
ar
X

iv
:1

21
2.

15
77

v2
  [

gr
-q

c]
  1

6 
M

ar
 2

01
3

Signature change by GUP

T. Ghaneh1∗ , F. Darabi2† , and H. Motavalli1‡
1
Department of Theoretical Physics and Astrophysics, University of Tabriz, 51666-16471, Tabriz, Iran.

2
Department of Physics, Azarbaijan Shahid Madani University, 53714-161, Tabriz, Iran.

September 5, 2018

Abstract

We revisit the issue of continuous signature transition from Euclidean to Lorentzian
metrics in a cosmological model described by FRW metric minimally coupled with a
self interacting massive scalar field. Then, using a noncommutative phase space of dy-
namical variables deformed by Generalized Uncertainty Principle (GUP) we show that
the signature transition occurs even for a model described by FRW metric minimally
coupled with a free massless scalar field accompanied by a cosmological constant. This
indicates that the continuous signature transition might have been easily occurred at
early universe just by a free massless scalar field, a cosmological constant and a non-
commutative phase space deformed by GUP, without resorting to a massive scalar field
having an ad hoc complicate potential. We also study the quantum cosmology of the
model and obtain a solution of Wheeler-DeWitt equation which shows a good corre-
spondence with the classical path.

PACS Nos: 98.80.Qc; 03.65.Fd; 03.65.-w; 03.65.Ge; 11.30.Pb
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1 Introduction

The idea of noncommuting coordinates firstly was proposed by Wigner [1] and separately by
Snyder [2]. This idea has been followed by Connes[3] and Woronowicz [4] as noncommutative
(NC) geometry, leading to a new formulation of quantum gravity through NC differential
calculus [5]. The link between NC geometry and string theory has also become evident by
Seiberg and Witten [6], which resulted in NC field theories via the NC algebra based on the
Moyal product [7]. Riemannian geometry of noncommutative surfaces has extensively been
studied by Chaichian et al where they have developed a Riemannian geometry of noncom-
mutative surfaces as a first step towards the construction of a consistent noncommutative
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gravitational theory [39], which is relevant to the present paper. Possible effect of spacetime
noncommutativity on primordial gravitational waves in inflationary cosmology has also been
studied [40]. Moreover, the fact that spacetime noncommutativity could suppress quantum
fluctuations of matter fields, and dramatically constrain the random walking regime of the
inflaton field at high energy scale is shown in [41].

In recent years, the existence of a minimal observable length has been predicted by
different aspects in merging gravity with quantum theory of fields [8, 9, 10, 11, 12, 13, 14,
15, 16]. First, it was derived from string theory [10, 15, 17]. In the spirit of perturbative string
theory, this comes from the fact that strings can not probe distances smaller than the string
size. This is the natural cut-off length at which the quantum effects of gravitation become
considerable in comparison with the electroweak and strong interactions and the transparent
smooth view of the very notion of the space-time becomes opaque. When the energy of a
string reaches the Planck mass, the excitations of string may cause a nonzero extension
[15]. But creative calculations [18] show that this prediction is more reliable in quantum
gravity and is not necessarily related to high energy or short distance behavior of the strings
[12, 19] (examples of some other techniques can be found in [20, 21, 22, 23, 24]). There are
other approaches to quantum gravity like the recently proposed Doubly Special Relativity
(DSR) theories which suggest the presence of maximum observable momenta [25, 26, 27, 28],
connecting to minimum positions. Other branches of high energy physics such as the very
early universe, or strong gravitational fields in black hole physics are also concerned about
the minimal length [18]. In fact, the usual Heisenberg Uncertainty Principle (HUP) fails for
energies near the Planck scale, when the Schwarzschild radius is comparable to the Compton
wavelength and both are close to the Planck length. This problem is resolved by revising the
characteristic scale through the modification of HUP to what is known as the Generalized
Uncertainty Principle (GUP) [29, 30]. Among all complicated footprints of GUP, the most
elegant description follows from the simple deductions of Newtonian and quantum gravity
[31], by considering a quantum particle such as electron, to be observed by photon in a
thought instrument like the Heisenberg microscope. This elegancy explains why all of the
arguments such as gedanken string collisions [10, 19], the thought experiment of black holes
[18, 32], de Sitter space [2], the symmetry of massless particle [33] and wave packets [34],
agree that GUP holds at all scales as [10, 13, 18]

