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Abstract

We propose a multiscale model for tumor cell migration in a tissue network. The system of equa-
tions involves a structured population model for the tumor cell density, which besides time and
position depends on a further variable characterizing the cellular state with respect to the amount
of receptors bound to soluble and insoluble ligands. Moreover, this equation features pH-taxis and
adhesion, along with an integral term describing proliferation conditioned by receptor binding. The
interaction of tumor cells with their surroundings calls for two more equations for the evolution of
tissue fibers and acidity (expressed via concentration of extracellular protons), respectively. The
resulting ODE-PDE system is highly nonlinear. We prove the global existence of a solution and
perform numerical simulations to illustrate its behavior, paying particular attention to the influence
of the supplementary structure and of the adhesion.
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lular proton dynamics, nonlinear diffusion, global existence, integro-differential equations.
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1 Introduction

The migration of tumor cells and the consequent invasion and degradation of normal tissue leading to
metastases constitute one of the hallmarks of cancer [30]. They are greatly influenced by the tumor
microenvironment, of which the structure and composition of the extracellular matrix (ECM) plays a
decisive role. From a simplified viewpoint, the ECM is made up of soluble (e.g., protons -buffered or
not- in various chemical compounds, matrix degrading enzymes, proteolytic residuals resulting from
degradation of the matrix fibers, etc.) and insoluble (e.g., fibrillar collagen or fibronectin) components,
most of them being involved in cell survival, migration, and proliferation, see e.g., [42] and references
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therein. At the onset of these processes is the binding of cell surface receptors to both types of
ECM components. Thereby, the attachment of insoluble ligands to such receptors 1 is necessary for
cell-tissue adhesions. When cells connect to each other via specific receptors (primarily cadherins,
see e.g., [33]) cell-cell adhesions are established, the strength of which is essential among others for
proliferation and determination of the migration phenotype (e.g., single cell vs. collective motions).
The latter then leads to diversity of invasion patterns: those arising from individual cell migrations
are diffusive and highly infiltrative, whereas tightly connected cells moving in groups form protruding
sheets and strands that maintain contact with the primary site; they can also form ’islands’ of cells 2

[25].
There is a plethora of mathematical models related to tumor invasion and accounting in a more or less
direct way for cell-cell and cell-matrix adhesions. Most of them describe individual cell behavior and
are discrete –in their majority lattice based (e.g., [29, 59], also see [15] for a comprehensive review)
or off-lattice (see e.g., [18, 53]). The so-called hybrid models have a semidiscrete character: They
specify the evolution of cells in a discrete, individual-based way and couple it to that of some tactic
signal (e.g., chemoattractant concentration, density of ECM fibers), the latter being modeled in a
continuous way via some reaction-(diffusion) equation, see e.g., [2, 36, 54]. (Semi)discrete models
provide the framework for very detailed descriptions of the mechanical and biochemical processes
involved in adhesion-mediated cell migration. Continuous models allow for less level of detail and
make it rather difficult to explicitly include cell-cell and cell-tissue adhesion; however, they have the
advantage of providing deeper insight into the mathematical analysis of the respective systems of
equations and, moreover, of affording efficient numerical simulations.
There are different classes of fully continuous models involving cell adhesion; here we will only refer
to those relating it to the space-time evolution of the cell density, some of them receiving a multi-
scale character by including subcellular dynamics in an explicit way. Among the first approaches we
mention that in [51], where cell-cell adhesion is indirectly described by a certain kind of ’crowding’,
namely by letting the cell diffusion coefficient depend on the cell density. Another, still indirect way
of investigating the effects of cell-cell adhesion on tumor growth via tumor surface tension has been
proposed in [10] and further developed in [13, 43]. A further model class focuses on cell-tissue inter-
actions, described by way of haptotaxis3, see e.g. [12, 3]. Related multiscale settings also involving
the integrin binding dynamics have been proposed in [44] and [45, 58], the latter also investigating
the well-posedness of the obtained systems coupling PDEs for the macroscopic quantities (cell and
tissue densities) with ODEs (receptor binding dynamics). Pure macroscopic models of tumor invasion
featuring haptotaxis and diverse types of nonlinear (and possibly degenerate) diffusion have been in-
vestigated (also with respect to global well-posedness) in [65, 66, 67]. Directly incorporating cell-cell
adhesion in a continuous, macroscopic formulation requires an adequate description of the mutual cell
interactions; this is tightly related to the sensing region over which each cell is able to interact with its
immediate and further-away neighbors. Similar considerations apply to cell-tissue interactions. The
mentioned idea calls for nonlocal terms in the description of cell adhesions: such terms involve inte-

1primarily integrins, a family of heterodimeric transmembrane receptors providing the cell with signals from its
surroundings, see e.g., [31, 32]

2cell aggregates situated some small distance away from the main tumor and presumably formed by detached cell
clusters or cell ’seeding’ and subsequent accumulation

