

du



 (21)

Rν =



























0 ν < 0

s0
ϕT (−i)

2 ν = 0
s0ϕT (−i) 0 < ν < 1

s0ϕT (−i)− ek

2 ν = 1
s0ϕT (−i)− ek ν > 1

Remark 3.3 Let us notice that due to the symmetry of the call payoff, the two approaches give
in general very similar pricing formulas: in particular from (16) and (19) it follows that by
changing z with i− z we can switch from one representation to the other.

Application of the FFT algorithm. As it is widely known, the transform method deserves
for an efficient evaluation of derivative prices by means of the FFT algorithm for a proper range
of the trigger parameter. Actually, if only one option price has to be evaluated for a fixed k,
there is no need to use FFT. This technique involves two steps:

1. a numerical quadrature scheme to approximate the integral appearing in the pricing for-
mula, that we write as

I(k) =
1

π

∫ +∞

0
ℜ
[

e−iukF (u)
]

du,

through a N -point sum. By using an equispaced grid {un}n=1,...,N of the line {z = u+iv ∈
C : u ∈ R

+, v = ν} with spacing ∆, we have

I(k) ≈ ΣN (k) =
∆

π

N
∑

n=1

ℜ
[

e−iunkF (un)wn

]

,

where wn are the integration weights;

2. given a properly spaced grid of triggers km = k1 + γ(m− 1), m = 1, . . . N , the sum ΣN (k)
is written as a discrete Fourier transform (DFT), so that the FFT algorithm can be used.
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Payoff Option value in log-price transform

(ek − ey)+ P (0, T ) 1π s
ν
0e

k(1−ν)
∑M

j=1 Iα(0)=j

∫ +∞

0 ℜ

[

e−iu(log(s0)−k)q0,Tj (−u−iν)

ν2−ν−u2+iu(1−2ν)

]

du, ν < 0

eayIby>κ P (0, T ) 1π s
ν
0e

(a−ν)k/b
∑M

j=1 Iα(0)=j

∫ +∞

0 ℜ

[

e−iu(log(s0)−k/b)q0,Tj (−u−iν)

ν−a−iu

]

du, ν > a

min(ey, ek) P (0, T ) 1π s
ν
0e

k(1−ν)
∑M

j=1 Iα(0)=j

∫ +∞

0 ℜ

[

e−iu(log(s0)−k)q0,Tj (−u−iν)

u2−ν2+ν+iu(2ν−1)

]

du, 0 < ν < 1

Option value in log-strike transform

(ek − ey)+ P (0, T ) 1π s
1−ν
0 ekν

∑M
j=1 Iα(0)=j

∫ +∞

0 ℜ

[

e−iu(k−log(s0))q0,Tj (u+i(ν−1))

ν2−ν−u2+iu(1−2ν)

]

du, ν > 1

eayIby>k P (0, T ) 1π s
a−bν
0 eνk

∑M
j=1 Iα(0)=j

∫ +∞

0 ℜ

[

e−iu(k−b log(s0))q0,Tj (a−νb+iub)

iu−ν

]

du, ν > 0

min(ey, ek) P (0, T ) 1π s
1−ν
0 ekν

∑M
j=1 Iα(0)=j

∫ +∞

0 ℜ

[

e−iu(k−log(s0))q0,Tj (u+i(ν−1))

u2−ν2+ν+iu(2ν−1)

]

du, 0 < ν < 1

Table 2: Option values for some typical payoffs under the RSJD model. See the Appendix for
a sketch of their derivation.

A numerical example. In order to asses the performances of the pricing formulas we consider
the basic models in Remark (3.2), Example (2.1), in which the regime switching behavior is
driven by a two-state Markov chain. We fit these models on a set of observed call prices on the
S&P 500 index as quoted on March 31, 2009 to get realistic values for the parameters. In the
data set used for calibrating the models there are 128 call option prices with maturities and strike
prices ranging from 31 to 272 days and from 525 to 1200, respectively. The value of the index is
s0 = 753.89 and the moneyness s0/K ranges from 0.6282 to 1.4360. The average of the bid and
ask Treasury bill discounts, as available from the Wall Street Journal, were used and converted
to annualized risk-free rates. The dividend rate q was estimated from the data: in particular
we used a non linear least squares algorithm which minimize the difference between observed
call prices and the corresponding Black & Scholes prices evaluated through the available implied
volatility, constrained to satisfy the put-call parity relations. This procedure was repeated for
each maturity giving a mean value q = 0.0157 with standard deviation 0.003.