∆xi∆pi ≥
~

2

[

1 + β
(

(∆p)2 + 〈p〉2
)

+ β ′
(

(∆pi)
2 + 〈pi〉2

)]

, i = 1, 2, 3; (1)

where p2 =
∑D

j=1 p
2
j , D is dimension of space, β ∼ l2pl/2~

2, lpl is Planck Length and β ′ is a
constant.

Motivated by the above arguments, in this paper we try to study the influences of GUP on
a Friedmann-Robertson-Walker (FRW) model of Hartle-Hawking universe. The application
of Einstein’s field equations to the system of universe always faces with the problem of initial
conditions. The Big Bang singularity is such a well-known problem in the standard model
of cosmology. However, one can remove this problem by presenting a physical realization
for the philosophical concept of a universe with no beginning. This presentation was firstly
made by Hartle and Hawking [35], where they showed that in the quantum interpretation of
the very early universe, it is not possible to express quantum amplitudes by 4-manifolds with
globally Lorentzian geometries, instead they should be Euclidean compact manifolds with
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boundaries just located at a signature-changing hypersurface understood as the beginning of
our Lorentzian universe. This is well known as the no boundary proposal. In this direction
of thinking about quantum interpretation of the early universe, many works have also been
accomplished on different cosmological models to study whether it is possible to realize a
classical signature change [36, 44, 45, 46, 47] or not. Some of them have also considered
the quantization of their models [44, 45, 46, 48, 49, 50]. In a recent work [51], the special
attention has been paid for the case where the phase space coordinates are noncommutaive
via the Moyal product approach. In the present work, we aim to study the effects of non-
commutativity through the GUP approach in the phase space of a cosmological model which
exhibits the signature change at the classical and quantum levels in the commutative case.
We start with a FRW type metric and use a scalar field as the matter source of Einstein’s
field equations. Then, we apply the noncommutativity to the minisuperspace of correspond-
ing effective action by the use of GUP approach in deforming the Poisson bracket. The
conditions for which the classical signature change is possible are then investigated. Also,
we study the quantum cosmology of this noncommutative signature changing model and
find the perturbative solutions of the corresponding Wheeler-DeWitt equation. Finally, we
investigate the interesting issue of classical-quantum correspondence in this model.

2 Classical Signature Dynamics

We consider a model of universe with the metric [36]

g = −̟d̟ ⊗ d̟ +
R

2
(̟)

1 + (k/4)r2
(dxi ⊗ dxi), (2)

where R(̟) is the scale factor, k = −1, 0, 1 determines the spatial curvature. The sign of
̟ is responsible for the geometry to be Lorentzian or Euclidian and the hypersurface of
signature change is identified by ̟ = 0. The cosmic time t is related to ̟ via t = 2

3
̟3/2

when ̟ is definitely positive. One common way to treat the signature change problem is to
obtain the exact solutions in Lorentzian region (̟ > 0) and extrapolate them in Euclidian
region continuously. In Lorentzian region, the line element (2) takes the form

ds2 = −dt2 +R2(t)(dr2 + r2dΩ2), (3)

where k = 0 is set in agreement with the current observations. We also assume an scalar
field with interacting potential U(φ) as the matter source. The corresponding action

S =
1

2κ2

∫

d4x
√
−gR+

∫

d4x
√
−g
[

−1

2
(∇φ)2 − U(φ)

]

+ SY GH , (4)

leads to the following point like Lagrangian

L = −3RṘ2 +R3

[

1

2
φ̇2 − U(φ)

]

, (5)
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where the units are adopted so that κ ≡ 1 and the York-Gibbons-Hawking boundary term
SY GH is canceled by the surface terms 1. A change of dynamical variables defined by

x1 = R3/2cosh(αφ), (6)

x2 = R3/2sinh(αφ), (7)