3type of tactic cell motion biased in the direction of the gradient of some non-diffusing agent, in this context the
density of ECM fibers
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grals over all spatial points within the sensing region. This led to the model in [4] and its subsequent
versions, see e.g., [27, 28, 47, 48]. The model in [37] considers haptotaxis in the ’classical’ way (i.e.,
without integrating over the tissue-sensing region), while cell-cell interactions are described with the
aid of such nonlocal terms. Hence, it can be seen as an intermediate setting between the two modeling
approaches on the macroscale.
Works concerned with the mathematical analysis of nonlocal models of cell adhesion are less widespread
than those addressing modeling and numerical simulations of such processes. In [56] the authors
investigated the conditions ensuring boundedness of solutions to an integro-differential equation in
1D with cell-cell and cell-tissue adhesion, linear diffusion, and logistic type source term modeling the
evolution of cancer cells invading and degrading the surrounding ECM. A system coupling a reaction-
diffusion-haptotaxis equation with linear diffusion and nonlocal terms describing cell-cell and cell-ECM
proliferative interactions has been proposed in [60], and the global existence of the solution was proved.
Further analytical investigations of nonlocal models with cell-cell adhesion have been performed in
[19, 20].
Since the population level behavior of cells is controled by and in turn influences cellular processes
taking place on lower scales (individual and subcellular levels), multiscale continuous models connect-
ing two or more of these scales would be desirable. The kinetic theory of active particles (KTAP,
see e.g., [8]) offers a framework for addressing this issue. The corresponding models feature kinetic
transport equations for the evolution of cell density functions depending on time, position, velocity,
and possibly further variables relating to the cell condition and called in KTAP ’activity variables’.
The integral terms included in those models describe changes in the (mesoscopic) cell density due to
velocity innovations and proliferative actions via cell-cell interactions mediated by modifications of the
activity variables. Hapto- and chemotaxis can be introduced on this mesoscopic level in an indirect
way by using adequate integral terms accounting for the effects of activity variable dynamics, as in [41].
The resulting setting involves besides mesolevel cell and tissue dynamics also the subcellular receptor
binding and the macroscopic evolution of some chemotactic signal, which makes it a three-scale model.
While there the effects of cell-tissue reciprocities are described in an indirect way and have a local
character, the model can be extended to allow for nonlocal interactions, with the therein proof for
global well-posedness still functioning. Yet in the KTAP framework, we introduced in [22] a two-scale
model for glioma invasion where the cell-tissue adhesion is characterized by interactions in the inte-
gral term featuring a cell turning rate depending on the binding of cell receptors to ECM fibers. The
parabolic scaling led to effective equations for the macroscopic cell density involving haptotaxis and a
supplementary advection term. The subsequent multiscale models in [24, 23] accounted for cell-tissue
interactions in a more explicit way (via receptor-ECM binding), the latter also contributing to the cell
proliferation.4 In this work we retake that idea 5 in the general framework of a structured population
model. Indeed, all previous settings can be cast in such a framework, in which the variables of interest
(cell and tissue densities, concentrations of some chemicals influencing the cell motion) depend on
time, position, and possibly further structure variables (e.g., cell velocity, fiber orientation, cell state:
amount of bound receptors -as in this work, phenotype, etc.).
In [21] a cell migration model with cell-cell adhesion and structured by cell age has been proposed to
extend previous nonlocal versions with linear diffusion and without further structures [19, 20] 6 and

4Cell-cell interactions could be presumably included as proposed in the more general KTAP mentioned above.
5see the second integral term on the right hand side of (2.1a)
6see also the references therein for further interesting models with nonlocal terms, those in [9, 39] even involving

3



analyzed with respect to well-posedness, positivity, and long-term behavior of the solution, thereby
relying on the semigroup theory. The model proposed in [17] is a structured population model, as
well, the variable of interest -cancer cell density- depending on time t, space x, and a further structure
variable y, the latter representing the concentration of bound molecules on the cell surface. It is
heuristically obtained by using -as e.g., in [4]- the equilibrium of (diffusive, taxis, and adhesion) fluxes,
also obtaining as usually the transport term with respect to y which is typical for such structured
models. By subsequent integration with respect to the y variable a non-structured, pure macroscopic
model for cancer invasion with hapto- and chemotaxis was deduced and numerical simulations have
been performed both for the structured and non-structured settings.
In this work we propose a multiscale model for acid-mediated tumor invasion in a tissue network,
where the tumor cell density is also structured by the binding state of the cell surface receptors.
Thereby, the receptors are assumed to bind both to soluble (to simplify we assume these are only
protons) and insoluble components (tissue fibers) of the ECM, the respective concentrations making
up the components of the vector of cell states, which constitutes at the same time the structure
variable supplementary to space and position. The model includes cell-cell and cell-tissue adhesions,
along with a so-called pH-taxis term to account for the bias in the cell motion introduced by the
peritumoral acidity. The proliferation of tumor cells is included in a different way than in [17], rather
relying on the KTAP approach and particularly on that in [24, 23]. The paper is organized as follows:
In the subsequent Section 2 we introduce and explain our model. Section 3 follows, proving the global
existence of weak solutions to the introduced system. In Section 4 we perform numerical simulations
for a 1D version of the model, in order to illustrate the basic behavior of the solution. Eventually,
Section 5 provides a discussion of the results and some comments of the problems which are still to
be investigated in this context.

2 The model

We introduce the following model variables: c(t, x, y) denotes the density of cancer cells, v(t, x) repre-
sents the density of tissue fibers in the ECM, and h(t, x) denotes the density of extracellular protons.
Here t ≥ 0 represents the time, x ∈ Ω the spatial position and y ∈ Y the concentration of cell sur-
face receptors7 bound to ECM fibers (integrins) or occupied/activated by protons8. We consider the
nonlocal PDE-ODE system

∂tc = ∇ · (D(v, h)∇c)−∇ · (χ(c, h)∇h)−∇ · (cA)− ∂y(g(t, x, y, h, v)c)

+

∫
Y

(1− ĉ)β(y, ỹ)c(t, x, ỹ)dỹ + v(t, x)σ(x, v(t, x))

∫
Y
κ(y, ỹ)c(t, x, ỹ)dỹ

− δc(x, y, h)c, (t, x, y) ∈ (0,∞)× Ω× Y, (2.1a)

∂tv = −δvvh+ µvv (1− v − ĉ) , (t, x) ∈ (0,∞)× Ω, (2.1b)

nonlinear and possibly degenerate diffusion
7by a slight abuse of definition we will call y an internal variable, which stresses out the fact that its dynamics is

acting on the faster, subcellular scale
8usually proton dynamics refers to their shuttling across the cell membrane by several transporters like NHE (Na+

and H+ exchanger), NDBCE (Na+ dependent Cl-HCO3 exchanger), MCTs (monocarboxylate transporters) and AE
(Cl-HCO3 anion exchanger), however there have also been investigated cell receptors –so-called proton sensing– which
can be activated by acidosis, see e.g., [14, 34, 55]
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∂th = Dh∆h+
α ĉ

1 + ĉ
− λh, (t, x) ∈ (0,∞)× Ω, (2.1c)

where Ω ⊂ Rn is a bounded domain with smooth boundary, n ∈ {1, 2, 3}, and Y := (0, 1) ⊂ R. We
denote the total cancer cell density with ĉ =