The numerical implementation was developed in the MatLab c© environment. Quadrature
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Figure 2: Real part of the integrand for a call option for different values of the moneyness. The plots
related to our data (0.6282 and 1.4360) are very similar.

algorithms are needed to evaluate the option prices from (18): adaptive Simpson and Gauss-
Lobatto quadrature rules, as available in MatLab, performed equally well, for typical values
of the parameters. As a matter of fact the integrands are not rapidly oscillating and decrease
sufficiently fast (e.g. see Fig. (2)). The FFT algorithm was implemented following Lee (2004),
i.e. by sampling F at the midpoints of intervals of length ∆, un = (n− 1

2 )∆, n = 1, . . . , N and
taking γ∆ = 2π/N . We get

ΣN (km) =
∆

π
ℜ

[

N
∑

n=1

e−i(n− 1
2
)∆(k1+γ(m−1))F ((n −

1

2
)∆)

]

=
∆

π
ℜ

[

e−i π
N
(m−1)

N
∑

n=1

e−i 2π
N

(n−1)(m−1)f(n)

]

where f(n) = F ((n − 1
2 )∆)e−i(n− 1

2
)∆k1 . In this case we used γ = 0.01 and ν = 0.5.

For the calibration we minimized the sum of squared errors by using the constrained min-
imization routine in MatLab. In fact, for the regime switching models we have to add the
constraint σ1 > σ2. The results obtained are reported in Table (3): RMSE and relative errors
Ĉ−C0(s0,K)

Ĉ
were calculated in the four cases. In Table (4) we report out-of-sample performances

of each fitted model: these were obtained by calculating the deviation from five call option prices
having a much longer maturity, i.e. 631 days and moneyness ranging from 0.7539 to 1.0052.
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Figure 3: Implied volatility calibration.

4 On the pricing of forward starting options

Forward starting options are well-known exotic derivatives, depending on an underlying asset
characterized by the payoff

ΠT (S(T ), κ) = S(T )− κS(t∗), (22)

where t∗ ∈ (0, T ) is the determination time and κ ∈ (0, 1) is a given percentage. They are the
building blocks of the so-called cliquet options and are used in many different context.

In this Section we provide a simple valuation formula for the price at time t = 0 of this claim
where the underlying S(t) follows the regime-switching jump diffusion dynamic introduced in
Sect. 2. Furthermore, we assume that µ(α) = r, the risk-free rate, in such a way P ≡ Q. The
risk-neutral price is therefore given by

Π0(s0, α0, κ) = E[e−rT (S(T )− κS(t∗))+] = E[e−rT (s0e
X(T ) − κS(t∗))+].

Notice that in general from the determination time t∗ on, the price is equal to that of a
standard call option, being the strike a known constant. By denoting with Et[·] the conditional
expectation w.r.t. information up to time t, Ft, we have

Ct(S(t), α(t),K) = Et[e
−r(T−t)(S(T )−K)+] = e−r(T−t)Et[(S(t)e

Xt,T −K)+].
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BS RSBS JDM RSJDM

σ1 0.3645 0.4462 0.1341 0.2725
σ2 0.3296 0.1350
λ1 7.9958 6.8393
λ2 0.8590
a1 -0.1280 -0.1398
a2 -0.3423
b1 0.0011 0.0877
b2 0.1593
q1 9.6199 6.5075
q2 0.0002 0.0020

RMSE 4.6947 3.9177 (i0 = 1) 3.8715 0.6126 (i0 = 1)

Rel. err.
(-0.0242,0.1398)

0.0888
(-0.0141, 0.0631)

0.0353
(-0.0508, 0.1547)

0.0675
(-0.0080, 0.0191)

0.0041

Table 3: Implied parameters and in-sample calibration performances of the models. The mon-
eyness of these options ranges from 0.6282 to 1.4360. In the last rows we report the range and

the mean of the relative pricing error Ĉ−CM

Ĉ
.

BS RSBS JDM RSJDM

RMSE 14.8555 6.4732 17.1020 5.1116
Mean Rel Err. -0.1852 -0.0631 -0.2142 -0.0634

Table 4: Out-of-sample performance of the models. The moneyness of these options ranges from
0.7539 to 1.0052.

Therefore, if K = κS(t) we get that

Ct(S(t), α(t), κS(t)) = S(t)Ct(1, α(t), κ).