(0 ≤ R <∞,−∞ < φ < +∞) casts the Lagrangian into a more convenient form

L = ẋ21 − ẋ22 + 2α2U(φ)(x21 − x22), (8)

where α2 = 3
8
, and a coefficient “−2α2” is ignored by using the zero energy condition2. Now,

we choose the potential U(φ) [36]

2α2(x21 − x22)U(φ) = a1x
2
1 + a2x

2
2 + 2b x1x2, (9)

in which a1, a2 and b are constant parameters. Using (6) and (7), the potential is expressed
in terms of φ

U(φ) = λ+
1

2α2
m2 sinh2(αφ) +

1

2α2
b sinh(2αφ), (10)

where the physical parameters

λ = U |φ=0= a1/2α
2, (11)

m2 = ∂2U/∂φ2 |φ=0= a1 + a2, (12)

are defined as the cosmological constant and the mass of scalar field, respectively. The
Hamiltonian of system becomes

H(x, p) =
1

4
(p21 − p22)− a1x

2
1 − a2x

2
2 − 2b x1x2, (13)

where p1, p2 are the momenta conjugate to x1, x2, respectively. The dynamical equations
ẋi = {xi,H}, (i = 1, 2) are then written as [36]

ξ̈ = Mξ, (14)

where

M =

(

a1 b
−b −a2

)

, ξ =

(

x1
x2

)

. (15)

In the normal mode basis V = S−1ξ =

(

q1
q2

)

for diagonalization of M as S−1MS = D =

diag(m+,m−) we find

m± =
3λ

4
− m2

2
± 1

2

√
m4 − 4b2, (16)

1Note that a dot determines differentiation with respect to t.
2According to Dirac’s theory of Hamiltonian constraint systems, general relativity is a constraint system

whose constraint is the zero energy condition H = 0 [42, 43].
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and the solutions under initial conditions V̇(0) = 0 are found as

q1(t) = 2A1 cosh(
√
m+ t),

q2(t) = 2A2 cosh(
√
m− t), (17)

where A1,A2 ∈ R. These solutions remain real when the phase of (
√
m+ t) changes by π/2,

so they are good candidates for real signature changing geometries. Note that the constants
A1 and A2 are correlated by the zero energy condition [36]

V T (0)IV (0) = 0, (18)

where I = ST JMS and

J =

(

1 0
0 −1

)

.

The equation (18) is quadratic for the ratio χ = A1/A2 and its roots χ± are determined by
the parameters of λ,m2, b. By choosing A2 = 1, the solutions fall into two following classes

ξ±(t) = SV±(t), (19)

where
q±1 (t) = 2A±1 cosh(

√
m+ t), (20)

and
q±2 (t) = 2 cosh(

√
m− t). (21)

At last, the original variables R and φ are recovered from x1 and x2 via (6) and (7) as

R(t) = (x21 − x22)
1/3, (22)

φ(t) =
1

α
tanh−1

(

x2
x1

)

. (23)

We conclude that: i) for both eigenvalues of M being positive, no signature transition
occurs, ii) for the product of the eigenvalues less than zero, the constraint (18) is not sat-
isfied with a real solution for the amplitude χ, and iii) for both eigenvalues being negative,
x1(β), x2(β) exhibit bounded oscillations in the region β > 0 and are unbounded for β < 0
(see Fig.1 [36]). Such behaviour is translated into the solutions for R and φ (see Fig.2 [36]).
Therefore, it is possible to choose parameters so that the manifold becomes Euclidean for a
finite range of β < 0 and undergoes a transition at β = 0 to become Lorentzian for a further
finite range of β > 0 [36].

