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Laboratoire de Physique Théorique et Hautes Energies
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Abstract

The propagator is calculated on a noncommutative version of the flat plane and
the Lobachevsky plane with and without an extra (euclidean) time parameter. In
agreement with the general idea of noncommutative geometry it is found that the limit
when the two ‘points’ coincide is finite and diverges only when the geometry becomes
commutative. The flat 4-dimensional case is also considered. This is at the moment
less interesting since there has been no curved case developed with which it can be
compared.
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1 Introduction and motivation

It was postulated some time ago [38, 39] that a noncommutative structure at small length
scales could introduce an effective cut-off in field theory similar to a lattice but at the same
time maintain Lorentz invariance. Recently there has been a revival of this idea and several
new examples [27, 12, 20, 2, 23, 24] have been studied. Models [15, 22, 21, 5] in ‘1-dimension’
have also added to our understanding of the ‘lattice’ structure. The basic idea is simple
and can be illustrated by a classical particle moving in a plane, described by two position
coordinates (q1, q2) and two momentum coordinates (p1, p2). In the language of quantum
mechanics these four classical coordinates are commuting operators. In the presence of a
magnetic field B normal to the plane the momentum operators are modified and they cease
to commute:

[p1, p2] = i~eB. (1.1)

This introduces a cellular structure in the momentum plane. It becomes divided into Landau
cells of area proportional to ~eB. Consider in this case the divergent integral

I =

∫

dp1dp2
p2

.

The commutation relation (1.1) does not permit p1 and p2 simultaneously to take the eigen-
value zero and the operator p2 = p21 + p22 is bounded below by ~eB. The magnetic field acts
as an infrared cut-off. If the position space were curved, with constant Gaussian curvature
K one would obtain again an infrared regularization for I. In an exactly analogous fashion,
to obtain an ultraviolet regularization one must replace the coordinates of position space by
two operators which do not commute:

[q1, q2] = ik̄q12. (1.2)

By the new uncertainty relation there is no longer a notion of a point in position space since
one cannot measure both coordinates simultaneously but as before, position space can be
thought of as divided into Planck cells. It has become fuzzy. This cellular structure serves as
an ultraviolet cut-off similar to a lattice structure. If we consider for example the divergent
integral I and introduce also a Gaussian curvature we find

I ∼ log(k̄K). (1.3)

The integral has become completely regularized. There is however now a new complication;
the right-hand side of (1.3) seems not to depend on the operator q12. We have argued
elsewhere [28] that, endowed with an appropriate differential structure, each fuzzy space-
time supports a uniquely determined gravitational field and that the latter is a classical
manifestation of the commutation relations plus a differential structure. From this point of
view what we put on the right-hand side of (1.2) will depend on which gravitational field we
wish to regularize the integral with. That is, in fact K does depend on q12.

In Section 2 we shall give a description of how the integral I of (1.3) is to be calculated in
the case of a general algebra A. The propagator is an element of the tensor product H⊗H
of two copies of a Hilbert space H ⊂ A. We represent A⊗A as an algebra of operators on
the tensor product L2(V, dµ) ⊗ L2(V, dµ) of two copies of another Hilbert space L2(V, dµ)
of functions on a manifold V , square integrable with respect to some measure dµ. We then
express L2(V, dµ)⊗L2(V, dµ) as the tensor product of a Hilbert space D ≃ L2(V, dµ), which
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represents the diagonal elements of A ⊗ A, and an extra Hilbert space F , which describes
the off-diagonal expansion. This must be done in a way consistent with the commutation
relations. Those of F effectively force the distance from the diagonal in the tensor product
to be ‘quantized’ and exclude the value zero. In the examples we shall see that if one
were to interpret a given set of matrix elements of the propagator of the tensor product
as a propagator on an ordinary space then it would appear to be associated to a non-
local differential operator [45, 36]. In Section 3 we apply the formalism to the case of
a noncommutative version [29] of R2 with a flat metric obtained by setting q12 = 1. In
Section 4 we shall be interested in a noncommutative version [26, 7] of the Lobachevsky
half-plane, the surface of constant negative Gaussian curvature. Finally in Section 5 we
examine briefly the extension to dimension 4 and the problem of Lorentz invariance. In this
paper we consider infinite-dimensional algebras. There are also models which are described
by finite-dimensional algebras [28, 40] where the fact that the n-point elements are well-
defined is automatic.

2 The general theory

In general consider any ∗-algebra A with a trivial center, in some representation with a
partial trace and let ∆ be a linear operator on A with a set of eigenvectors φr ∈ A and
corresponding real eigenvalues λr:

∆φr = λrφr.

The parameter r here designates a point in some parameter space and we write the integral
on this space as a sum over r. The corresponding classical action is

S = Tr(φ∗∆φ), φ ∈ A. (2.1)

The trace here must be defined in some representation of A. We shall assume that with
respect to this trace

Tr(φ∗
rφs) = δrs (2.2)

and we define the Hilbert space H ⊂ A of 1-particle states to be

H = {φ =
∑

r

arφr :
∑

r

|ar|2 < ∞}.

As usual the ar become operators when the field is quantized. For f ∈ H the completeness
condition can be written as

φ =
∑

r

φrTr(φ
∗
rφ).

If we introduce the element
W =

∑

r

φr ⊗ φ∗
r

then the completeness condition can also be written

Tr2(W · 1⊗ φ) = φ⊗ 1.

The tensor product is here over the complex numbers and the subscript on the trace indicates
that it is taken over the second factor. The element W is therefore the noncommutative
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generalization of the Dirac distribution in the commutative case; it is not an element of
H⊗H. We introduce also the element G defined by the formal sum

G =
∑

λ−1
r φr ⊗ φ∗

r. (2.3)

Since obviously ∆G = W this element generalizes the propagator corresponding to ∆. We
wish to discuss the conditions under which the sum converges and G can be considered as a
well-defined element of a weak closure of H⊗H.

It is possible to give a second formal definition of G using the noncommutative version
of the euclidean path integral. Let S[φ, J ] = S[φ] + Tr(Jφ) be the classical action of an
interacting scalar field in the presence of an external source J ∈ A. The term S[φ] would
be a sum of the kinematical term (2.1) and an interaction term SJ [φ] = Tr(V (φ)) with
V (φ) ∈ A. Define the partition function Z[J ] and generating functional W [J ] by

Z[J ] =

∫

dφe−S[φ,J ] = e−W [J ].

If the algebra is for example a finite matrix algebra then this integral can be considered as
well defined. Otherwise we consider it as a mnemonic trick. The theory is to be defined by
the Gell-Mann-Low expansion of the n-point elements in terms of the propagator, with or
without normal ordering. The n-point element G(n) is defined to be the functional derivative
of W [J ] with respect to J :

G(n) = − δnW [J ]

δJ1 · · · δJn
.

Here the Ji are different occurrences of J . They are all canonically equal to J but carry an
extra index to distinguish them: Ji = 1⊗ · · ·⊗ J ⊗ · · ·⊗ 1 is an element of the n-fold tensor
product of H. By construction G(n) also is an element of the n-fold tensor product of H. In
particular we have

〈φ〉J = Z[J ]−1

∫

dφ φ e−S[φ,J ] = −Z[J ]−1 δZ[J ]

δJ
=

δW [J ]

δJ

and

〈φ⊗ φ〉J = Z[J ]−1

∫

dφ φ⊗ φ e−S[φ,J ] = − δW [J ]

δJ1δJ2

.

If S[φ, J ] is the free action then 〈φ⊗φ〉0 is equal to the (bare) propagator G. The bracket is
here the quantum bracket, which we distinguish with the index J . The context will indicate
whether φ designates a quantum operator or a classical element of A.

With our definitions a composite field like φn ∈ A can appear in the interaction term SI [φ]
of the action but 〈φn〉J is not defined. To define such objects we would, as in the commutative
case [46], introduce an extra source J(n) in the path integral and a corresponding extra term
Tr(φnJ(n)) in the action. One might be tempted to define for example 〈φ2〉J as the image of
〈φ ⊗ φ〉J under the multiplication map π : A ⊗ A → A but this will not be consistent in
the classical limit. If one tries to define the expectation values of composite fields in terms
of J one will come upon the same divergences [17, 12, 4] as in ordinary field theory. In the
situations of interest the sum

πG =
∑

r

λ−1
r |φr|2.

diverges and it is not to be expected [42] that the noncommutativity of the algebra will alter
this fact. We shall find finite results because the noncommutativity ‘smears’ the vertices, as

4



it does points in general. By definition we have subtracted disconnected ‘vacuum bubbles’.
These could be singular; in the commutative limit they would be proportional to the volume
of space-time. If the center of the algebra is not trivial one could still obtain a divergent
result [20].

We shall restrict our attention to algebras which are generated by a set qµ, 1 ≤ µ ≤ n,
of n hermitian elements. Define qµν ∈ A by

[qµ, qν ] = ik̄qµν

where k̄ is a parameter which one can suppose to be of the order of the square of the Planck
length. This however is not necessary; the experimental bounds are much weaker. We shall
suppose that A is represented as an algebra of operators on a Hilbert space L2(V, dµ) and
we fix an orthonormal basis |i〉. We can write then

qµ |i〉 =
∑

j

Qµ
ji |j〉

for some set of n matrices Qµ
ij . If the algebra is commutative then Qµ

ij = qµi δij . As above, the
symbol Σ here can represent a sum or an integral depending on the basis |i〉 it is convenient
to choose. The index i belongs again to some parameter space which of course is not to be
confused with the space to which the parameters r and s of (2.2) belong. The symbol δij
can represent therefore the Kronecker or Dirac delta.

Consider the differential du of the universal calculus. It is a map of A into A⊗A given
by duf = 1⊗ f − f ⊗ 1. We define the ‘variation’ δqµ of the generator qµ as

δqµ =
1

2
duq

µ =
1

2
(1⊗ qµ − qµ ⊗ 1). (2.4)

We identify qµ = qµ ⊗ 1 in the tensor product and we set qµ′ = 1⊗ qµ. Thus we can write

δqµ =
1

2
(qµ′ − qµ).

It follows from the commutation rules of the algebra that

[δqµ, δqν ] =
1

4
ik̄(qµν ⊗ 1 + 1⊗ qµν).