Hence, by the law of iterated conditional expectations,

Π0(s0, α0, κ) = E[e−rT (S(t∗)eXt∗,T − κS(t∗))+] = E[e−rt∗Ct∗(S(t
∗), α(t∗), κS(t∗))] =

= E[S(t∗)e−rt∗Ct∗(1, α(t
∗), κ)].

Since S(t)e−rt = S(t)/B(t) is a Q-martingale we can introduce an equivalent measure QS as

L(t) =
dQS

dQ
|t =

S(t)

B(t)

B(0)

s0
, E[L(T )] = 1,

from which we get

E[S(t∗)e−rt∗Ct∗(1, α(t
∗), κ)] = s0E

QS
[Ct∗(1, α(t

∗), κ)].

Notice that this property is fairly general: in fact α(t) is not restricted to be a Markov chain.
On the other hand, in our model we don’t need to further specify the QS dynamic of the price
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process, since the Markov chain is not affected by this change of measure. Hence, since the chain
is assumed to be stationary, by denoting with π = (π1, . . . , πM )′ its invariant probability, we get

Π0(s0, κ) = s0E
QS

[Ct∗(1, α(t
∗), κ)] = s0

M
∑

j=1

πjCt∗(1, j, κ).

The price of the forward starting option is therefore the mixture of call option prices evaluated
at the determination time t∗ under each regime weighted by the corresponding probability.
By using transform representation for the call option value, e.g. (18), we get the following
proposition.

Proposition 4.1 Let the underlying be characterized by the SDE (7). Then the price at time
t = 0 of the Forward Starting Option (22) with determination time t∗ and percentage κ ∈ (0, 1)
is given by

Π0(s0, κ) = s0e
−r(T−t∗)

M
∑

j=1

πj

(

Rν +
κ1−ν

π

∫ +∞

0
ℜ

[

e−iu log(κ)qt
∗,T
j (u− iν)

ν2 − ν − u2 − iu(1− 2ν)

]

du

)

,

where {πj}j=1,...,m is the stationary probability of the Markov chain, ν and Rν following from
(18). ✷

As a byproduct of the last proposition, by restricting our model to a unique regime (see
Remark (3.2)), we get a simple formula for pricing a FSO in a Lévy model with finite activity.

The impact of model choice on the prices of the Forward Starting options is shown in figures
(4), (5) and (6) as a function of the determination time for three different values of the percentage
κ. The parameters of each model are those estimated in our numerical example (Table (3)).

Pricing FSO in a general stochastic volatility model. In Chourdakis (2004) a regime-
switching diffusion was considered to approximate a general stochastic volatility model

dX(t) = µ(v(t))dt + σ(v(t))dW (t) +

∫

R

ypα(dy, dt), (23)

dv(t) = a(v(t))dt + b(v(t))dZ(t), (24)

where X(t) = log(S(t)) and pα(dy, dt) has intensity λ(t, v, dy) = λ(v)mv(y)dy, mv being the
probability measure which characterizes the jump component. Then, under some conditions
on the coefficients a(·) and b(·), the diffusion process (24) can be approximated by a finite
state Markov chain defined on a grid Gǫ which is the discretization of the domain of v. The
approximating scheme defines a generator Qǫ for the Markov chain depending on ǫ and on the
functions a(·) and b(·) evaluated at the points of the grid Gǫ = {vǫ1, . . . , v

ǫ
M}. As reported in
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Figure 4: Forward starting option prices.

Chourdakis (2004) the generator Qǫ = {qǫij}i,j=1,...,M where

qǫij =







































1
2ǫ2

b2(vǫj)−
1
2ǫa(v

ǫ
j), i = j − 1

1
ǫ2
b2(vǫj), i = j

1
2ǫ2 b

2(vǫj) +
1
2ǫa(v

ǫ
j), i = j + 1

0 i 6= j − 1, j, j + 1

(25)

produces accurate results for coarse volatility grids. The resulting approximated process Xǫ(t)
follows therefore a RSJD dynamic and its characteristic function is obtained from Prop. (3.1).
Correspondingly, option prices can be calculated by means of the Fourier transform techniques
presented in Sect. 3. Convergence properties as well as computational considerations as ǫ → 0
are discussed in Chourdakis (2004) where a number of cases are studied.