∫
Y c(t, x, ỹ)dỹ. Throughout the paper, the operators ∇,

∇·, and ∆ denote the gradient, divergence, and Laplacian, respectively, with respect to the spatial
variable x. The first term on the right hand side of (2.1a) describes nonlinear diffusion, the coefficient
of which is assumed to depend on the solution components v and h. Indeed, the way tissue fibers
interact with (and are degraded by) soluble components of ECM does influence the motility (and in
particular the diffusivity) of tumor cells. The second term on the right hand side in (2.1a) models pH-
taxis hence it describes the directed motion of tumor cells towards the pH-gradient, as experimentally
observed [5, 49]. A possible choice of the diffusion and pH-taxis coefficients is e.g.,

D(v, h) =
hv + hT
hT (1 + v)2

and χ(c, h) =
s hT c

(hT + h)2
, (2.2)

ensuring that the diffusivity of tumor cells is enhanced upon contact between soluble and insoluble
components of the ECM, however with a certain saturation with respect to the amount of tissue fibers
available for influencing the spread of tumor cells; a too dense ECM is prone to inhibit motility. The
concrete form of the pH-taxis coefficient is chosen, too, to account for the influence of cell density and
the limitation imposed by the concentration of soluble components. Similar choices have been consid-
ered for haptotaxis in a different, but related context in [67, 66]; their particular form is motivated by
the interactions between cells and tissue (here between cells and protons) taking place on a fast time
scale. The next term in (2.1a) models adhesion, with the nonlocal flux term cA(c, v) including both
cell-cell and cell-tissue interactions. The coefficient A(c, v) is called adhesion velocity and takes the
form (see e.g. [27, 47])

A(t, x, y, c, v) =
1

R

∫
BR(0)

F (|ξ|, ρ, h)G
(
t, y, c(t, x+ ξ, ·), v(t, x+ ξ)

) ξ
|ξ|
dξ

with the definition c(t, x, y) = v(t, x) = 0 for x ∈ Rn \ Ω̄ and (t, y) ∈ [0,∞) × Ȳ . Thereby, R > 0
denotes the sensing radius, F (·, ρ, ·) represents the interaction force depending on the interaction range
ρ, and G gives the effective interactions, mutually between cells and with the surrounding tissue fibers:

G(t, y, c(t, x+ ξ, ·), v(t, x+ ξ))

=

(∫
Y
Scc(t, y, ỹ)c(t, x+ ξ, ỹ)dỹ + Scv(t, y)v(t, x+ ξ)

)(
1− ĉ(t, x+ ξ)− v(t, x+ ξ)

)
+

Here, the coefficients Scc and Scv denote the self-population and the cross-population adhesion coef-
ficients, respectively. They were previously [4, 27, 47, 48] taken to be constants or depend on time
only [16]. In [17] they depend, too, on the supplementary structure variable y, however there the
focus was not on effectively handling the structured population model, but on deducing a macroscopic
description for the evolution of tumor cell density in interaction with tissue and MDEs. Therefore,
the issue of these coefficients depending on y was not further addressed there. As in the present work
we want to preserve the multiscale, structured setting for our investigations, we account for concrete
such choices. They can take e.g., the form

Scc(t, y, ỹ) =
yỹ

1 + yỹ
, Scv(t, y) =

y

1 + y
,
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characterizing the interactions between cells of internal state y with cells of internal state ỹ, and
between cells of internal state y and tissue, respectively. For the interaction force we choose as

in [28, 47, 48] F (r, ρ, h) = γ(h) r
ρ2
e
− r2

2ρ2 , where r denotes the distance from the cell and γ(h) the
interaction strength: for γ > 0 there is an attracting interaction, while γ < 0 means repelling. We

also impose the condition
∫∞

0 γ(h) r
ρ2
e
− r2

2ρ2 dr = ρ. The interaction strength depends on the (locally)

available concentration of extracellular protons and is to be chosen nonnegative for h ≤ hT (alcaline
regime, attracting case) and negative for h > hT (acidic regime, repelling case), where hT denotes an
acidity threshold.9

The transport term (with respect to y) in (2.1a) originates in the receptor binding dynamics. A simple
choice of the function g therein could be obtained by mass action kinetics for the binding of integrins
to protons and to tissue fibers. However, in view of the conditions needed subsequently in the proof
of the well-posedness we assume that the binding/detachment rates depend on time, position, and the
receptor binding states; thus, in a scaled form these bindings are characterized by

(1− y) + h
κ+h (t,x,y)
−−−−−−⇀↽−−−−−−
κ−h (t,x,y)

y, (2.3a)

(1− y) + v
κ+v (t,x,y)−−−−−−⇀↽−−−−−−
κ−v (t,x,y)

y, (2.3b)

with κ±h (t, x, y) := k±(t, x)rh(y) and κ±v (t, x, y) := K±(t, x)rv(y), with rh and rv chosen such that
rh(0) = rv(0) = 0 and arh(1) = brv(1) = 0, with a > b ≥ 0 constants. Moreover, considering that the
averaged subcellular dynamics (of receptor binding) happens very fast in comparison to the evolution
of cells and tissue, we obtain for the coefficient function g involved in the term of (2.1a) modeling
’advection’ with respect to y the form

g(t, x, y, h, v) =
ak+(t, x)rh(y)h− bK+(t, x)rv(y)v

a− b
(1− y)− ak−(t, x)rh(y)h− bK−(t, x)rv(y)v

a− b
y,

The above choice has been made in order to comply with the conditions on the function g in Section 3.
Other choices are possible, as well, and we will address in the numerical simulations an even simpler
form, with constant attachment and detachment rates (for which, however, our proof below does not
work). Notice that we lumped together both types of bound receptors, whether they are bound to
soluble or insoluble components of the ECM. This simplification aims at having only a scalar internal
variable y, allowing to operate in a more convenient way with the term modeling transport with respect
to this variable. A more detailed modeling would have involved in (2.3) the ’reactant’ 1− (y1 + y2) on
the left hand side and y1, y2 on the right hand sides, respectively, and consequently a vector function
g(t, x, y, h, v) and a transport term of the form ∇y · (gc), calling for corresponding conditions on the
boundary of the set Y = (0, 1) × (0, 1). Moreover, we did not explicitly account for mutual receptor
binding directly relating cell-cell interaction; indeed, the latter is indirectly addressed via bindings to
ECM and soluble components (protons) in order to avoid inflating too much the setting; we recall

9E.g., one could choose the concentration of H+ corresponding to a pH value below the normal one of pH = 7.4, as
the cancer cells are able to survive at lower pH, however they start migrating when their surroundings become too acidic,
see e.g. [63].
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that our focus is on the joint effects of adhesion, pH-taxis, and nonlinear diffusion, thereby paying
increased attention to the source terms in the PDEs under study and showing a way to include lower
scale dynamics.