Suppose that a set of elements q̄µ of A⊗A can be found such that A⊗A is generated by
the set {q̄µ, δqµ} and such that

[q̄µ, δqν ] = 0. (2.5)

Then we can write the tensor product L2(V, dµ)⊗ L2(V, dµ) in the form

L2(V, dµ)⊗ L2(V, dµ) ≃ D ⊗ F (2.6)

where q̄µ acts on D and δqµ on F . We shall choose accordingly a basis

|̄i, k〉 = |̄i〉D ⊗ |k〉F

of L2(V, dµ)⊗ L2(V, dµ). If qµν lies in the center of the algebra then the elements

q̄µ =
1

2
(qµ + qµ′)
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are such that Equation (2.5) is satisfied. Further one has

qµ = q̄µ − δqµ, qµ′ = q̄µ + δqµ

and with the obvious identifications

[q̄µ, q̄ν ] =
1

2
ik̄qµν , [δqµ, δqν] =

1

2
ik̄qµν . (2.7)

The tensor product in the definition of G is now to be considered as a tensor product of a
‘diagonal’ algebra Ā, acting on D and a ‘variation’ δA, acting on F . That is, we rewrite

A⊗A = Ā ⊗ δA (2.8)

in accordance with (2.6). If (2.5) is not satisfied the factorization (2.6) can still be of interest if
δqµ acts only on F . In general then q̄µ will act non-trivially on the complete tensor product
D ⊗ F . We shall suppose that the definition (2.4) of δqµ in terms of the tensor product
coincides with the intuitive notion of the ‘variation of a coordinate’. One can introduce a
new differential calculus (Ω̄∗(A), d̄) defined by

d̄q̄µ = δqµ. (2.9)

We shall see an example of this in Section 4. One would like this new calculus to be
isomorphic to the original one if δqµ and dqµ are to be thought of as ‘infinitesimal variations’.

Let C(M) be an algebra of functions on a space M . Let f be a map of M into itself and
let f ∗ be the induced map of C(M) into itself. We set φ′ = f ∗(φ) and define δφ = φ′ − φ.
The ordinary propagator is a function of two points, an element of C(M) ⊗ C(M) and we
are interested in the limit when the two points coincide. This limit must be taken with care
since the partial derivative of a function after the limit and the limit of the derived function
with respect to one of the variables are not in general equal. We are interested in the latter
since the Laplace operator which defines the propagator acts only on one of the variables. If
we set δx = x′−x where x′ = f(x) then we can express the limit δx → 0 as δφ → 0. We wish
to study the element G(qµ; qν′) of the tensor product H ⊗H most particularly in the limit
qµ′ → qµ. The qµ are however fixed generators of the algebra and this limit must be defined
otherwise. As a possible added complication, which will however not appear explicitly in the
examples we shall consider, the generators qµ are in general unbounded operators. We shall
give a formal definition of the limit as a weak limit within the tensor product in terms of
variations of the basis vectors |i〉. We shall use a tensor product which is not braided. We
shall return to his assumption later.

Using the representation of A the propagator G = G(qµ; qν′) can be expressed as a map

G : L2(V, dµ)⊗ L2(V, dµ) → L2(V, dµ)⊗ L2(V, dµ).

It can be defined in terms of its (classical) matrix elements 〈j, j′|G(qµ; qν′) |i, i′〉. In the
commutative limit k̄ → 0 one would find

〈j, j′|G(qµ; qν′) |i, i′〉 → G(qµ; qν′) δijδi′j′

with
qµ |i〉 = qµi |i〉, qν′ |i′〉 = qν′i′ |i′〉
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and so, at least in a quasicommutative approximation, we can identify qµ with a point
i ∈ V = Rn and qµ′ with i′ ∈ V = Rn. We shall therefore represent graphically G(qµ; qµ′) as
a line between i and i′:

j j′

◦ ◦
i i′

(2.10)

The extra pair of indices (j, j′) is present because in general G acts as an operator on each
end of the line. An ordinary propagator on a manifold diverges in the limit qµ′ → qµ. This
limit can be redefined as the limit

|i′〉 → |i〉.
This limit makes sense in the noncommutative case but it cannot be attained as we shall see
below. We shall use therefore the identification (2.6) to express the limit as

|̄i, k〉 → |̄i, 0〉 ≡ |̄i〉. (2.11)

In the graph (2.10) this means that the two ends of the line almost close to form a circle.
It does not really follow that |j〉 and |j′〉 are related, except in the commutative limit. We
shall however suppose that

|j̄, k〉 → |j̄, 0〉 ≡ |j̄〉 (2.12)

with (2.11).

It is here that the representation, especially the representation of the tensor product,
becomes of importance. We shall describe the second copy F of the Hilbert space using
creation and annihilation operators. We choose then the basis |k〉F with k ∈ Z+. The
states |̄i, 0〉 are those in which collectively the operators δqµ take their minimum value. If
we introduce a distance s by

s2 = gµνδq
µδqν

then we can define the coincidence limit as a state in F on which s takes its minimum value.
In the language of quantum mechanics such a state is an example of a coherent state.

We introduce a set of n annihilation operators al with their adjoints a∗m such that, as in
quantum mechanics

[al , a
∗
m] = k̄δlm. (2.13)

We shall see that each al annihilates and each a∗l creates a unit of separation. The quantum
mechanical analogue of this separation would be the energy of the harmonic oscillator. By
analogy then we define a diagonal state to be a state annihilated by all the al. We define
as usual the action of al on the diagonal basis element |̄i, 0〉 ∈ D ⊗ F by the condition
al |̄i, 0〉 = 0 and we set recursively

a∗l |̄i, k1, . . . , kl, . . . kn〉F =
√
k̄
√

kl + 1 |̄i, k1, . . . , kl + 1, . . . kn〉F .

The coincidence limit is attained on elements of L2(V, dµ)⊗ L2(V, dµ) of the form |̄i, 0〉.
The analogue of the integral I defined in the Introduction is defined then by the equation

〈j̄|G(qµ; qν′) |̄i〉 = 〈j̄| I(k̄µ2) |̄i〉.

Here µ is a parameter in the operator ∆ with the dimension of mass. In general I(k̄µ2)
is an operator acting on D. In all the examples we shall consider however the space is
homogeneous and it reduces to a constant. We can write then

〈j̄|G(qµ; qν′) |̄i〉 = I(k̄µ2) 〈j̄ | ī〉.
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We represent this by the graph obtained by joining the ends of (2.10) and placing a j̄ above
and a ī below the circle which marks the join, as in the center of (2.20) below.

To calculate 〈j̄|G(qµ; qµ′) |̄i〉 we must express G in terms of the al and their adjoints. For
this we write

δqµ =

n
∑

l=1

(Jµ
l al + Jµ∗

l a∗l ) (2.14)

and from (2.7) we conclude that

n
∑

l=1

J
[µ
l J

ν]∗
l =

1

2
iqµν . (2.15)

The Jµ
l appear here as the components of a symplectomorphism. They are fixed only to

within a redefinition of the al and contain therefore 2n2 + n free parameters. This is the
number of elements of GL(2n,R) which leave invariant the right-hand side of (2.15). If we
interpret δqµ as a ‘string’ joining two ‘points’ qµ and qµ′ then each aj creates a longitudinal
displacement. They would correspond to the rigid longitudinal vibrational modes of the
string. Since it requires no energy to separate two points the string tension would be zero.

If the differential calculus (Ω̄∗(A), d̄) defined in (2.9) has a frame θ̄α = θ̄αλ (q̄
µ) d̄q̄λ then it

would seem more appropriate to expand the variation in the form

θ̄αλ(q̄
µ) δqλ =

n
∑

l=1

(jαl al + jα∗l a∗l ). (2.16)

We shall return to this Ansatz in Section 4. We are motivated here by the desire to make
δqµ as similar as possible to the element dqµ of the differential calculus. This would suggest,
in particular, that the condition (2.5) is fulfilled only if the geometry is flat.

The ‘non-local’ modification we shall find in the propagator is to be associated not with
the propagator but rather with the vertices at its end points. To see this we consider now
the matrix elements

〈j, j′|G(qµ; qρ′) |i, i′〉〈l′, l|G(qσ′; qν) |k′, k〉 =
〈j| ⊗ 〈j′| ⊗ 〈l′| ⊗ 〈l|G⊗G |i〉 ⊗ |i′〉 ⊗ |k′〉 ⊗ |k〉 (2.17)

of the tensor product of two copies of the propagator, which we represent by the graph

j j′ l′ l
◦ ◦ ◦ ◦
i i′ k′ k

(2.18)

To form a vertex we must ‘join’ the ‘point’ k′ to the ‘point’ i′. Following the prescription
(2.11) this means that we replace the basis element

|i′〉 ⊗ |k′〉 ∈ L2(V, dµ)⊗ L2(V, dµ)

by the basis element
|̄i′〉 = |̄i′, 0〉 ∈ D ⊗ F .

We are prompted then to introduce the projection

L2(V, dµ)⊗ L2(V, dµ)⊗ L2(V, dµ)⊗ L2(V, dµ)
P−→ L2(V, dµ)⊗D ⊗ L2(V, dµ)
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defined by

P =
∑

r,r̄′,s

|r, r̄′, s〉〈r, r̄′, s|

and to define the propagator G2(q
µ, qρ′, qν) in terms of the matrix elements

〈j, j̄′, l|G2 |i, ī′, k〉 =
∑

r,r̄′,s

〈j, j̄′, l|G⊗ (1⊗ 1) |r, r̄′, s〉〈r, r̄′, s| (1⊗ 1)⊗G |i, ī′, k〉 =
∑

r,r̄′,s

〈j, j̄′|G⊗ 1 |r, r̄′〉 δlsδri 〈r̄′, s| 1⊗G |̄i′, k〉 =

∑

r̄′

〈j, j̄′|G⊗ 1 |i, r̄′〉〈r̄′, l| 1⊗G |̄i′, k〉 (2.19)

which we represent by the graph

j j̄′ l
◦ © ◦
i ī′ k

(2.20)

We could have also included the dummy multiplication index and written

j j̄′ r̄′ l
◦ © ◦
i r̄′ ī′ k

We have used the identifications

G⊗G = G⊗ (1⊗ 1) · (1⊗ 1)⊗G

and the fact that G⊗G acts on
(

L2(V, dµ)⊗ L2(V, dµ)
)

⊗
(

(L2(V, dµ)⊗ L2(V, dµ)
)

=

L2(V, dµ)⊗
(

L2(V, dµ)⊗ L2(V, dµ)
)

⊗ L2(V, dµ) =

L2(V, dµ)⊗ (D ⊗ F)⊗ L2(V, dµ).

Since P projects D ⊗F onto D we see that

G2 : L2(V, dµ)⊗D ⊗ L2(V, dµ) → L2(V, dµ)⊗D ⊗ L2(V, dµ).

In the commutative limit k̄ → 0 one would find

〈j, j̄′, l|G2 |i, ī′, k〉 → G2 δijδi′j′δkl

on the left-hand side of (2.19) and

〈j, j̄′|G⊗ 1 |i, r̄′〉 → Gδijδr′j′

on the right-hand side. One would normally choose as basis the eigenvectors of the position
operator so that qµ |i〉 = qµi |i〉 and one would normally drop the extra index on qµ. The
preceeding two limits would be written then respectively

〈j, j̄′, l|G2 |i, ī′, k〉 → G2(q
µ, qρ′, qν)

9



and
〈j, j̄′|G⊗ 1 |i, r̄′〉 → G(qµ, qρ′).