3 Noncommutativity via deformation

The study of noncommutativity between phase space variables is based on the replacing of
usual product between the variables with the star-product; and in flat Euclidian spaces all
the star-products are c-equivalent to the so called Moyal product [37].
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Let us assume f(x1, .., xn; p1, .., pn) , g(x1, .., xn; p1, .., pn) to be two arbitrary functions. Then,
the Moyal product is defined as

f ⋆∝ g = f e
1

2

←−
∂ a∝ab

−→
∂ bg, (24)

such that

∝ab=

(

θij δij + σij
−δij − σij θ̄ij

)

, (25)

and θij , θ̄ij are antisymmetric N ×N matrices. Then, the deformed Poisson brackets read as

{f, g}∝ = f ⋆∝ g − g ⋆∝ f. (26)

Therefore, the coordinates of a phase space equipped with Moyal product satisfy

{xi, xj}∝ = θij , {xi, pj}∝ = δij + σij , {pi, pj}∝ = θ̄ij . (27)

Considering the following transformations [38]

x′i = xi −
1

2
θijp

j, p′i = pi +
1

2
θ̄ijx

j , (28)

one finds that (x′i, p
′
j) fulfill the same commutation relations as (27) with respect to the usual

Poisson brackets

{x′i, x′j} = θij , {x′i, p′j} = δij + σij , {p′i, p′j} = θ̄ij , (29)

provided that (xi, pj) follows the usual commutation relations

{xi, xj} = 0, {pi, pj} = 0, {xi, pj} = δij . (30)

This approach is so called noncommutativity via deformation.

4 Phase Space Deformation via GUP

In this section, we aim to study the effects of noncommutativity in the phase space via
deformation by GUP approach. The equation (1) represents a modification of Heisenberg
algebra as

[

x′i, p
′

j

]

= i~
(

δij(1 + βp′ 2) + β ′p′ip
′

j

)

, (31)

where β,β ′ are taken to be small up to the first order. Then the ansatz of classical-quantum
correspondence, [ , ] → i~{ , }, introduces the deformed poisson bracket of position coordi-
nates and momenta [52]

{x′i, p′j} = δij(1 + βp′ 2) + β ′p′ip
′

j , (32)

where primes on x, p denotes the modified coordinates. Assuming {p′i, p′j} = 0, the Jacobi
identity almost uniquely specifies that [29, 53]
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{x′i, x′j} =
(2β − β ′) + (2β + β ′)βp′ 2

1 + βp′ 2
(p′ix

′

j − p′jx
′

i). (33)

Remembering the usual (non-modified) algebra {xi, pj} = δij , the relations (32)-(33) can be
realized by considering the following transformations

x′i = (1 + βp2)xi + β ′pipjxi + γ pi, p′i = pi. (34)

γ being an arbitrary constant given by γ = β + β ′
(

D+1
2

)

[54] .

5 Signature Change in Deformed Phase Space

Let us follow the 2-dimensional model explained initially in section 2. The Hamiltonian of
the deformed system is

H′(x′, p′) = 1

4
(p′ 21 − p′ 22 )− a1x

′ 2
1 − a2x

′ 2
2 − 2bx′ 1x′ 2, (35)

It can be described in terms of commutative coordinates by the use the transformations
(34) as

H′(x, p) = W(p)− Z(p)2 U(x)− 2γ Z(p)V(x, p), (36)

where xi, pj reads the common Poisson algebra, and

W(p) =
1

4

[(

1− 4a1γ
2
)

p21 −
(

1 + 4a2γ
2
)

p22
]

,

U(x) = a1x
2
1 + a2x

2
2 + 2bx1x2,

V(x, p) = a1x1p1 + a2x2p2 + 2b(x1p2 + x2p1),

Z = 1 + β(p21 + p22) + β ′p1p2. (37)

It is usual to set β ′ = 2β [55, 56, 57, 58] to make the shape of Z(p) more refined as Z(P),
P := p1 + p2.

As is shown for a non-deformed system [36] or the system deformed by moyal product

approach [51], the existence of a non-zero cross-term parameter b in U(φ) is the only way to
break the symmetry of the system under φ → −φ and make the change of signature happen.
However, we show that in contrary to the moyal product approach, in GUP approach b is
not the only parameter responsible for signature change. To this end, we explicitly set b = 0.
On the other hand, to show that for a continuous signature transition we need not choose
a massive scalar field we take a massless scalar field (i.e a2 = −a1). By this set up we are
going to assert that a very specific scalar field potential of the form (10) is not needed for
a continuous signature transition. This makes continuous signature transition much easier
than the model introduced in [36] because the justification of the complicate potential (10)
at early universe is not a simple task. In the present model, however, we just need the
elements i) a free massless scalar field, ii) a cosmological constant, and iii) GUP which are
supposed to be trivial in the conditions at early universe.
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The classical equations of motion ẋi = {xi,H′}, i = 1, 2, are then obtained as