The cell proliferation is characterized by the integral terms on the right hand side of (2.1a). Unlike
previous nonlocal models of cell migration (e.g., [27, 28, 47]) featuring logistic type terms or including
positional nonlocality [60], it involves the supplementary structure variable y. The rate β(y, ỹ) in
(2.1a) denotes the average amount of cells with receptor binding state y produced per unit time by
a cell of state ỹ. A concrete form of it could be β(y, ỹ) = µc

1+yỹ
1+y+ỹ accounting for the connection

between the two types of cells and for a certain limiting of proliferation reported to the total receptor
bindings. Further proliferative influences come from the cell-tissue reciprocity, as proposed in [23],
where –relying on experimental evidence (see e.g., [31, 32])– we assumed that integrin binding to tissue
fibers is at the onset of many processes including (besides motility, invasion, survival) cell division.
These considerations lead to a further source term of the form given in the before-to-last term of (2.1a),
with κ(y, ỹ) denoting as in [23] a kernel characterizing the transition from the state ỹ to the state y
during such a proliferative (inter)action. Thereby, we only take into account the binding of integrins to
tissue fibers and omit any receptor occupancy with protons, as the latter rather impairs proliferation
by proton transport across the cell membrane and intracellular acidification. The acid-induced decay
is captured in the last term in (2.1a) in a very simplified way. The factor σ(x, v) represents some
further proliferation limitation when there are too many fibers surrounding the cancer cells, who are
thus competing for space. Hence, σ(x, ·) is supposed to be a decreasing function.

Equation (2.1c) describes the evolution of the extracellular proton concentration, which is produced (in
a limited way) by all cells (regardless of their receptor binding states), diffuses, and is depleted (e.g., by
buffering, uptake by vasculature, etc.). Notice that h could model other macroscopic concentrations
of soluble ECM components, as well. For instance, it could represent the concentration of matrix
degrading enzymes (MDEs) which are actually known to be enhanced by an acidic extracellular pH,
see e.g., [11, 35] and references therein. Both MDEs and extracellular protons degrade the tissue, thus
favorizing the invasion of tumor cells. Acidity-induced tissue degradation is modeled by the first term
in (2.1b) for the evolution of tissue density; the second term therein characterizes the restructuring of
the tissue in competition with both tissue and tumor cells.

In addition to the above PDEs we impose the boundary conditions

D(v, h) ∂νc− χ(c, h) ∂νh− cA · ν = 0 = ∂νh, (t, x, y) ∈ (0,∞)× ∂Ω× Y,
g(t, x, 0, h, v) = g(t, x, 1, h, v) = 0, (t, x, h, v) ∈ (0,∞)× Ω× [0,∞)2, (2.4)

(where ν denotes the outer unit normal on ∂Ω) and the initial conditions

c(0, x, y) = c0(x, y), v(0, x) = v0(x), h(0, x) = h0(x), (x, y) ∈ Ω× Y. (2.5)

3 Global existence of a weak solution

In this section we prove the existence of a global weak solution to (2.1),(2.4),(2.5). We assume that
the initial data satisfy

c0 ∈ C0(Ω̄× Ȳ ), v0 ∈ C0(Ω̄), h0 ∈ C1(Ω̄), c0 ≥ 0, v0 ≥ 0, h0 ≥ 0. (3.1)
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Moreover, for any L > 0 we require the existence of positive constants C1 and C2 such that

D ∈ C1([0,∞)2), χ ∈ C1([0,∞)2) ∩W 1,∞([0,∞)× [0, L]), F ∈ C1([0, R]× (0,∞)× [0,∞)),

G ∈W 1,∞([0, L]× Ȳ × [0,∞)× [0, L]), g ∈ C2([0,∞)× Ω̄× Ȳ × [0,∞)2),

β ∈ C1(Ȳ 2), σ ∈ C1(Ω̄× [0,∞)), κ ∈ C1(Ȳ 2), δc ∈ C1(Ω̄× Ȳ × [0,∞)),

0 < C2 ≤ D(v, h) ≤ C1 and χ(0, h) = 0 ≤ χ(c, h) ≤ C1(1 + c) for all (c, v, h) ∈ [0,∞)× [0, L]2,

|G(t, y, c(t, x+ ξ, ·), v(t, x+ ξ))|+ |∂y(G(t, y, c(t, x+ ξ, ·), v(t, x+ ξ)))|

≤ C1

(
1 +

∫
Y
c(t, x+ ξ, ỹ)dỹ

)
for all (t, y, x, ξ, c(t), v) ∈ [0, L]× Ȳ × Ω̄× L1(Ω× Y )× [0, L],

δc ≥ 0, β ≥ 0,

∫
Y
β(y, ŷ)dy ≥ β2 > 0 for all ŷ ∈ Y (3.2)

with some constant β2 > 0. We will use the following concept of weak solutions.