The graph (2.20) in turn can be cut into the two graphs

j j̄′ r̄′ l
◦ ⊂ ⊃ ◦
i r̄′ ī′ k

(2.21)

which represent respectively the factors

〈j, j̄′|G⊗ 1 |i, r̄′〉, 〈r̄′, l| 1⊗G |̄i′, k〉.

We are prompted by this to introduce also the graph

j̄ l̄
⊃ ⊂
ī k̄

(2.22)

to represent the matrix elements

〈j̄, l̄| 1⊗G⊗ 1 |̄i, k̄〉.

This is the propagator with ‘fuzzy’ vertices. It is obtained by joining (i, j) to (k, l) in the
graph (2.20) and cutting it as in (2.21). We designate it by Ḡ:

Ḡ : D ⊗D → D ⊗D

If we replace the ends of (2.20) by fuzzy vertices we obtain the graph

j̄ j̄′ l̄
⊃ © ⊂
ī ī′ k̄.

This is a 2-line vertex. We designate it by Ḡ2:

Ḡ2 : D ⊗D ⊗D → D ⊗D ⊗D.

If we join the two ends we obtain a 2-line loop which we write also Ḡ2 but now

Ḡ2 : D ⊗D → D ⊗D.

Normally one vertex will be considered as fixed. If we trace over the remaining one we shall
use still the notation Ḡ2. We give a simple example in the following section.

The theory can be readily extended to incorporate a tree-level n-line vertex. Consider
as example a triple vertex. To pass from the equivalent of (2.18) to (2.20) we must replace
(2.6) by the identification

L2(V, dµ)⊗ L2(V, dµ)⊗ L2(V, dµ) ≃ D ⊗F ⊗ F

which is obtained by introducing

q̄µ =
1

3
(qµ ⊗ 1⊗ 1 + 1⊗ qµ ⊗ 1 + 1⊗ 1⊗ qµ)

10



as well as two Fock spaces to describe the variations. Three lines are joined to a vertex by
considering the tensor product of three propagators:

〈j, j′|G |i, i′〉〈l, l′|G |k, k′〉〈n, n′|G |m,m′〉

and projecting the element

|i〉 ⊗ |i′〉 ⊗ |k〉 ⊗ |k′〉 ⊗ |m〉 ⊗ |m′〉 ∈
L2(V, dµ)⊗ L2(V, dµ)⊗ L2(V, dµ)⊗ L2(V, dµ)⊗ L2(V, dµ)⊗ L2(V, dµ)

onto an element

|i〉 ⊗ |k〉 ⊗ |m〉 ⊗ |̄i′〉 ∈ L2(V, dµ)⊗ L2(V, dµ)⊗ L2(V, dµ)⊗D

The way this projection is defined will depend on which lines are to be considereed as
incoming and which are outgoing. The above construction of joining and cutting would lead
to the vextex defined by the matrix elements

〈j̄, l̄, n̄|G3(q
µ
1 ; q

µ
2 ; q

µ
3 ) |̄i, j̄, m̄〉.

3 The noncommutative flat plane

The noncommutative flat plane is the algebra Ak̄ generated by two hermitian elements
q1 = x and q2 = y which satisfy the commutation relation [x, y] = ik̄ and which has over it
the differential calculus Ω∗(Ak̄) given by [qµ, dqν ] = 0. If we introduce the two derivations

e1 = − 1

ik̄
ad y, e2 =

1

ik̄
ad x

dual to dqµ then an appropriate generalization [29] of the Laplace operator ∆ with mass µ
is given by

∆ = ∆k̄ + µ2, ∆k̄ = −(e21 + e22).

For each couple (k1, k2) ∈ R2 we introduce the unitary elements u(k1), v(k2) ∈ Ak̄ defined
by

u(k1) = eik1x, v(k2) = eik2y.

They satisfy the commutation relations

u(k1)v(k2) = qk1k2k̄v(k2)u(k1), q = e−i.

A basis for the Hilbert space H is given by the eigenvectors

φk = u(k1)v(k2), k = (k1, k2)

of ∆. The corresponding eigenvalues are

λk = k2 + µ2, k2 = k2
1 + k2

2.

The propagator can be written then

G(x, y; x′, y′) =
1

(2π)2

∫

(k2 + µ2)−1φ′
k ⊗ φ∗

k dk, dk = dk1dk2.

11



We must introduce a partial trace on Ak̄. This can be done only through a representation.
The only properties which we shall need however are the identities

Tr(u∗(k′
1)u(k1)) = 2πδ(k′

1 − k1), Tr(v∗(k′
2)v(k2)) = 2πδ(k′

2 − k2).

That is:
Tr(φ∗

k′φk) = (2π)2δ(2)(k′ − k).

The commutation relations (2.7) become in this case

[x̄, ȳ] =
1

2
ik̄, [δx, δy] =

1

2
ik̄. (3.1)

As in (2.14) we write

δx = J1a+ J1∗a∗, δy = J2a+ J2∗a∗. (3.2)

With (2.13) satisfied we have J [1J2]∗ = 1
2
iq12. By a redefinition of a we can choose

J1 =
1

2
, J2 =

1

2i
, a = δx+ iδy

The freedom here is SL(2,R), the symplectomorphism group in dimension 2. By a renor-
malization of k̄ we can also choose q12 = 1.

We index the basis of L2(V, dµ) = L2(R2, dp) by p = (p1, p2) and introduce the basis
|p̄, k〉 = |p̄〉D ⊗ |k〉F according to the prescription (2.6) of the previous section. We shall
also re-express the tensor product according to (2.8) and drop the tensor-product symbol.
We have then

u′∗(k1) |p̄′〉 = e−ik1x′ |p̄′〉 = e−ik1(x̄+δx) |p̄′〉.
Since x̄ and δx commute we can write this as

u′∗(k1) |p̄′〉 = e−ik1x̄e−ik1(a+a∗)/2 |p̄′〉.

Using the Baker-Campbell-Hausdorff (BaCH) formula

eαa+βa∗ = eβa
∗

eαaeαβk̄/2 = eαaeβa
∗

e−αβk̄/2

we find that
u′∗(k1) |p̄′〉 = e−ik1x̄e−k2

1
k̄/8e−ik1a∗/2 |p̄′〉

and therefore

φ′∗
k |p̄′〉= e−ik2y′e−ik1x̄e−k2

1
k̄/8e−ik1a∗/2 |p̄′〉

= e−ik2ȳe−ik1x̄e−k̄k2/8ek2a
∗/2e−k2a/2e−ik1a∗/2 |p̄′〉

= e−ik2ȳe−ik1x̄e−k̄k2/8eik1k2k̄/4e(k2−ik1)a∗/2 |p̄′〉.

Similarly we find

φ∗
k |p̄〉 = e−ik2ȳe−ik1x̄e−k̄k2/8eik1k2k̄/4e−(k2−ik1)a∗/2 |p̄〉.

From these last two equations we deduce that

〈p̄′| φk ⊗ φ∗
k |p̄〉 = e−k̄k2/2〈p̄′ | p̄〉. (3.3)

12



The product here is the tensor product (2.8). Since the Āk̄ factor reduces in fact to the
identity, the product depends only on the second factor δAk̄. We have dropped the prime
on φk since the information is contained in the position in the tensor product.

The Fourier transform is the map

φ̃(k) =
1

(2π)2
Tr(φ∗

k φ) (3.4)

from H to the momentum space L2(R2, dk) and the map

φ =

∫

φk φ̃(k)dk =

∫

eik2yeik1xe−ik1k2k̄ φ̃(k)dk (3.5)

from L2(R2, dk) to H. The Plancherel theorem is the completeness relation for the set of φk.
We have the unitary map

φ̃(l) =
1

(2π)2
Tr

(

φ∗
l

∫

φ̃(k)φk dk
)

from L2(R2, dk) onto itself and the unitary map

φ⊗ 1 =
1

(2π)2

∫

Tr2(φk ⊗ φ∗
k · 1⊗ φ)

of 1⊗H onto H⊗ 1. Introduce

D̃1 = ∂̃1, D̃2 = ∂̃2 − ik1k̄, [D̃1, D̃2] = −ik̄.

The multiplication by x and y are transformed respectively into the operators iD̃1 and
iD̃2, which are self-adjoint on L2(R2, dk). The Fourier transform respects the commutation
relations. The multiplication by x± iy are transformed respectively into b̃ and b̃∗ where

b̃ = i∂̃1 − ∂̃2 + ik̄k1.

The asymmetry in the Fourier transform of the multiplication operators is due to our con-
vention in the choice of basis φk. In the analogous calculations in the quantum Hall effect
one would speak of a choice of gauge. If one introduces the ‘gauge symmetric’ operators

b̃′ = ek̄k
2/2 b̃ e−k̄k2/2 = i∂̃1 − ∂̃2 +

1

2
k̄(ik1 + k2)

b̃′∗ = e−k̄k2/2 b̃∗ ek̄k
2/2 = i∂̃1 + ∂̃2 +

1

2
k̄(ik1 + k2)

then b̃′∗ is the adjoint of b̃′ on L2(R2, e−k̄k2dk). This symmetric form emphasizes the role of
the commutation relations in position space as a cut-off in momentum space.

The Fourier transform defines the map

φ̃(k, k′) =
1

(2π)4
Tr(φ∗

k ⊗ φ∗
k′ φ⊗ φ) =

1

(2π)4
Tr(φ∗

k φ) Tr(φ
∗
k′ φ)

from H⊗H to L2(R2, dk)⊗ L2(R2, dk) and the map

φ⊗ φ =

∫

φk ⊗ φk′ φ̃(k, k
′)dkdk′

13



from L2(R2, dk)⊗L2(R2, dk) to H⊗H. If we write φ⊗φ = φ̄⊗δφ as in (2.8) then (3.3) states
that the Fourier transform of the diagonal factor of φk ⊗ φk′ is a constant function and that
the projection onto the ground-state in F produces an exponential damping in momentum
space.

We are now in a position to calculate the coincidence limit of the propagator. We have

〈p̄′|G(x, y; x′, y′) |p̄〉= 1

(2π2)

∫

(k2 + µ2)−1〈p̄′| φk ⊗ φ∗
k |p̄〉dk

=
1

(2π2)

∫

e−k̄k2/2

k2 + µ2
〈p̄′ | p̄〉dk.