This technique combined with our Proposition (4.1) suggests the following scheme for pricing
FSO under a general SV model:

1. approximate the model with a regime-switching diffusion Xǫ(t): this amounts to build the
generator Qǫ of the Markov chain, defined by (25);

2. evaluate call option prices Cǫ
j at time t∗ under each regime j = 1, . . . ,M through formula

(18) or (21) with S(t∗) = 1 and K = κ;

3. calculate the price Π0(s0, κ) = s0
∑M

j=1 πjC
ǫ
j where the coefficients πj’s are the solution of

πQǫ = 0.
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Figure 5: Forward starting option prices.

5 Conclusion

In this paper we considered the problem of valuing the price of a European contingent claim
when the underlying dynamic follows a Lèvy process of I type whose parameters are modulated
by a continuous time and finite state Markov chain. These kind of processes are known to cap-
ture specific features of financial time series, such as volatility clustering and structural breaks.
On the other hand, they can equally be used to approximate very general stochastic volatility
processes. Following the well established relationship between option prices and Fourier trans-
forms, we obtained almost closed-form solutions (up to a numerical integration) for European
style options, both in log-price and in log-strike space. An example of calibration for the regime-
switching version of the Merton jump-diffusion model is also presented for a daily set of call
option data on the S&P 500.

Furthermore, as a practical application of the Fourier transform methodology we obtained an
almost closed-form solution to the problem of valuing a Forward Starting option in our general
regime-switching jump-diffusion dynamic. This result can be jointly used with the approximation
scheme of stochastic volatility models to get a feasible algorithm for FSO pricing under a very
general dynamic.

6 Appendix

Proof of 2.1 Let us define the occupation times for the Markov chain α(t) in [0, T ], Ti =
∫ T
0 Iα(s)=ids, i = 1, . . . ,M . We immediately have that

∑m
i=1 Ti = T . Now, given a sample path
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Figure 6: Forward starting option prices.

of the chain α(t), 0 ≤ t ≤ T , we can define

∆i =
⋃

ℓ: α(t)=i,τℓ≤t<τℓ+1

[τℓ, τℓ+1) (26)

N(∆i) =
∑

ℓ: α(t)=i,τℓ≤t<τℓ+1

(

Nτℓ+1
−Nτℓ

)

(27)

Z(∆i) =
∑

ℓ: α(t)=i,τℓ≤t<τℓ+1

(W (τℓ+1)−W (τℓ)) . (28)

Since each ∆i is the union of non overlapping intervals, the corresponding random variables
N(∆i) and Z(∆i) are distributed as a Poisson variable Poiss(λiTi) and as a Normal variable
N (0, Ti), respectively. Furthermore, N(∆i) ⊥ N(∆j) and Z(∆i) ⊥ Z(∆i), for i 6= j2. By

denoting with Y
(i)
k the k-th jump magnitude relative to regime i, we have

J(t) =
M
∑

i=1

N(∆i)
∑

k=1

Y
(i)
k and

∫ T

0
σ(α(s))dW (s) =

m
∑

i=1

σ(i)Z(∆i) ∼ N (0,
m
∑

i=1

σ2
i Ti) (29)

By defining ξ(α) = µ(α)− 1
2σ

2(α)− λ(α)κ(α) and

ΞT (T1, . . . , Tm) =

∫ T

0
ξ(α(s))ds =

m
∑

i=1

ξ(i)Ti

2Here, X ⊥ Y means that X and Y are independent.
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then X(T ) admits the following representation:

X(T ) = ΞT (T1, . . . , Tm) +

m
∑

i=1

σ(i)Z(∆i) +

M
∑

i=1

N(∆i)
∑

k=1

Y
(i)
k . (30)

Proof of 3.1 Let φj(z) = E[eizγ(Y (j),j)] be the generalized Fourier transform of the jump
magnitude. From the representation (30) we can easily calculate the characteristic function of
X(T ), conditional to Fα

T :

E[eizX(T )|Fα
T ] = eizΞT (T1,...,Tm) E[eiz

∑m
j=1 σ(j)Z(∆j )|Fα

T ] E[eiz
∑M

j=1

∑N(∆j)

k=1 γ(Y
(j)
k ,j)|Fα

T ].

The first expected value is simply obtained as

E[eiz
∑m

j=1 σ(i)Z(∆j )|Fα
T ] = e−

1
2
z2

∑m
j=1 σ

2
j Tj ,

while the second, since N(∆i) ⊥ N(∆j) for i 6= j, is

E[eiz
∑M

j=1

∑N(∆j)

k=1 γ(Y
(j)
k ,j)|Fα

T ] = e
∑m

j=1 λjTj(φj(z)−1).