Definition 3.1 Let T ∈ (0,∞). A weak solution to (2.1),(2.4),(2.5) consists of nonnegative functions

c ∈ L2((0, T );W 1,2(Ω× Y )), v ∈ L∞((0, T )× Ω), h ∈ L∞((0, T )× Ω) ∩ L2((0, T );W 1,2(Ω))

which satisfy for all ϕ ∈ C∞0 ([0, T )× Ω̄× Ȳ ) and all ψ ∈ C∞0 ([0, T )× Ω̄) the equations

−
∫ T

0

∫
Ω

∫
Y
c∂tϕ−

∫
Ω

∫
Y
c0ϕ(0, ·, ·) = −

∫ T

0

∫
Ω

∫
Y
D(v, h)∇c · ∇ϕ

+

∫ T

0

∫
Ω

∫
Y
χ(c, h)∇h · ∇ϕ+

∫ T

0

∫
Ω

∫
Y
cA · ∇ϕ+

∫ T

0

∫
Ω

∫
Y
g(t, x, y, h, v)c∂yϕ

+

∫ T

0

∫
Ω

∫
Y

∫
Y

(
1−

∫
Y
c(t, x, ỹ)dỹ

)
β(y, ŷ)c(t, x, ŷ)dŷϕ(t, x, y)dydxdt

+

∫ T

0

∫
Ω

∫
Y
v(t, x)σ(x, v(t, x))

∫
Y
κ(y, ŷ)c(t, x, ŷ)dŷϕ(t, x, y)dydxdt

−
∫ T

0

∫
Ω

∫
Y
δc(x, y, h)cϕ, (3.3)

−
∫ T

0

∫
Ω
v∂tψ −

∫
Ω
v0ψ(0, ·)

=

∫ T

0

∫
Ω

{
−δvvh+ µvv

(
1− v −

∫
Y
c(t, x, y)dy

)}
ψ, (3.4)

−
∫ T

0

∫
Ω
h∂tψ −

∫
Ω
h0ψ(0, ·)

= −
∫ T

0

∫
Ω
Dh∇h · ∇ψ +

∫ T

0

∫
Ω

{
α
∫
Y c(t, x, y)dy

1 +
∫
Y c(t, x, y)dy

− λh
}
ψ. (3.5)

(c, v, h) is a global weak solution to (2.1),(2.4),(2.5) if it is a weak solution in (0, T ) × Ω × Y for all
T > 0.

The main result of this section is the existence of a global weak solution.
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Theorem 3.2 Let n ∈ N, Ω ⊂ Rn be a bounded domain with smooth boundary, and Y = (0, 1) ⊂
R. Assume further that (3.1) and (3.2) are fulfilled. Then there exists a global weak solution to
(2.1),(2.4),(2.5) in the sense of Definition 3.1 satisfying in addition

c ∈ L∞loc([0,∞);Lp(Ω× Y )) ∩ L∞loc([0,∞)× Ω̄;L1(Y )) ∩ L∞((0,∞);L1(Ω× Y )),

v ∈ L∞((0,∞)× Ω), h ∈ L∞((0,∞);W 1,∞(Ω))

for all p ∈ (1,∞).

We prove this result by adapting the method used in [57]. Namely, for suitable regularizations of
(2.1) we prove the existence of global classical solutions by the theory of parabolic equations and a
series of estimates in Lebesgue- and Sobolev-spaces. Finally, the Aubin-Lions lemma allows us to
deduce appropriate compactness properties which lead to the existence of a global weak solution to
the original problem. The main additional difficulty is to adapt the method to cover also (2.1a), which
is parabolic in x, but only of first order in y, and contains the nonlocal term ∇· (cA) (see in particular
Lemmas 3.3, 3.7, and 3.8). Unlike most methods for equations of this type, we neither use the theory
of semigroups nor the method of characteristics. However, the condition on g in (2.4), the growth
conditions on χ and G as well as the positivity of the diffusion coefficient D and its independence of
c in (3.2) are important in our proof. It remains an open problem to prove the global existence for
weaker conditions on these functions.
For the proof of this result, we approximate (2.1),(2.4),(2.5) for ε ∈ (0, 1) with the regularized problems

∂tcε = ∇ · (Dε(vε, hε)∇cε) + ε∂2
ycε −∇ · (χε(cε, hε)∇hε)−∇ · (cεAε)

−∂y(gε(t, x, y, hε, vε)cε) +
∫
Y

(
1−

∫
Y cε(t, x, ỹ)dỹ

)
β(y, ŷ)cε(t, x, ŷ)dŷ

+vε(t, x)σ(x, vε(t, x))
∫
Y κ(y, ŷ)cε(t, x, ŷ)dŷ

−δc(x, y, hε)cε, (t, x, y) ∈ (0,∞)× Ω× Y,
∂tvε = −δvvεhε + µvvε

(
1− vε −

∫
Y cε(t, x, y)dy

)
, (t, x) ∈ (0,∞)× Ω,

∂thε = Dh∆hε +
α
∫
Y cε(t,x,y)dy

1+
∫
Y cε(t,x,y)dy

− λhε, (t, x) ∈ (0,∞)× Ω,

Dε(vε, hε) ∂νcε − χε(cε, hε) ∂νhε − cεAε · ν = 0 = ∂νhε, (t, x, y) ∈ (0,∞)× ∂Ω× Y,
∂ycε = 0, (t, x, y) ∈ (0,∞)× Ω× {0, 1},
cε(0, x, y) = c0ε(x, y), vε(0, x) = v0ε(x), hε(0, x) = h0ε(x), (x, y) ∈ Ω× Y.