The Feynman rules here are the same as the commutative ones except for an extra factor
e−k̄k2/4 at each end of a propagator of momentum k to account for the projection onto the
ground state in F . We find then

〈p̄|G(x, y; x′, y′) |p̄〉 = I(k̄µ2) 〈p̄ | p̄〉

where I(k̄µ2) is given by the integral [36, 12, 4]

I(k̄µ2) =
1

(2π)2

∫

e−k̄k2/2

k2 + µ2
dk. (3.6)

With a change of variable it can be written as

I(k̄µ2) =
1

4π

∫ ∞

0

e−x

x+ k̄µ2/2
dx = − 1

4π
ek̄µ

2/2Ei(−k̄µ2/2),

where Ei(x) is the exponential-integral function. When k̄µ2 → 0 one finds

I(k̄µ2) =
1

4π

(

− log(k̄µ2) + log 2− γ − 1

2
k̄µ2 log(k̄µ2) + o(k̄µ2)

)

and when k̄µ2 → ∞,

I(k̄µ2) =
1

2πk̄µ2
+ o((k̄µ2)−2).

As a further illustration of the modified Feynman rules, we calculate the 2–point function
obtained by integrating over the internal vertex in

G2(q
µ; q̄ρ′; qν) ∈ Ak̄ ⊗ Āk̄ ⊗Ak̄,

represented by (2.20). In terms of the eigenfunctions of the Laplacian, the definition (2.19)
of G2(q

µ; q̄ρ′; qν) can be written as

G2(q
µ; q̄ρ′; qν) =

1

(2π)4

∫

dkdlλ−1
k λ−1

l φl ⊗ F 〈0| φ∗
l ⊗ φk |0〉F ⊗ φ∗

k.

The F 〈0| φ∗
l ⊗ φk |0〉F is the projection onto the ground state in F . Integration over q̄ρ′

corresponds to taking the trace over Āk̄. Similarly to (3.3), it is straightforward to calculate

TrĀk̄
(F 〈0| φ∗

l ⊗ φk |0〉F ) = Tr(e−il2ȳei(k1−l1)x̄eik2ȳ) F 〈0| eik2δye2ik1δxeik2δy |0〉F
= (2π)2δ(2)(k − l)F 〈0| eik2δye2ik1δxeik2δy |0〉F
= (2π)2δ(2)(k − l)e−k̄k2/2. (3.7)
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Therefore

TrĀk̄
(G2(q

µ; q̄ρ′; qν)) = (2π)−2

∫

dk
e−k̄k2/2

(k2 + µ2)2
φk ⊗ φ∗

k. (3.8)

Again, we see that the Feynman rules are the same as in the commutative case, except for
an extra factor e−k̄k2/4 at the end of a propagator of momentum k. Similarly for higher
order vertices, the projection onto the ground state of the relative coordinates will lead to
an exponential damping factor with length scale set by k̄, since the plane-wave factors as in
(3.7) act as unitary operators which shift |0〉F , reducing the overlap with F 〈0| .

As a second example consider a 2-line loop with no momentum flowing through it:

〈p̄p̄| Ḡ2(q
µ; qν′) |p̄p̄〉 =
∫

〈p̄p̄| Ḡ(qµ; qν′) |p̄′p̄′〉〈p̄′, p̄′| Ḡ(qµ; qν′) |p̄, p̄〉dp̄′.

If we set as before
µ2〈p̄, p̄| Ḡ2(q

µ; qν′) |p̄, p̄〉 = I2(k̄µ
2)〈p̄, p̄ | p̄, p̄〉

then we find that

I2(k̄µ
2) =

µ2

(2π)4

∫

e−k̄k2

(k2 + µ2)2
dk =

1

32π3
+

k̄µ2

8π3
ek̄µ

2

Ei(−k̄µ2).

When k̄µ2 → 0

I2(k̄µ
2) =

1

16π3

(

1 + k̄µ2 log(k̄µ2) + · · ·
)

and when k̄µ2 → ∞
I2(k̄µ

2) =
1

32π3k̄µ2

(

1− 2

k̄µ
+ · · ·

)

.

It is remarkable that this vanishes to the same order in (k̄µ2)−1 as I(k̄µ2) when k̄µ2 → ∞.

We have represented only the difference δqµ in terms of annihilation and creation oper-
ators. It is possible to represent also q̄µ. We shall argue below that this is necessary on a
curved noncommutative geometry. For this we introduce as well as a defined in (3.2) the
operator b = x̄ + iȳ. Then it is easy to see that the commutation relations (2.13) hold also
for b and that a and b commute with each other and their adjoints. We define as usual the
commuting number operators

Na =
1

k̄
a∗a, Nb =

1

k̄
b∗b

and let |na, nb〉 be their common eigenvectors. The equations which defined a and b can be
inverted to yield

x⊗ 1 =
1

2
(−a− a∗ + b+ b∗), y ⊗ 1 =

1

2i
(−a + a∗ + b− b∗),

1⊗ x =
1

2
(a+ a∗ + b+ b∗), 1⊗ y =

1

2i
(a− a∗ + b− b∗)

and therefore we find

u(k1) = eik1(−a−a∗+b+b∗)/2, u′∗(k1) = e−ik1(a+a∗+b+b∗)/2,

v(k2) = ek2(−a+a∗+b−b∗)/2, v′∗(k2) = e−k2(+a−a∗+b−b∗)/2.
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Now it is straightforward to show that Equation (3.3) can be written more generally as

φk ⊗ φ∗
k = e−(k2+ik1) a+(k2−ik1) a∗ .

The b-terms cancel. Using the BaCH formula we find that

e−(k2+ik1)a+(k2−ik1)a∗ = e−k̄k2/2e(k2−ik1)a∗e−(k2+ik1)a.

Thus we obtain

〈ma, mb| φk ⊗ φ∗
k |na, nb〉

= e−k̄k2/2〈ma| e(k2−ik1)a∗e−(k2+ik1)a |na〉δmbnb
.

¿From the expansion

eαa |na〉 = |na〉+ α
√
k̄
√
na |na − 1〉+ · · ·+ (α

√
k̄)na

na!

√

na! |0〉.

it follows then that
〈ma| e(k2−ik1)a∗e−(k2+ik1)a |na〉

can be calculated for any two given states. We are especially interested in the case when
ma = na. In this case

〈na, mb| φk ⊗ φ∗
k |na, nb〉

= e−k̄k2/2
(

1− k̄k2na + · · ·+ (−k̄)na(k2)na

(na!)2
na!

)

δmbnb
.

The propagator is given therefore by

〈na, mb|G(x, y; x′, y′) |na, nb〉

=
1

(2π)2

∫

e−k̄k2/2

k2 + µ2

(

1− k̄k2na + · · ·+ (−k̄)na(k2)na

(na!)2
na!

)

dk δmbnb
.

This equation generalizes Equation (3.6) for I(k̄µ2) and reduces to it when na = 0.

A more elegant formulation can be given with a more explicit use [16, 22, 21, 4] of the
coherent state formalism. Define

a =
1√
2
(x+ iy)⊗ 1, b =

1√
2
1⊗ (x+ iy).

Then again it is easy to see that the commutation relations (2.13) hold for a and b and that
a and b commute with each other and their adjoints. Introduce, for x̃, ỹ ∈ R

z =
1√
2k̄

(x̃+ iỹ), T (z) = eza
∗−z̄a

and similarly for b. Then the coherent states are given by |z〉 = T (z) |0〉. It is straightforward
to see that a |z〉 = k̄z |z〉 and that (x, y) are related to (x̃, ỹ) by 〈z| x |z〉 = x̃, 〈z| y |z〉 = ỹ.

16



We argued above that we can express the variations δx and δy using the tensor product of
two copies of the algebra. Since

〈z| φk |z〉 = e−ik̄k1k2/2e−k̄k2/4e−i(k1x̃+k2ỹ),

〈z′| φ′∗
k |z′〉 = eik̄k1k2/2e−k̄k2/4ei(k1x̃

′+k2ỹ′),

we obtain
〈z, z′| φk ⊗ φ∗

k |z, z′〉 = e−k̄k2/2eik1(x̃
′−x̃)+ik2(ỹ′−ỹ),

and therefore

〈z, z′|G(x, y; x′, y′) |z, z′〉 = 1

4π2

∫

e−k̄k2/2

k2 + µ
eik1(x̃

′−x̃)+ik2(ỹ′−ỹ)dk.

When (x̃′, ỹ′) → (x̃, ỹ) it follows that

〈z, z′|G(x, y; x′, y′) |z, z′〉 → I(k̄µ2).

The results we have obtained using only the abstract algebraic structure of the non-
commutative flat plane can be of course found also using a specific representation. One
such is the standard irreducible representation of Ak̄ as an I∞ factor on L2(R, dα) given on
f(α) ∈ L2(R, dα) by

u(k1)f(α) = eik1αf(α), v(k2)f(α) = f(α + k2k̄).

A convenient basis for L2(R, dα) is |p1〉 = eip1α with p1 ∈ R. We have then

u(k1) |p1〉 = |p1 + k1〉, v(k2) |p1〉 = eip1k2k̄ |p1〉.

The parameter p1 can be thought of as the momentum conjugate to x but this fact plays no
role here. The eigenvectors φk = u(k1)v(k2) have matrix elements defined by

φk |p1〉 = eip1k2k̄ |p1 + k1〉.

This representation has a bad ‘classical’ limit. The generator x can be identified then with the
parameter α but the generator y tends to zero as k̄ → 0. To obtain a sensible classical limit
one needs two copies of L2(R, dα). To see this we define u(k1) and v(k2) on L2(R2, dα dβ)
as the operators

(u(k1)f)(α, β) = ei(ak1α+bk1β)f(α + ck1k̄, β + dk1k̄),

(v(k2)f)(α, β) = ei(a
′k2α+b′k2β)f(α+ c′k2k̄, β + d′k2k̄). (3.9)

If we choose a + b = 1, a′ + b′ = 1, we obtain a representation with a non-degenerate limit
with

u(k1)v(k2) = q(d−c′)k1k2k̄v(k2)u(k1).

We can conclude then that if d − c′ = 1 one obtains a representation of the algebra. We
conclude also that if c′ = d then u and v commute. The representation is therefore not
irreducible since the commutant is non-trivial. We shall choose

a = 1, a′ = 0, b = 0, b′ = 1.
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The propagator can be calculated directly in any one of the representations (3.9). One
obtains

(φkf)(α, β) = eidk1k2k̄ei(k1α+k2β)f(α+ ck1k̄ + c′k2k̄, β + dk1k̄ + d′k2k̄)

and therefore

(φk ⊗ φ∗
k f f ′)(α, β;α′, β ′) = e−ik1k2k̄ei(k1(α−α′)+k2(β−β′)) ×

f(α+ ck1k̄ + c′k2k̄, β + dk1k̄ + d′k1k̄) f
′(α′ − ck1k̄ − c′k2k̄, β

′ − dk1k̄ − d′k1k̄).