ẋ1 = 4β (p1 + p2) [Z(p)U(x) + γ V(x, p)] + 2γ a1x1Z(p)− 1

2

(

1− 4γ2a1
)

p1,

ẋ2 = 4β (p1 + p2) [Z(p)U(x) + γ V(x, p)]− 2γ a1x2Z(p) +
1

2

(

1− 4γ2a1
)

p2. (38)

Also, the dynamical equations of momenta, ṗi = {pi,H′}, yield

ṗ1 = −2a1Z(p) [x1Z(p) + γ p1] ,

ṗ2 = 2a1Z(p) [x2Z(p) + γ p2] . (39)

where a dot denotes differentiation with respect to t.
To decouple these equations, we merge (38) with (39) first, and then compute the sum-

mation and subtraction of the results. This procedure leads to the following equations

8β2
1 (7Z − 8)P3Ṗ6 − 2Z

(

27Z2 − 50Z + 24
)

P̈Ṗ4 + 2Z2 (5Z − 4)P ˙̈PṖ3 −Z3P2 ¨̈PṖ2

−a21 (5Z − 4)Z6P3Ṗ2 + 2Z3P2 ˙̈PP̈Ṗ − Z3P2P̈3 + a21Z7P4P̈ = 0, (40)

p1 =
1

32a1β2ṖPZ

[

a1βZP2(3P − 16βṖ)−ZP̈ + a1P(1 + β3P6) + 4βPṖ2
]

, (41)

x1 = − 1

2a1Z2
(8a1βZp1 + ṗ1) ,

x2 = − 1

2a1Z2
(8a1βZp2 − ṗ2) . (42)

Eq.(40) is a differential equation with linear symmetry and it can be solved by order
reduction via it’s symmetry generators. Then the particular solution is obtained as

RootOf

(

2

∫

P C1
√

−C1 (−4a21y
4 + 4C2

1C2y2 + 4C2
1C

2
2y

4 + C2
1 ) (1 + βy2)

dy + t+ C3

)

, (43)

or equivalently

RootOf
{

Π
(

C1β/2C+; arcsin(
√

−2C+/C1P),
√

C−/C+
)

− C1

√

C+/2(t+ C3)
}

, (44)

where Π(ν;ϑ, κ) is the incomplete elliptic integral of the third kind, C± = C1C2 ± a1, and
C1,C2,C3 are constants to be detected by initial conditions.

One can check that any such particular solution still remains a solution of (40) if it is
multiplied by a minus sign, or (and) if any of the transformations t→ −t or (and) t→ it is
applied . A simplified result is obtained at the special case where C1C2 = a1

P =

√
−C1

(

e−(t+C3)∆ + 1
)

√

β1C1 (e−(t+C3)∆ − 1)
2
+ 16 a1 e−(t+C3)∆

, (45)
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Figure 1: The real parts of scale factor (full curve) and scalar field (broken curve) in the first life

with respect to ̟ for λ = 0.27, β = −0.45.

where ∆ =
√
−4 a1 + β1C1.

Physical values of λ and β ought to satisfy R̄(0) = 0 and must also yield a positive R̄(̟)
at the right neighborhood of ̟ = 0, the area which can be called as Lorentzian region. The
least requirement we expect is that the imaginary part of the physical functions R̄,φ̄ and
R̄ vanish at that area. Fig.1 and Fig.2 show the signature transition by real solutions from
Euclidean to Lorentzian regions for a possible set of values3.

6 Quantum Cosmology

The high energy and small scale of very early universe provides the possibility of having
noncommutativity and GUP in the minisuperspace configurations of the model discussed
here. But, in such small scale the quantum behavior is inevitable. Thus, it is necessary
to study the quantized model and check if the quantization results are consistent with the
classical solutions of dynamical equations.