(3.6)

Here, we choose families of functions c0ε, v0ε, h0ε, Dε, χε, Fε, Gε, and gε, ε ∈ (0, 1), such that for any
L > 0

c0ε ∈ C3(Ω̄× Ȳ ), v0ε, h0ε ∈ C3(Ω̄), c0ε ≥ 0, v0ε ≥ 0, h0ε ≥ 0,

Dε(v0ε, h0ε) ∂νc0ε − χε(c0ε, h0ε) ∂νh0ε − c0εAε · ν = 0 = ∂νh0ε, (t, x, y) ∈ {0} × ∂Ω× Y,
∂yc0ε = 0, (t, x, y) ∈ {0} × Ω× {0, 1},
Dε ∈ C3([0,∞)2), χε ∈ C3([0,∞)2) ∩W 2,∞([0,∞)× [0, L]), Fε ∈ C3([0, R]× (0,∞)× [0,∞)),

Gε ∈ C3([0,∞)× Ȳ × [0,∞)2) ∩W 1,∞([0, L]× Ȳ × [0,∞)× [0, L]),

gε ∈ C3([0,∞)× Ω̄× Ȳ × [0,∞)2),

0 < C4 ≤ Dε(v, h) ≤ C3 and χε(0, h) = 0 ≤ χε(c, h) ≤ C3(1 + c) for all (c, v, h) ∈ [0,∞)× [0, L]2,
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|Gε(t, y, c(t, x+ ξ, ·), v(t, x+ ξ))|+ |∂y(Gε(t, y, c(t, x+ ξ, ·), v(t, x+ ξ)))|

≤ C3

(
1 +

∫
Y
c(t, x+ ξ, ỹ)dỹ

)
for all (t, y, x, ξ, c, v) ∈ [0, L]× Ȳ × Ω̄× L1(Ω× Y )× [0, L],

gε(t, x, 0, hε, vε) = gε(t, x, 1, hε, vε) = 0 for all (t, x, hε, vε) ∈ (0,∞)× Ω× [0,∞)2,

Aε(t, x, y, cε, vε) =
1

R

∫
BR(0)

Fε(|ξ|, ρ, h)Gε(t, y, cε(t, x+ ξ, ·), vε(t, x+ ξ))
ξ

|ξ|
dξ (3.7)

are satisfied with some positive constants C3 and C4 for all ε ∈ (0, 1), where again we set cε(t, x, y) =
vε(t, x) = 0 for x ∈ Rn \ Ω̄ and (t, y) ∈ [0,∞)× Ȳ in the definition of Aε. In addition, we assume that

c0ε → c0 in C0(Ω̄× Ȳ ), v0ε → v0 in C0(Ω̄), h0ε → h0 in W 1,∞(Ω),

Dε → D in C1([0, L]2), χε → χ in C1([0, L]2) ∩W 1,∞([0,∞)× [0, L]),

Gε → G in W 1,∞([0, T ]× Ȳ × [0,∞)× [0, L]),

Fε → F in C1([0, R]× [l, L]× [0, L]), gε → g in C2([0, T ]× Ω̄× Ȳ × [0, L]2) (3.8)

as ε↘ 0 for any 0 < l < L and any T > 0.

3.1 Global existence for the regularized problems

By adapting the method from [57] we prove the global existence of a classical solution for the approx-
imate problems (3.6) for any ε ∈ (0, 1). We first show the local existence with a proof similar to [57,
Lemma 3.3].

Lemma 3.3 Let ε ∈ (0, 1) and assume that (3.2) and (3.7) are fulfilled. Then there exists a maximal
existence time Tε ∈ (0,∞] and functions cε ∈ C1,2,2([0, Tε)× Ω̄× Ȳ ), vε, hε ∈ C1,2([0, Tε)× Ω̄) solving
(3.6) in the classical sense and satisfying

cε(t, x, y) ≥ 0, 0 ≤ vε(t, x) ≤ max
{
‖v0ε‖L∞(Ω), 1

}
, 0 ≤ hε(t, x) ≤ max

{
‖h0ε‖L∞(Ω),

α

λ

}
(3.9)

for (t, x, y) ∈ [0, Tε)× Ω̄× Ȳ . Furthermore, in case of Tε <∞

lim sup
t↗Tε

(
‖cε(t, ·, ·)‖C0(Ω̄×Ȳ ) + ‖hε(t, ·)‖W 1,∞(Ω)

)
=∞ (3.10)

is fulfilled.

Proof. We fix η ∈ (0, 1), T := 1, and

A := ‖c0ε‖C2+η(Ω̄×Ȳ ) + ‖v0ε‖C2+η(Ω̄) + ‖h0ε‖C2+η(Ω̄) <∞.

Denoting by c0εt(x, y), v0εt(x), and h0εt(x) the right hand side of the first, second, and third equation
of (3.6), respectively, evaluated at (x, y, t) = (x, y, 0), we observe that there is a positive constant
C5(A) depending on A such that

B := ‖c0ε‖Cη(Ω̄×Ȳ ) + ‖c0εt‖C0(Ω̄×Ȳ ) + ‖v0ε‖C1+η(Ω̄) + ‖v0εt‖C1(Ω̄)
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+‖h0ε‖Cη(Ω̄) + ‖h0εt‖C0(Ω̄) ≤ C5(A) <∞ (3.11)

is fulfilled. We further define

X :=
{

(cε, vε, hε) ∈ C
η
2
,η,η([0, T ]× Ω̄× Ȳ )× C

1+η
2
,1+η([0, T ]× Ω̄)× C

η
2
,η([0, T ]× Ω̄) :

cε(0, x, y) = c0ε(x, y), vε(0, x) = v0ε(x), hε(0, x) = h0ε(x), (x, y) ∈ Ω× Y,

‖cε‖C η
2 ,η,η([0,T ]×Ω̄×Ȳ )

+ ‖vε‖
C

1+η
2 ,1+η([0,T ]×Ω̄)

+ ‖hε‖C η
2 ,η([0,T ]×Ω̄)

≤ B + 3
}

and choose a function H ∈ C3(R) such that

H(z) ≥ 1

4
for all z ∈ R, H(z) = 1 + z for all z ≥ −1

2
. (3.12)

Given fixed (cε, vε, hε) ∈ X, we use (3.2) and (3.7) to deduce from [38, Theorem IV.5.3] and the
parabolic comparison principle that there exists a solution h̃ε ∈ C1+ η

2
,2+η([0, T ]× Ω̄) to

∂th̃ε = Dh∆h̃ε +
α
∫
Y cε(t, x, y)dy

H
(∫
Y cε(t, x, y)dy

) − λh̃ε, (t, x) ∈ (0,∞)× Ω, (3.13)

with the homogeneous Neumann boundary condition and initial data h0ε so that

‖h̃ε‖C1+
η
2 ,2+η([0,T ]×Ω̄)