Consider in particular the ‘plane-wave’ basis |p〉 = eip1α+ip2β of L2(R2, dα dβ). Then we find

φk |p〉 = eidk1k2k̄eip1(ck1+c′k2)k̄ eip2(dk1+d′k1)k̄ |p+ k〉

and therefore

φk ⊗ φ∗
k |p; p′〉 =

e−ik1k2k̄ei(p1−p′
1
)(ck1+c′k2)k̄ei(p2−p′

2
)(dk1+d′k1)k̄ |p+ k; p′ − k〉.

We are interested in the limit p′ → p:

φk ⊗ φ∗
k |p; p〉 = e−ik1k2k̄ |p+ k; p− k〉.

The decomposition (2.8) of the tensor product Ak̄ ⊗Ak̄ is equivalent to a reparametriza-
tion of the tensor product L2(R2, dα dβ)⊗L2(R2, dα′ dβ ′) induced by the linear transforma-
tion

(α, β, α′, β ′) → (
1

2
(α′ + α),

1

2
(β ′ + β), α′ − α, β ′ − β)

of the parameter space. The first two of the new coordinates yield the representation space
D of x̄ and ȳ and the second two the representation space F of δx and δy.

The basis given above for the representation space is singular and it is appropriate to
change it, at least for the factor F . This is equivalent to the introduction of a form factor
F (α′ − α, β ′ − β). For each choice of F we introduce IF (k̄µ

2) defined by the equation

〈p; p|G(x, y; x′, y′)F |p; p〉 = IF (k̄µ
2)〈p; p|F |p; p〉.

The ‘coherent-state’ basis has a fundamental cell of minimal area and the distance between
two closest ‘points’ is minimal. So normally one might expect that every choice of F would
yield a value of IF (k̄µ

2) strictly less than I(k̄µ2). However this is not the case. For example
a sequence of F which tends to the product of two δ-functions,

F → δ(α′ − α) δ(β ′ − β),

will yield a value of Iδ(k̄µ
2) which is smaller than I(k̄µ2) for sufficiently small values of k̄µ2.

We obtain in fact

Iδ(k̄µ
2) =

1

4π2

∫

eik1k2k̄

k2 + µ2
dk.

A change of variables yields the expression

Iδ(k̄µ
2) =

1

4π

∫ ∞

0

J0(x)

x+ k̄µ2/2
dx =

1

8
(H0(k̄µ

2/2)− Y0(k̄µ
2/2)). (3.10)
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Here H0 is a Struve function and Y0 is a Neumann function. When k̄µ2 → 0 one finds

Iδ(k̄µ
2) =

1

4π

(

− log(k̄µ2) + 2 log 2− γ + o(k̄µ2)
)

and when k̄µ2 → ∞,

Iδ(k̄µ
2) =

1

2πk̄µ2
+ o((k̄µ2)−2.

Comparing the two asymptotic expansions we find

I(k̄µ2)− Iδ(k̄µ
2) = − 1

8π

(

log 2 +
1

2
k̄µ2 log(k̄µ2) + o(k̄µ2)

)

,

I(k̄µ2)− Iδ(k̄µ
2) = − 1

2π(k̄µ2)2
+ o((k̄µ2)−3).

The two functions agree to the dominant term in k̄µ2 for large and small values but at least
to the sub-dominant terms it is rather I(k̄µ2) which is the smaller.

The modification of the propagator which we have found is due to the noncommutativity
of the algebra. However we saw that we could define the variation of an element of a
noncommutative algebra using the tensor product of two copies of it. The effect then was
formally encoded in the difference between a product and a tensor product; the generator
x does not commute with y but it does commute with y′. In a subsequent article we shall
discuss also a braided tensor product, which has all of the properties of an ordinary product.
Although it is somewhat formal, one could consider an analog in the present situation by
setting also [x, y′] = ik̄. In this case the properties of the variation of an element would not
be correctly encoded in the tensor product. One would find that the commutation relations
(3.1) were in fact replaced by

[x̄, ȳ] = ik̄, [δx, δy] = 0.

The noncommutative propagator is seen to be exactly the classical propagator. The propa-
gator depends, we have seen, only on the variations δx and δy.

The self-energy of a scalar particle of total charge e and minimal radius [45] is given by

E =
1

2
e2I(k̄µ2).

If we set this equal to the mass we find the equation

e2 ≃ − 8πµ

log(k̄µ2)

for the charge.

The energy density of a uniform, static, free scalar field is given by

T00 =
1

2
µ2φ2.

The extra contribution due to vacuum fluctuations is

〈T00〉0 =
1

2
µ3I(k̄µ2).
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We have included an extra factor µ to account for the physical dimensions of the field.
Considered just as a constant the vacuum energy is not a very useful quantity unless somehow
it can be connected to the gravitational field equations. It is characteristic of all vacuum-
fluctuation calculations that the result is too large to be a realistic source of a cosmological
solution. In some way ‘most’ of this very large constant must be subtracted. One way of doing
this is to consider the variation with respect to the space-time metric just as the Casimir
energy is calculated as that part of the vacuum energy which depends on the distance.

Interpreted as a propagator on an ordinary manifold, G would be seen as associated to
the non-local differential operator [36]

∆NL = ek̄∆̄/2(∆̄ + µ2).

This effective non-locality is due to the ‘quantization’ of the distance between the two points.
We have defended elsewhere [29] the point of view [11, 18, 10, 12, 35] that the regularization
can be considered in fact as being due to the gravitational field. To make this point of view
consistent with the results of the present section one must consider the vacuum fluctuations
as giving rise to a microscopic field which disappears in the mean. In fact we shall argue in
Section 5 that flat space is to be considered as an idealized limit.

There is a simple solid-state model for the space we have just considered which has been
used in the study of the fractional quantum Hall effect. The x and y correspond to the
cartesian components of the guiding centers of the Landau orbits and the factor e−k̄k2/2

which arises here because of the effective non-locality acts like the Debye-Waller factor. We
refer, for example, to Meissner [31] for further details.

It is straightforward to add a time coordinate and consider the euclidean Laplace operator

∆ = −∂2
t +∆k̄ + µ2

on the algebra A = C(R)⊗Ak̄ generated by the three hermitian elements (t, x, y) and their
inverses. The differential calculus Ω∗(A) is constructed by adding to the 1-forms dx and dy
the extra 1-form dt. The density of euclidean vacuum action is given by

IE(k̄µ
2) =

1

(2π)3µ

∫

e−k̄k2/2

ω2 + k2 + µ2
dωdk =

1
√

32πk̄µ2
ek̄µ

2/2
(

1− Erf(
√

k̄µ2/2)
)

where Erf(x) is the error function. When k̄µ2 → 0

IE(k̄µ
2) =

1
√

32πk̄µ2
(1−

√

2k̄µ2/π + · · ·)

and when k̄µ2 → ∞
IE(k̄µ

2) =
1

4πk̄µ2
+ · · · .

4 The noncommutative Lobachevsky plane

We shall define the noncommutative Lobachevsky plane to be the formal ∗-algebra Ah gen-
erated by two hermitian elements x and y which satisfy the commutation relation

[x, y] = −2ihy (4.1)
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where h ∈ R and the factor −2 is present for historical reasons. We shall suppose that
h > 0. Both x and y are without physical dimensions here. We define a differential calculus
(Ω∗(Ah), d) over Ah by introducing [7] a frame or Stehbein θa defined by

θ1 = ry−1dx, θ2 = ry−1dy, (4.2)

where r is a real parameter with the units of length. The structure of the calculus is given
by the commutation relations

fθa = θaf, f ∈ Ah (4.3)

as well as the quadratic relations

(θ1)2 = 0, (θ2)2 = 0, θ1θ2 + θ2θ1 = 0. (4.4)

More details of this have been given elsewhere [7].

We shall define [13] a metric g as a bilinear map

g(θa ⊗ θb) = gab (4.5)

where from (4.3) the gab must be real constants. We shall choose gab = δab. From the
structure relations

dθ1 = −r−1θ1θ2, dθ2 = 0

one concludes that the torsion-free metric connection has Gaussian curvature K given by
K = −r−2.

The derivations ea dual to the 1-forms θa are defined by

e1x = r−1y, e1y = 0,

e2x = 0, e2y = −r−1y.

In terms of them the Laplace operator ∆h can be written [6] as

−∆hφ = e21φ+ e22φ+ r−1e2φ, φ ∈ Ah. (4.6)

First we recall the calculation of the propagator in the commutative case. In the com-
mutative limit ∆h tends to the ordinary Laplace operator on the Lobachevsky plane:

lim
h→0

∆h = ∆̃ = −r−2ỹ2(∂2
x̃ + ∂2

ỹ). (4.7)

We have here introduced (x̃, ỹ) as the commutative limits of the operators (x, y). The
spectrum of ∆h in the commutative limit is given by [41] the eigenvalue equation

∆̃φ(x̃, ỹ) = λk,κφ(x̃, ỹ). (4.8)

By the separation of variables φ(x̃, ỹ) = f(x̃)g(ỹ) we find the differential equations

∂2
x̃f(x̃) = −k2f(x̃), (4.9)

ỹ2∂2
ỹg(ỹ) = (k2ỹ2 − r2λk,κ)g(ỹ) (4.10)

where k ∈ R. If we define κ2 = r2λk,κ − 1/4 then

r2λk,κ = κ2 +
1

4
+ r2µ2.
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The eigenvalues λk,κ do not in fact depend on k and are infinitely degenerate. If we set then
z = ikỹ and g(ỹ) =

√
zJ(z), Equation (4.10) becomes the Bessel equation

J ′′(z) +
1

z
J ′(z) + (1 +

κ2

z2
)J(z) = 0. (4.11)

A normalized set of eigenfunctions for the Laplace operator is given by

φk,κ(x̃, ỹ) = eikx̃π−3/2
√
κ sinh πκ

√

ỹKiκ(|k|ỹ) (4.12)

with κ > 0 and k 6= 0. The case κ < 0 can be excluded since

K−ν(|k|ỹ) = Kν(|k|ỹ).

The case k = 0 is also excluded since when ỹ → 0

Kiκ(|k|ỹ) →
1

2
Γ(iκ)

(

2

|k|ỹ

)iκ

+
1

2
Γ(−iκ)

(

2

|k|ỹ

)−iκ

. (4.13)

If we set x̃i = (x̃, ỹ) the completeness relation can be written as

δ(2)(x̃i − x̃i′) =

∫ +∞

−∞

∫ ∞

0

φk,κ(x̃, ỹ)φ
∗
k,κ(x̃

′, ỹ′)dkdκ (4.14)

and the propagator is given by

G(x̃i, x̃i′) =

∫ +∞

−∞

∫ ∞

0

φk,κ(x̃, ỹ)φ
∗
k,κ(x̃

′, ỹ′)

κ2 + 1
4
+ r2µ2

dkdκ. (4.15)

The value of a tadpole diagram created by a source J → 0 is given by the quantity

IL(x̃
i) = lim

x̃i′→x̃i
G(x̃i, x̃i′).