Finally, we have

ϕT (z) = E
[

eizΞT (T1,...,Tm)− 1
2
z2

∑m
j=1 σ

2
jTj+

∑m
j=1 λjTj(φj(z)−1)

]

. (31)

Actually, the exponent in (31) is a linear function of the sojourn times T1, . . . , Tm, the
characteristic function of which are well-known. As a matter of fact, we have

ϕT (z) = E
[

ei
∑m

j=1 ϑj(z)Tj

]

= eiϑm(z)TE
[

ei
∑m−1

j=1 ϑ̃j(z)Tj

]

(32)

where ϑ̃i(z) = ϑi(z)−ϑm(z), being Tm = T − (T1+ . . .+Tm−1). Since it can be proved (see e.g.
Buffington and Elliott (2002)), that

E
[

ei
∑m−1

j=1 ϑ̃jTj

]

= 1′ · eQ
′+idiag(ϑ̃1,...,ϑ̃m−1,0)T · I(0),

formula (12) follows, the second equality being a consequence of the property of matrix expo-
nential exp(θ) exp(A) = exp(θI +A).

Derivation of Tables 2. Payoff eaxIbx>κ. From the third row of Table 1 and formula (10)
we get for log-price transform

Π0/P (0, T ) =
1

2π

∫ iν+∞

iν−∞

e−iz log(s0) e
(a+iz)k/b

a+ iz
ϕT (−z)dz =

1

2π
sν0e

(a−ν)k/b

∫ +∞

−∞

e−iu(log(s0)−k/b)ϕT (−u− iν)

ν − a− iu
du =
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1

π
sν0e

(a−ν)k/b

∫ +∞

0
ℜ

[

e−iu(log(s0)−k/b)ϕT (−u− iν)

ν − a− iu

]

du, ν > a;

for log-strike transform

E[Π̂X(T )+log(s0)(k)] = E[
e(a+izb)(log(s0)+X(T ))

iz
] =

e(a+izb) log(s0)

iz
ϕT (a+ izb)

from which

Π0/P (0, T ) =
1

2π

∫ iν+∞

iν−∞

e−izk e
(a+izk) log(s0)

iz
ϕT (a+ ibz)dz =

1

2π
sa−bν
0 eνk

∫ +∞

−∞

e−iu(k−b log(s0))

iu− ν
ϕT (a− νb+ ibu)du =

1

π
sa−bν
0 eνk

∫ +∞

0
ℜ

[

e−iu(k−b log(s0))

iu− ν
ϕT (a− νb+ ibu)

]

du, ν > 0.

Payoff min(ex, ek). From the fourth row of Table 1 and formula (10) we get for log-price
transform

Π0/P (0, T ) =
1

2π

∫ iν+∞

iν−∞

e−iz log(s0) e
k(iz+1)

z2 − iz
ϕT (−z)dz =

1

2π
sν0e

k(1−ν)

∫ +∞

−∞

e−iu(log(s0)−k)

u2 − ν2 + ν + iu(2ν − 1)
ϕT (−u− iν)du =

1

π
sν0e

k(1−ν)

∫ +∞

−∞

ℜ

[

e−iu(log(s0)−k)

u2 − ν2 + ν + iu(2ν − 1)
ϕT (−u− iν)

]

du, 0 < ν < 1;

for log-strike transform

E[Π̂X(T )+log(s0)(k)] = E[
e(1+iz)(log(s0)+X(T ))

z2 − iz
] =

e(1+iz) log(s0)

z2 − iz
ϕT (z − i)

from which

Π0/P (0, T ) =
1

2π

∫ iν+∞

iν−∞

e−izke−izk e
(1+iz) log(s0)

z2 − iz
ϕT (z − i)dz =

1

2π
eνks1−ν

0

∫ +∞

−∞

e−iu(k−log(s0))

u2 − ν2 + ν + iu(2ν − 1)
ϕT (u+ i(ν − 1))du =

1

π
eνks1−ν

0

∫ +∞

0
ℜ

[

e−iu(k−log(s0))

u2 − ν2 + ν + iu(2ν − 1)
ϕT (u+ i(ν − 1))

]

du, 0 < ν < 1.

By substituting in the previous formulas the GFT (13) of the RSJD model, we immediately
get the entries of Table 2.
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