≤ C6(A) (3.14)

holds with some constant C6(A). Next, by (3.2), (3.7), [38, Theorem III.5.1], and [40, Theorem 1.1],

there exists some η1 ∈ (0, η] and a weak solution c̃ε ∈ C
1+η1

2
,1+η1,1+η1([0, T ]× Ω̄× Ȳ )∩W

1
2
,1,1

2 ([0, T ]×
Ω̄× Ȳ ) of the problem

∂tc̃ε = ∇ ·
(
Dε(vε, h̃ε)∇c̃ε

)
+ ε∂2

y c̃ε − χε(cε, h̃ε)∆h̃ε − ∂c(χε)(cε, h̃ε)∇c̃ε · ∇h̃ε
−∂h(χε)(cε, h̃ε)|∇h̃ε|2 −∇c̃ε · Aε(t, x, y, cε, vε)− cε∂c(Aε)(t, x, y, cε, vε) · ∇c̃ε
−cε∂v(Aε)(t, x, y, cε, vε) · ∇vε − ∂y(gε(t, x, y, h̃ε, vε)c̃ε)
+
∫
Y

(
1−

∫
Y cε(t, x, ỹ)dỹ

)
β(y, ŷ)cε(t, x, ŷ)dŷ

+vε(t, x)σ(x, vε(t, x))
∫
Y κ(y, ŷ)cε(t, x, ŷ)dŷ − δc(x, y, h̃ε)c̃ε, (t, x, y) ∈ (0, T ]× Ω× Y,

Dε(vε, h̃ε) ∂ν c̃ε − χε(cε, h̃ε) ∂ν h̃ε − c̃εAε(t, x, y, cε, vε) · ν = 0, (t, x, y) ∈ (0,∞)× ∂Ω× Y,
∂y c̃ε = 0, (t, x, y) ∈ (0,∞)× Ω× {0, 1},
c̃ε(0, x, y) = c0ε(x, y), (x, y) ∈ Ω× Y.

Applying [40, Theorem 1.1], [38, Theorem IV.5.3], and the comparison principle, we further deduce

that c̃ε ∈ C1+
η1
2
,2+η1,2+η1([0, T ]× Ω̄× Ȳ ) is a classical solution of the latter problem and satisfies

‖c̃ε‖
C1+

η1
2 ,2+η1,2+η1 ([0,T ]×Ω̄×Ȳ )

≤ C7(A) (3.15)

with some constant C7(A). Moreover, by (3.14), (3.15), the theory of ODEs (see e.g. [50, Section 2.3]),

and the comparison principle we get a solution ṽε ∈ C1+
η1
2
,2+η1([0, T ]× Ω̄) to the second equation of

(3.6) (with c̃ε and h̃ε instead of cε and hε) with initial data v0ε which fulfills

ṽε ≥ 0 in [0, T ]× Ω̄, ‖ṽε‖
C1+

η1
2 ,2+η1 ([0,T ]×Ω̄)

+ ‖∂tṽε‖
C

1+η1
2 ,1+η1 ([0,T ]×Ω̄)

≤ C8(A) (3.16)
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with some constant C8(A). Here, the Hölder estimates with respect to x follow from the regularity of
c̃ε and h̃ε, an application of Gronwall’s inequality to ṽε(t, x1) − ṽε(t, x2), and similar applications of
Gronwall’s inequality for derivatives of ṽε. In particular, in view of the definitions of c0εt(x, y), v0εt(x),
and h0εt(x) before (3.11), the estimates (3.14)–(3.16) together with (3.12) imply that c0εt(x, y) =
∂tc̃ε(0, x, y), v0εt(x) = ∂tṽε(0, x), and h0εt(x) = ∂th̃ε(0, x) hold for (x, y) ∈ Ω̄ × Ȳ and that there is
T0 ∈ (0, T ] depending only on A such that

‖c̃ε‖C η
2 ,η,η([0,T0]×Ω̄×Ȳ )

+ ‖ṽε‖
C

1+η
2 ,1+η([0,T0]×Ω̄)

+ ‖h̃ε‖C η
2 ,η([0,T0]×Ω̄)

≤ B + 3 (3.17)

is fulfilled. For the latter estimate we used that T0 ≤ 1 implies that ‖ψ‖
C
η
2 ([0,T0])

≤ ‖ψ‖C1([0,T0])

holds for any ψ ∈ C1([0, T0]). Now, setting T := T0 and using (3.14)–(3.17), we conclude that
F : X → X,F(cε, vε, hε) := (c̃ε, ṽε, h̃ε) is a well defined and compact map. Therefore, in view
of Schauder’s fixed point theorem F has a fixed point (cε, vε, hε). By the above reasoning, cε is a
classical solution to the first equation of (3.6) with the respective boundary and initial conditions so
that the parabolic comparison principle implies

cε(t, x, y) ≥ 0, (t, x, y) ∈ [0, T )× Ω̄× Ȳ .

Hence, in view of (3.12) and (3.13), hε is a solution to the third equation of (3.6). Therefore, by the
above reasoning, the fixed point (cε, vε, hε) of F is a classical solution to (3.6) in (0, T )× Ω× Y , has
the claimed regularity properties, and satisfies (3.9), where the remaining estimates

vε(t, x) ≤ max
{
‖v0ε‖L∞(Ω), 1

}
, 0 ≤ hε(t, x) ≤ max

{
‖h0ε‖L∞(Ω),

α

λ

}
for (t, x) ∈ [0, T )× Ω̄ are consequences of standard comparison principles.
Finally, in order to prove (3.10), suppose that Tε < ∞ and assume for contradiction that there is
C9 > 0 such that

‖cε‖L∞((0,Tε)×Ω×Y ) + ‖hε‖L∞((0,Tε);W 1,∞(Ω)) ≤ C9. (3.18)