Because of the homogeneity of the space in fact IL cannot vary from point to point; in
ordinary field theory it is infinite.

Several interesting problems have been considered and solved [8, 25, 33, 14, 37, 19] on the
Lobachevsky plane. In particular the spectrum of the Laplace operator has been found [41].
Recently [6] moreover the spectrum of the noncommutative operator (4.6) has been calcu-
lated.

Consider now the noncommutative case. It is to be noticed that although the classical
Lobachevsky plane is invariant under the reflection x̃ → −x̃ this is no longer the case when
h 6= 0. In the algebra Ah any monomial φ(x, y) in x and y can be factorized. Therefore one
can formally separate the variables in the eigenvalue problem as before and the eigenvalue
equation can be decomposed into two differential equations. The equations for the factor
f(x) are given by

e21f(x) = −r−2L2
+y

2f(x),

e21f(x) = −r−2L2
−f(x)y

2
(4.16)

where L± ∈ R. Since the commutation relations [y, e2] and [ỹ, ỹ∂ỹ] are of the same form, the
differential equation for g(y) has the same form as that of (4.10) even though the algebra
has changed:

(e22 + r−1e2)g(y) = r−2(L2
±y

2 − λk,κ)g(y).
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Consider the function

L(z) =
ez − 1

z
k.

It is related to the generating functional of the Bernoulli numbers, which appears in one
derivation of the general BaCH formula. For any k ∈ R let eikx be defined as a formal power
series in the element x; formally eikx is a unitary element of Ah. Then from the action of e1
on x it follows that

e1e
ikx = ir−1L(2hk)yeikx = −ir−1L(−2hk)eikxy. (4.17)

The solution of Equation (4.16) is given therefore by

f(x) = eikx, L± = ±L(±2hk). (4.18)

A family of formal solutions of the eigenvalue equation on the quantum Lobachevsky
plane which tend to normalized functions in the commutative limit is given for k 6= 0, κ > 0
by

φk,κ(x, y) = π−3/2
√
κ sinh πκ

√
yKiκ(|L|y)eikx. (4.19)

We have here introduced the quantity

L = L+(2hk).

It plays the role of the linear momentum associated to x. The quantity L−(2hk) is the
linear momentum associated to −x. Although |k| remains invariant under the map k → −k
this is not the case for |L|, a fact which is a manifestation of the breaking of parity by the
commutation relations. Because of the transposition rule

eikxK(y) = K(e2hky)eikx (4.20)

the expression for the eigenvectors can also be written with y after x. The 1-particle Hilbert
space H is the space generated by the elements φk,κ(x, y). The elements W and G can be
written then

W (xµ; xν′) =

∫ +∞

−∞

∫ ∞

0

φk,κ(x, y)⊗ φ∗
k,κ(x

′, y′)dkdκ,

G(xµ; xν′) = r−2

∫ +∞

−∞

∫ ∞

0

λ−1
k,κφk,κ(x, y)⊗ φ∗

k,κ(x
′, y′)dkdκ.

To proceed we must introduce a partial trace on the algebra Ah which respects the
SLh(2,R) invariance. This trace is a complex-valued linear form on Ah which is in some
sense translation invariant, and in the limit h → 0 agrees with the undeformed integral. In
the classical case, translation invariance is equivalent to Stokes’ theorem. Since we have an
SLh(2,R)-invariant calculus, it is natural to define a trace of an element of the algebra as
the integral of the dual 1-form. For any f ∈ Ah we set

Tr(f) =

∫

fθ1θ2

where the volume 2-form,

θ1θ2 = r2y−1dxy−1dy = r2y−2dxdy,
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is invariant under the coaction of SLh(2). We determine the integral ‘over x’ in turn by
requiring that Stokes’ theorem

∫

dα = 0. (4.21)

hold for any 1-form α. We write α = αxdx+αydy. In particular if αx = 0 and αy = f(x)g(y)
then from (4.21) we find that

∫

df(x)g(y)y−2dy =

∫

df(x)

∫ ∞

0

g(y)y−2dy = 0. (4.22)

for any integrable function g(y). To analyze this we notice that (x + 2ih)dx = dxx from
which we deduce that

d(xn) =
(

(x+ 2ih)n−1 + x(x+ 2ih)n−2 + . . .+ xn−1
)

dx

= xn−1
(

n−1
∑

k=0

(1 + 2ihx−1)
)

dx

=
1

2ih
xn

(

(1 + 2ihx−1)n − 1
)

dx

=
1

2ih

(

(x+ 2ih)n − xn
)

dx. (4.23)

We conclude that in general

df(x) =
1

2ih

(

f(x+ 2ih)− f(x)
)

dx, (4.24)

which is a finite-difference operator. Therefore
∫

(

f(x+ 2ih)− f(x)
)

dx = 0.

It follows then that

e−2hk

∫

eikxdx =

∫

eikxdx

and therefore it is consistent to set

Tr1(e
ikx) = 2πδ(k). (4.25)

Furthermore, in the representation given below we can identify

Tr2(f(y)) =

∫ ∞

0

f(y)y−2dy. (4.26)

Since dy satisfies the commutation relation ydy = dyy of an ordinary de Rham form on the
undeformed Lobachevsky space we can suppose that (4.26) holds in any case. The trace can
be factorized then in the form

Tr(eikxf(y)) = Tr1(e
ikx)Tr2(f(y)).

and so, just as in the commutative case, we can set

Tr(eikxf(y)) = 2πδ(k)Tr2(f(y)).
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If x has a representation with a periodic spectrum then k takes discrete values and the
right-hand side of this equation must be replaced by 2πδk0. We note that for an arbitrary
element f(x, y) ∈ Ah we have

Tr(eikxf(x, y)) = Tr(f(x, e2hky)eikx).

In general then
Tr(fg) 6= Tr(gf).

The ‘trace’ defines a state which is not a trace state.

Equations (4.26) and (4.25) are all the properties of the trace which we shall need. Using
them and the explicit expression (4.19) for the basis we find the orthogonality conditions

Tr(φ∗
k,κ(x, y)φk′,κ′(x, y)) = δ(k − k′)δ(κ− κ′).

In order to use the general formalism we must first decide how to introduce the annihila-
tion and creation operators. One possibility for this is to introduce generators ξ and η which
satisfy the canonical commutation relations [ξ, η] = 2ih. One can then express x and y as

x = ξη − ih, y = ξ. (4.27)

In the notation of (2.8) this yields

[ξ̄, η̄] = ih, [δξ, δη] = ih (4.28)

and the condition (2.5) is satisfied. If we define

Λ = eix, q = e−2h

we find the relation yΛ = qΛy, which defines the quantum space R1
q. Because of the

isotropy of the Lobachevsky plane the Laplace operator is essentially reducible to that of a
1-dimensional manifold. The extra dimension manifests itself as a difference in the multi-
plicity of the eigenvalues. There is a certain formal analogy between the solutions given here
and the solutions [5] to the Laplace operator in the quantum space R1

q.

If we express the eigenvectors in terms of the new generators we find

φk,κ(ξ, η) |p̄〉 = π−3/2
√
κ sinh πκ

√

ξK∗
iκ(|L|ξ)eik(ξη−ih) |p̄〉 (4.29)

and therefore

〈p̄′| φk,κ(x, y)φ
∗
k,κ(x

′, y′) |p̄〉 =

π−3κ sinh(πκ)〈p̄′|Kiκ(|L|ξ)
√

ξ eikξηe−ikξ′η′
√

ξ′K∗
iκ(|L|ξ′) |p̄〉.

However as an added complication now the eigenvector is no longer factorized as previously
into a function of ξ times a function of η. Since we have supposed that x and x′ commute
we can write

eikξηe−ikξ′η′ = eik(ξη−ξ′η′) = e−2ik(ξ̄δη+η̄δξ) = e−ik((η̄−iξ̄)a+(η̄+iξ̄)a∗).

We have here introduced the annihilation operator a and its adjoint such that

δξ =
1

2
(a+ a∗), δη =

1

2i
(a− a∗), [a, a∗] = 2h.
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We cannot use the simple BaCH formula since

[(η̄ − iξ̄)a, (η̄ + iξ̄)a∗] = 2h
(

aa∗ + (η̄ + iξ̄)(η̄ − iξ̄)
)

does not commute with (η̄ − iξ̄)a and (η̄ + iξ̄)a∗. In fact these three operators form a basis
of the Lie algebra of SL(2,C). The (η̄ + iξ̄) is essentially the extra annihilation operator
b introduced in the previous section and we have thus a tensor product of two harmonic-
oscillator representations. It would seem that the propagator is impossible to calculate using
the decomposition (4.28).

If we use x and y as generators and follow the prescription of Section 2 we find that using
an ordinary tensor product

[x̄, ȳ] = −ihȳ, [δx, δy] = −ihȳ (4.30)

as in the previous section but the condition (2.5) is not satisfied:

[x̄, δx] = 0, [x̄, δy] = −ihδy,

[ȳ, δx] = ihδy, [ȳ, δy] = 0.
(4.31)

This means that x̄ acts on F as well as D in the product (2.6). This point can be improved
upon by a change of generators. First we note that the algebra generated by (x̄, ȳ) can be
identified with the algebra Ah and that the differential calculus (Ω̄∗(Ah), d̄) defined by the
relations (4.31),

[x̄, d̄x̄] = 0, [x̄, d̄ȳ] = −ihd̄ȳ,

[ȳ, d̄x̄] = ihd̄ȳ, [ȳ, d̄ȳ] = 0

is the same as the original (Ω∗(Ah), d). In fact one finds that the frame (θ̄1, θ̄2) defined by

θ̄1 = rd̄x̄− rx̄ȳ−1d̄ȳ, θ̄2 = rȳ−1d̄ȳ

satisfies the same relations as the frame (4.2). In the commutative limit the new frame is
the old one expressed in the new coordinates given by the involution

˜̄x = φ(x̃) = x̃ỹ−1, ˜̄y = φ(ỹ) = ỹ−1.

General covariance would seem to suggest then that one introduce an annihilation operator
such that

δx =
1

2
(a + a∗) +

1

2i
x̄(a− a∗), δy =

1

2i
ȳ(a− a∗), [a, a∗] = h. (4.32)

If one did this one would find Equations (4.31) to be equivalent to the conditions

[x̄, a] = 0, [ȳ, a] = 0

but that the second of the commutation relations (4.30) cannot be satisfied. This is to be ex-
pected since differential forms naturally satisfy anticommutation relations. The expressions
(4.32) come from the identification

θ1 =
1

2
(a+ a∗), θ2 =

1

2i
(a− a∗)
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and the relations satisfied by the frame would imply the relations a2 = 0, [a, a∗]+ = 0.