Introducing the momentum quantum operators p̂1 = −i∂/∂x1, p̂2 = −i∂/∂x2 and ap-
plying the Weyl symmetrization rule to (36) to construct the Hamiltonian operator, leads
to the Wheeler-DeWitt(WD) equation of the form Ĥ′Ψ(x1, x2) = 0. Defining the real and
imaginary parts of the wave function as Ψ = ψr + iψi splits WD equation in to two parts

H1ψr −H2ψi = 0, H2ψr +H1ψi = 0, (46)

3In these figures, the values of λ, θ and Ci constants are finely selected in order to satisfy the mentioned
requirements and the conditions H = 0 and R |

̟=0
= 0. We also note that changing the order of magnitude

of these parameters does not affect the shape and physical behavior of these plots.
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Figure 2: The behavior of Ricci scalar with respect to ̟ for λ = 0.27, β = −0.45.

where,

H1 = 8a1β(x1 − x2)(∂1 + ∂2) + a1(x
2
1 − x22)

[

2β(∂1 + ∂2)
2 − 1

]

− 1

4
(∂21 − ∂22),

H2 = 8a1β(x1∂1 − x2∂2). (47)

In order to obtain a quantum criterion to test the classical results of previous section, we
consider the special case ψr = Aψi ≡ F (x1, x2), A being a constant. This converts (46) into
H1F = 0 and H2F = 0, the second of which is automatically satisfied if F = F (x1x2), and
the first one becomes

(

2a1β(x
2
1 +X)2 +

1

4
x21

)

d2F

dX2
+ 12a1β x

2
1

dF

dX
− a1 x

2
1 F = 0, (48)

where X := x1x2 and x1 is regarded as a parameter. The solution of (48) is an expression of
Generalized Hypergeometric Functions as

F (x1, x2) = A1 2F1

(

D+(x1), D−(x1) ; −S ′(x1) ;
1

2
− a1βS(x1)

(

1 +
x2
x1

))

+

A2 h(x1, x2) 2F1

(

S ′(x1)−D−(x1), S
′(x1)−D+(x1) ; S

′(x1) + 2 ;
1

2
− a1βS(x1)

(

1 +
x2
x1

))

,

(49)

where A1, A2 are two constants and

h(x1, x2) = x21

(

2
√

−2a1β(x1 + x2)− 1
)S′(x1)+S(x1)

. (50)
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Figure 3: Density plot of |Ψ|2 for λ = 0.27, β = −0.45 which is in good agreement with the

superimposed classical path.

As figure 3 shows, the density plot of the quantum solution (50) is in good agreement
with the classical solution obtained in the previous section.

7 Conclusions

Using a noncommutative phase space of dynamical variables deformed by Generalized Un-
certainty Principle we have shown that continuous signature transition from Euclidean to
Lorentzian may occurs for a model described by FRW metric minimally coupled with a free
massless scalar field φ accompanied by a cosmological constant. The transformations of GUP
in deforming the phase space breaks the symmetry of Hamiltonian under φ → −φ causing
a possible continuous change of signature. This indicates that for a signature transition to
happen, instead of a massive scalar field having an ad hoc and complicate potential, we just
need a free massless scalar field, a cosmological constant and a noncommutative phase space
deformed by GUP. These elements are supposed to be trivial in the extreme conditions at
early universe. In commutative [36] as well as moyal transformed noncommutative Hamilto-
nian [51], we need a coupling b in the scalar field potential to trigger the signature transition.
However, using GUP in the absence of such potential and coupling, we have the expression
β ′p1p2 in Hamiltonian (36) coming directly from the special structure of GUP deformations
(34) which means that the GUP noncommutativity can cause a change of signature by itself.
In other words, GUP accompanied by noncommutativity may establish a general frame-
work for a continuous change of signature. Moreover, in principle, the signature transition
is possible for both negative and positive cosmological constants. This significantly differs
from the moyal approach [51] in which only the negative values of cosmological constant
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are acceptable. We have also studied the quantum cosmology of this model and obtained
a solution of Wheeler-DeWitt equation showing a good correspondence with the classical
path.
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