One can express φ as the commutative limit of the change to new generators given by

x̄′ = xy−1 − ih, ȳ′ = y−1.

This transformation is closely related to that given by (4.27). Under the change of parameter
h → −2h we can identify x̄′ = η and ȳ′ = ξ−1. The (x̄′, ȳ′) satisfy the same commutation
relation as the (x̄, ȳ) except for a change in sign of h. We have here defined the differential
calculus directly in terms of the algebra; in particular, we have deduced the module structure
of the 1-forms from the commutation relation. This was possible since both the algebra and
the differential calculus are defined in terms of the same R-matrix [1].

A more promising decomposition uses the generator w formally defined by the equation
y = e−w. Using it the commutation relation (4.1) becomes

[x, w] = 2ih

and in the commutative limit rw̃ is the geodesic distance along the ỹ-axis. Following the
prescription of Section 2 we find that, using an ordinary tensor product,

[x̄, w̄] = ih, [δx, δw] = ih

and that the condition (2.5) is now satisfied.

The Equation (4.29) becomes

φ∗
k,κ(x

′, y′) |p̄〉 =

π−3/2e−ikx̄e−ikδx
√
κ sinh πκ

√

y′K∗
iκ(|L|y′) |p̄〉

and therefore

〈p̄′| φk,κ(x, y)φ
∗
k,κ(x

′, y′) |p̄〉 =

π−3κ sinh(πκ)〈p̄′|Kiκ(|L|y)
√
ye−2ikδx

√

y′K∗
iκ(|L|y′) |p̄〉.

As above we introduce the annihilation operator a and its adjoint such that

δx =
1

2
(a+ a∗), δw =

1

2i
(a− a∗), [a, a∗] = 2h.

Using again the BaCH formula we find that

〈p̄′| φk,κ(x, y)φ
∗
k,κ(x

′, y′) |p̄〉 =

π−3κ sinh(πκ)e−hk2〈p̄′|Kiκ(|L|y)
√
ye−ika∗e−ika

√

y′K∗
iκ(|L|y′) |p̄〉.

Using the transposition rules

weika
∗

= eika
∗

(w − hk), eikaw′ = (w′ − hk)eika

we conclude therefore that

〈p̄|G(x, y; x′, y′) |p̄〉 =

π−3

∫ +∞

−∞

∫ ∞

0

κ sinh(πκ)e−hk2

κ2 + 1
4
+ r2µ2

〈p̄|Kiκ(|L|e−hky)×

e−hke−w̄K∗
iκ(|L|e−hky′) |p̄〉dκdk.
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This can be expressed as an integral over positive values of k:

〈p̄|G(x, y; x′, y′) |p̄〉 =

2π−3

∫ +∞

0

∫ ∞

0

κ sinh(πκ)e−hk2 cosh(hk)

κ2 + 1
4
+ r2µ2

×

〈p̄|Kiκ(h
−1 sinh(hk)y)e−w̄K∗

iκ(h
−1 sinh(hk)y′) |p̄〉dκdk.

The integral can be simplified by introducing the integration variable

hl = sinh(hk)e−w̄.

It becomes then

〈p̄|G(x, y; x′, y′) |p̄〉 = 2π−3

∫ ∞

0

∫ ∞

0

κ sinh(πκ)

κ2 + 1
4
+ r2µ2

F (κ, l)dκdl.

where
F (κ, l) = 〈p̄, 0|Kiκ(le

+δw)e−h−1arcsinh2(hlew̄)K∗
iκ(le

−δw) |p̄, 0〉. (4.33)

This function is not manifestly independent of the state p, that is, of the value of w̄. We
can write

F (κ, l) = G(l)H(κ, l)

where
H(κ, l) = F 〈0|Kiκ(le

+δw)K∗
iκ(le

−δw) |0〉F .
is manifestly independent of w̄ but

G(l) =
1

D〈p̄ | p̄〉DD〈p̄| e−h−1arcsinh2(hlew̄) |p̄〉D (4.34)

is not.

In an attempt to clarify this we consider an explicit representation of the algebra. On
the Hilbert space L2(R, dα) one has the representation given on smooth functions by

(x̄f)(α) = ih∂αf(α), (w̄f)(α) = αf(α).

A convenient basis is given by |p〉 = eipα/h. We find then the expression

ew̄ |p̄〉 = eα |p̄〉

and the function (4.34) can be written as

G(l) =
1

D〈p̄ | p̄〉DD〈p̄| e−h−1arcsinh2(hlew̄) |p〉D = lim
α→∞

1

2α0

∫ +α0

−α0

e−h−1arcsinh2(hleα)dα =
1

2
.

This is certainly independent of α but depends in the choice of basis; the states |p〉 are plane-
wave states and the w̄ ‘coordinate’ is ‘smeared out’ over the entire line. Another choice of
representation is obtained by interchanging x̄ and w̄. That is, with

(x̄f)(α) = αf(α), (w̄f)(α) = ih∂αf(α).
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In this representation w̄ is diagonal and p is an eigenvalue, a measure of the geodesic
distance along the ȳ-axis. It leads to

G(l) = e−h−1arcsinh2(hlep),

which definitely depends on p. Because of the discussion that led to Equation (4.32) we shall
argue below that the results are only valid at the point p = 0 on the ȳ-axis. This would
imply that

G(l) = e−h−1arcsinh2(hl).

We found in the previous case that the result depended on our choice of representation of
the δqµ-algebra; we find here that it depends also on the representation of the q̄µ.

We set k̄ = 2hr2 and we define as previously IL(k̄µ
2) by the equation

〈p̄|G(x, y; x′, y′) |p̄〉 = IL(k̄µ
2)〈p̄ | p̄〉.

We have then

IL(k̄µ
2) = 2π−3

∫ ∞

0

∫ ∞

0

κ sinh(πκ)

κ2 + 1
4
+ r2µ2

G(l)H(κ, l)dκdl. (4.35)

We shall leave the evaluation of H to a future publication. The integral IL(k̄µ
2) can be

estimated however to leading order from the fact that the uncertainty relations, as encoded
in the commutation relation between a and its adjoint, imply that F 〈0| δw |0〉F & h. From
this we can deduce that

IL(k̄µ
2) ≃ − 1

4π
log(k̄µ2) + · · · .

All the interesting information is in the sub-dominant terms, which appear in the difference

∆〈T00〉0 =
1

2
µ3(IL(k̄µ

2)− I(k̄µ2)),

in the energy density with and without the curvature.

On the fuzzy sphere [28] of radius r the laplacian has n distinct eigenvectors fs with
associated eigenvalues ω2

s = s(s + 1)r−2 of multiplicity 2s + 1. Let { |i〉} be a basis of
coherent states and define IS(k̄µ

2) by the equation

〈i, i|G(xa; xa′) |i, i〉 = 4πr2IS(k̄µ
2) 〈i | i〉2.

Because of the properties of coherent states IS(k̄µ
2) will be independent of the state. As

in the case of the plane we write fs(x
a) = fs(x̄

a − δxa) and fs(x
a′) = fs(x̄

a + δxa). If |i〉
is the state concentrated on the north pole of the sphere then for large n we can write the
commutation relations as ([x, y]− k̄) |i〉 = 0 and identify the sphere with the tangent plane.
Comparing the two cases one finds that for large n

IS(k̄µ
2) ≃ 1

8π

n−1
∑

s=0

2s+ 1

s(s+ 1) + r2µ2
=

1

4π

n−1/2
∑

s=1/2

s

s2 − 1
4
+ r2µ2

(4.36)

from which we deduce that

IS(k̄µ
2) ≃ I

(

k̄(µ2 − 1

4r2
)
)

.
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We have here used the relation 4πr2 ≃ 2πk̄ n between the area of the sphere and the area of
the fundamental cell. We find therefore, when k̄µ2 → 0 and rµ → ∞, that

IS(k̄µ
2)− I(k̄µ2) ∼ 1

32πr2µ2
.

It is tempting to use the difference

∆〈T00〉0 ∼
1

64π

µ

r2

of 〈T00〉0 as a source in the gravitational field equations. We shall return to a similar calcu-
lation in dimension 4 below.

If we compare (4.35) with (4.36) we see that the eigenvalues are identical except for a
change in sign in the curvature term. We can therefore reasonably suppose that

IL(k̄µ
2) ≃ I

(

k̄(µ2 +
1

4r2
)
)

.

If we define z = x+ iy then the commutation relation (4.1) which define the algebra Ah

can be written in the form
[z, z̄] = 2ih(z − z̄).

There is a Cayley transformation

z′ =
z − i

z + i

from the Lobachevsky plane to the Poincaré disc. To compare the calculations of this section
with those of the flat plane one might think that it would be simpler to use the disc but the
commutation relation in terms of z′ is rather complicated:

[z′, z̄′] =
1

4
(1− z̄′)(1− z′)[z, z̄](1− z′)(1− z̄′) = −h(1− z′)(1− z̄′z′)(1− z̄′) + o(h2). (4.37)

One definite advantage of the disc is that in the commutative limit there is one point z̃′ = 0,
at which the metric assumes the gaussian normal form, with the first derivatives of the
components equal to zero. The Poincaré disc has also been ‘quantized’ by Berezin [3], with
the commutation relation

[z′, z̄′] = h(1− z′z̄′)(1− z̄′z′). (4.38)

There is no obvious relation between the two commutation relations (4.37) and (4.38).

It would seem that when studying a noncommutative version of a general manifold one
first has to choose a system of coordinates which are gaussian normal at a point q̃µ = q̃µ0 .
The corresponding generators of the noncommutative tensor-product algebra must be then
studied in a coherent state |0〉 with 〈0| q̄µ |0〉 = q̃µ0 . The propagator in this state is the
noncommutative version of the propagator at the point q̃µ = q̃µ0 . From the above experience
with the Lobachevsky plane we conclude that even in the case of a noncommutative version
of a homogeneous manifold H , with therefore IH(k̄µ

2) a constant function, the propagator
can only be calculated in a state which is localized about a classical point at which the metric
is at least euclidean, if not gaussian normal. The problem is due to the fact that even in
the simplest of noncommutative geometries the relation of the noncommutative structure to
the metric is not well understood. This is already apparent at the commutative limit. The
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Poisson structure defined in this limit is in the canonical form in a system of coordinates
which in general has no obvious preferred relation to the metric.

With the addition of an extra time coordinate the algebra becomes A = C(R)⊗Ah gen-
erated by the three hermitian elements (t, x, y) and their inverses. The differential calculus
Ω∗(A) is constructed by adding to the two ‘space’ 1-forms θa the time 1-form θ0 = dt and im-
posing the standard relations. In the limit h → 0, A becomes an algebra of time-dependent
functions on the Lobachevsky plane and Ω∗(A) the corresponding de Rham differential cal-
culus. The euclidean Laplace operator of a free scalar field is

∆ = −∂2
t +∆h + µ2.

We find then the curved variant

IEL(hr
2µ2) = 2π−3r2µ−1

∫ +∞

−∞

∫ ∞

0

∫ ∞

0

κ sinh(πκ)

r2ω2 + κ2 + 1
4
+ r2µ2

G(l)H(κ, l)dκdldω

of IE(k̄µ
2). It is also possible to let h vary with time but because the curvature does

not depend on the value of h there can be no dynamical evolution. Since the space is
completely isotropic and homogeneous one might speculate that there is variation in h (in
space and time) only in the presence of inhomogeneities and that these latter relax to yield
a homogeneous space and a constant h. One would have to consider the time evolution of
perturbations of the Lobachevsky metric to determine whether or not this is the case.

The cut-off effect which we have found was obtained using an ordinary tensor product.
As in the flat case, and for the same reasons, one finds that the use of a braided tensor
product will yield a propagator which is independent of h and which can be identified with
the divergent propagator of the commutative limit [30].

5 The noncommutative flat 4-space

We define the noncommutative flat 4-space as the algebra Ak̄ generated by four elements
qµ = xµ which satisfy the commutation relations [12]

[xµ, xν ] = ik̄Jµν

where Jµν is a non-degenerate matrix of real numbers. The associated differential calculus
Ω∗(Ak̄) is defined by the relations [xµ, dxν ] = 0. If we introduce the derivations

eα = adλα, λα =
1

ik̄
J−1
αµx

µ

dual to dxµ then an appropriate generalization [29] of the Laplace operator ∆ with mass µ
is given by

∆ = ∆k̄ + µ2 = −
∑

α

e2α + µ2.

For each k ∈ R we introduce the elements uµ(k) ∈ Ak̄ defined by

uµ(k) = eikx
µ

.

They satisfy the commutation relations

uµ(k1)uν(k2) = qJ
µνk1k2k̄uν(k2)uµ(k1), q = e−i.
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A basis for the Hilbert space H is given by the eigenvectors

φk = u1(k1)u2(k2)u3(k3)u4(k4) = eik1x
1

eik2x
2

eik3x
3

eik4x
4

, k = (k1, k2, k3, k4)

of ∆. The corresponding eigenvalues are λk = k2 + µ2 where we have set k2 = gµνkµkν . The
element G can be written then

G(xµ; xµ′) =
1

(2π)4

∫

(k2 + µ2)−1φk ⊗ φ∗
k dk, dk = dk1dk2dk3k4.

We must introduce a partial trace on Ak̄. This can be done only through a representation.
The only properties which we shall need are the identities

Tr(u∗
µ(k

′)uν(k)) = 2πδ(k′ − k)gµν .

That is:
Tr(φ∗

k′φk) = (2π)4δ(4)(k′ − k).

It is most convenient to choose a generalization of the second representation given in Sec-
tion 3, the one which is reducible and non-singular in the limit k̄ → 0. We represent Ak̄ as
an algebra of operators on L2(R4, dx) defined on f(αλ) ∈ L2(R4, dx) by

uµ(k)f(α
λ) = eikα

µ

f(αλ +
1

2
k̄Jλµk).

A convenient basis for L2(R4, dx) is |p〉 = eipλα
λ

with pλ ∈ R. We have then

uµ(k) |p〉 = q
1

2
k̄Jµνkpν |p1 + kδµ1, p2 + kδµ2, p3 + kδµ3, p4 + kδµ4〉.

The eigenvectors φk have matrix elements defined by

φk |p〉 = q
1

2
k̄Jµνkµpν |p+ k〉.

The commutation relations (2.7) become in this case

[x̄µ, x̄ν ] =
1

2
ik̄Jµν , [δxµ, δxν ] =

1

2
ik̄Jµν .

We introduce the operators a1 and a2 as previously in Section 2 and we write

δxµ = Jµ
1 a1 + Jµ∗

1 a∗1 + Jµ
2 a2 + Jµ∗

2 a∗2 (5.1)

from which we conclude that

J
[µ
1 J

ν]∗
1 + J

[µ
2 J

ν]∗
2 =

1

2
iJµν .

We have therefore in the basis |p̄, k〉 ≡ |p̄〉D ⊗ |k〉F , with as before |p̄〉 ≡ |p̄, 0〉,

u∗
µ(k) |p̄〉= e−ikxµ |p̄〉 = e−ik(x̄µ−δxµ) |p̄〉

= e−ikx̄µ

eikδx
µ |p̄〉

= e−ikx̄µ

eik(J
µ
1
a+Jµ∗

1
a∗)eik(J

µ
2
b+Jµ∗

2
b∗) |p̄〉.
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Using the BaCH formula we find that

u∗
1(k1) |p̄〉 = e−ik1x̄1

e−k̄(|J1

1
|2+|J1

2
|2)k2

1
/2eik1(J

1∗

1
a∗+J1∗

2
b∗) |p̄〉

and therefore
φ∗
k |p̄〉 = e−ikµx̄µ

e−k̄Kµνkµkν/4eiω(kµ)eikµ(J
µ∗
1

a∗+Jµ∗
2

b∗) |p̄〉.
The ω is an unimportant phase factor and we have introduced the diagonal tensor

1

2
Kµν = diag(|J1

1 |2 + |J1
2 |2, |J2

1 |2 + |J2
2 |2, |J3

1 |2 + |J3
2 |2, |J4

1 |2 + |J4
2 |2).

The expectation value of the propagator is given by the expression

〈p̄|G(xµ; xν) |p̄〉 = µ2I(k̄µ2, K)〈p̄ | p̄〉

with

I(k̄µ2, K) =
1

(2π)4µ2

∫

e−k̄Kµνkµkν

k2 + µ2
dk.

We must now address the delicate question of (euclidean) Lorentz invariance. There are
two attitudes one can take. One can suppose that Lorentz invariance is exact at all scales.
One must then add [12] the Jµν as six extra coordinates, minus possibly two because of two
invariants which can be formed. Either one considers that there is no momentum associated
to these coordinates, in which case one can take an average value over them and the problem
is solved as above, or one can consider them to be ordinary coordinates like the four visible
ones, in which case they would have to be ‘quantized’ also. If this be so the Jµν cannot lie in
the center [38]. Alternatively one can admit that the tensor Jµν breaks Lorentz invariance
on the scale of k̄. This manifests itself by the existence of the vectors Jµ

1 and Jµ
2 . However

there is also an ambiguity in the choice of creation and annihilation operators, described by
the symplectic group here of dimension 10. It is always possible then to choose a1 and a2 so
that

Kµν = gµν .

We shall suppose that this has been done. The issue of Lorentz invariance will not ap-
pear explicitly then, except to the extent that our calculations are not invariant under the
symplectomorphism group. This is fortunate since we have motivated the introduction of
noncommuting coordinates by the desire to maintain Lorentz invariance.

The integral I(k̄µ2) = I(k̄µ2, g) is given by

I(k̄µ2) =
1

(2π)4µ2

∫

e−k̄k2

k2 + µ2
dk =

1

16π2

( 1

k̄µ2
+ ek̄µ

2

Ei(−k̄µ2)
)

.

For all values of k̄µ2 the function I(k̄µ2) is concave. When k̄µ2 → 0

I(k̄µ2) =
1

16π2

( 1

k̄µ2
+ log(k̄µ2) + · · ·

)

(5.2)

and when k̄µ2 → ∞
I(k̄µ2) =

1

16π2(k̄µ2)2

(

1− 2

k̄µ2
+ · · ·

)

.

We would like eventually to compare the expression (5.2) with a curved-space analogue in
the limit of vanishing curvature; this would supply a preferred Lorentz frame in the limit.
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The density of (euclidean) action of a uniform, static, free scalar field is given by

Γ =
1

2
µ2

∫

φ2.

The quantity

〈Λ〉0 =
1

2
k̄µ4I(k̄µ2)

can be interpreted [44] as a contribution of the scalar-field vacuum fluctuations to the cos-
mological constant. We would like to be able to compare this with a noncommutative
‘curved-space’ configuration but in dimension 4 we have thus far only been able to consider
the flat case. In the absence of any other information we suppose the dominant contribution
to be obtained by a substitution of the form

IK(k̄µ
2) ≃ I

(

k̄(µ2 + αK)
)

(5.3)

where α is a constant and K is some local mean curvature. We find then from (5.2) that

∆〈Λ〉0 ≃ − 1

32π2
αK

(

1− αK

µ2

)

. (5.4)

If the space-time has constant curvature K then ∆〈Λ〉0 = −3K. Consistency requires then
that

α =
32

3
π2 + o(Kµ−2).

If one is interested in a cosmological solution of type Friedmann-Robertson-Walker then
one can identify

k̄ → 8πGN , K → a(t)−2

and Wick-rotate to real time. One must also replace (5.4) by

k̄〈ρ〉0 ≃
1

32π2

α

a2

(

1− α

µ2a2

)

, 〈ρ〉0 ≡ ∆〈T00〉0 (5.5)

since a solution cannot be found with a varying effective ccosmological constant. One obtains
in the flat case (k = 0) the equation

ȧ2 =
α

96π2

(

1− α

µ2a2

)

which has a bounce solution given by

a(t) =

√

α

µ2

(

1 +
µ2t2

96π2

)

.

The effective pressure is negative [43]:

k̄〈p〉0 ≃ − 1

96π2

α

a2

(

1 +
α

µ2a2

)

and the strong energy condition is violated:

k̄(〈ρ〉0 + 3〈p〉0) ≃ − 1

16π2

α2

µ2a4
< 0.
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The energy which is the effective source of the solution is the difference between two
vacuum energies and its sign depends simply on which of the two is the larger. The minimal
radius is given by µ2a2(0) = α and at this value of t the approximation to IK(k̄µ

2) which we
have used is no longer valid. This is evident from the fact that the expression (5.5) for 〈ρ〉0
vanishes at the bounce and it should be maximum there.

Another problem which one can consider is the ‘self-consistent’ mass calculation [34]
based on a 1-loop approximation to the Schwinger-Dyson equation. With an interaction of
the form λφ4 a scalar field acquires a mass µ which must satisfy the equation µ2 = λµ2I(k̄µ2).
That is, to leading order

λ ∼ 8π2k̄µ2.

If k̄ is identified with the square of the Planck length this would imply an interaction constant
λ slightly larger than 10−20. If on the other hand we require that λ ∼ 1 then this would
imply that k̄µ2 ∼ 1/(8π2).

The noncommutative torus is the formal algebra generated by the uµ for arbitrary fixed
values of the kµ. It was the first noncommutative geometry on which a Yang-Mills action
was proposed [9]. Recently higher-loop contributions to the ‘classical’ action have been
investigated [32, 24].
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