In conjunction with (3.2), (3.7), (3.9), and (3.6), this implies that

∂tcε = ∇x̂ · aε(x̂, t,∇x̂cε) + bε(x̂, t) in (Ω× Y )× (0, Tε),

where x̂ := (x, y) ∈ Rn+1,

aε(x̂, t, ξ) · ξ ≥
1

2
min{C4, ε}|ξ|2 − ψ0(x̂, t), |aε(x̂, t, ξ)| ≤ (C3 + 1)|ξ|+ ψ1(x̂, t)

is fulfilled for all (x̂, t, ξ) ∈ (Ω× Y )× (0, Tε)×Rn+1 with ψ0, ψ1, bε ∈ L∞((0, Tε)×Ω× Y ). Hence, by
[52, Theorem 1.3 and Remark 1.4] and (3.7), we have

‖cε‖
C
η2
2 ,η2,η2 ([0,Tε]×Ω̄×Ȳ )

≤ C10 (3.19)

with some constants C10 > 0 and η2 ∈ (0, 1). Then, by [38, Theorem IV.5.3],

‖hε‖
C1+

η2
2 ,2+η2 ([0,Tε]×Ω̄)

≤ C11
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holds with some C11 > 0. In conjunction with (3.19) and Gronwall’s inequality, this implies like in
(3.16) that

‖vε‖
C
η2
2 ,η2 ([0,Tε]×Ω̄)

≤ C12

with some constant C12. Using next [40, Theorem 1.1] for cε and afterwards [50, Theorem 2 in
Section 2.3] for vε, we deduce that

‖cε‖
C

1+η3
2 ,1+η3,1+η3 ([0,Tε]×Ω̄×Ȳ )

+ ‖vε‖
C

1+η3
2 ,1+η3 ([0,Tε]×Ω̄)

≤ C13

is fulfilled with some constants C14 > 0 and η3 ∈ (0, η2]. Since in addition A with η = η3 is finite,
(3.14)–(3.16) imply that

A1 := ‖cε‖
C1+

η4
2 ,2+η4,2+η4 ([0,Tε]×Ω̄×Ȳ )

+ ‖vε‖
C1+

η4
2 ,2+η4 ([0,Tε]×Ω̄)

+ ‖hε‖
C1+

η4
2 ,2+η4 ([0,Tε]×Ω̄)

<∞

is satisfied with some η4 ∈ (0, η3]. By using the first part of this proof, this solution can be extended to
a classical solution of (3.6) in (0, Tε + T0

2 )×Ω× Y with some T0 = T0(A1) > 0. Since this contradicts
the maximality of Tε, (3.10) is proved. �

In order to prove the global existence for (3.6) we will show appropriate estimates for cε and hε which
are independent of ε ∈ (0, 1). To this end, the heat semigroup in Ω with homogeneous Neumann
boundary conditions is denoted by (et∆)t≥0 and λ1 > 0 is the corresponding first non-zero eigenvalue
of −∆ in Ω. Then there exists a constant C5 > 0 such that

‖∇et∆v‖Lρ(Ω) ≤ C5

(
1 + t

− 1
2
−N

2
( 1
r
− 1
ρ

)
)
e−λ1t‖v‖Lr(Ω) for all t > 0 (3.20)

‖∇et∆w‖Lp(Ω) ≤ C5‖w‖W 1,p(Ω) for all t > 0 (3.21)

are fulfilled for any v ∈ Lr(Ω), w ∈ C1(Ω̄) with ∂νw = 0 on ∂Ω, 1 ≤ r ≤ ρ ≤ ∞ and p ∈ [2,∞]. (3.21)
for p < ∞ and (3.20) are proved e.g. in [64, Lemma 1.3], while (3.21) for p = ∞ follows from [46,
(2.39)] for t ≤ 1 and from (3.20) for t ≥ 1.
As a first step, we have the following elementary estimates by slightly adapting the method from [57,
Lemma 3.4].

Lemma 3.4 Assume that (3.1), (3.2), (3.7), and (3.8) are satisfied. Then there exists C > 0 such
that for all ε ∈ (0, 1) the solution to (3.6) from Lemma 3.3 fulfills for all t ∈ (0, Tε)∫

Y

∫
Ω
cε(t, x, y) dxdy

≤ m := max

 sup
ε∈(0,1)

∫
Y

∫
Ω
c0ε dxdy,

|Ω|
(
‖β‖L∞(Ȳ 2) + L1‖σ‖L∞(Ω̄×[0,L1])‖κ‖L∞(Ȳ 2)

)
β2

 , (3.22)

‖hε(t, ·)‖W 1,∞(Ω) ≤ C, (3.23)

where L1 := max

{
sup
ε∈(0,1)

‖v0ε‖L∞(Ω), 1

}
<∞.
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Proof. In view of the boundary conditions in (3.6) and the condition on gε in (3.7), an integration
of the first equation of (3.6) in conjunction with (3.2), (3.9), Y = (0, 1), and Hölder’s inequality implies

d

dt

∫
Y

∫
Ω
cεdxdy

=

∫
Y

∫
Ω

∫
Y

(
1−

∫
Y
cε(t, x, ỹ)dỹ

)
β(y, ŷ)cε(t, x, ŷ)dŷdxdy

+

∫
Y

∫
Ω
vε(t, x)σ(x, vε(t, x))

∫
Y
κ(y, ŷ)cε(t, x, ŷ)dŷdxdy −

∫
Y

∫
Ω
δc(x, y, hε)cεdxdy

≤
(
‖β‖L∞(Ȳ 2) + L1‖σ‖L∞(Ω̄×[0,L1])‖κ‖L∞(Ȳ 2)

)∫
Y

∫
Ω
cε(t, x, y)dxdy

− β2

∫
Ω

(∫
Y
cε(t, x, y)dy

)2

dx

≤
(
‖β‖L∞(Ȳ 2) + L1‖σ‖L∞(Ω̄×[0,L1])‖κ‖L∞(Ȳ 2)

)∫
Y

∫
Ω
cε(t, x, y)dxdy

− β2

|Ω|

(∫
Ω

∫
Y
cε(t, x, y)dydx

)2

, t ∈ (0, Tε).

Using an ODE comparison argument along with (3.8), we deduce that (3.22) is valid.
Next, the third equation of (3.6) and Lemma 3.3 yield

hε(t, ·) = etDh∆h0ε +

∫ t

0
e(t−s)Dh∆

(
α
∫
Y cε(s, ·, y)dy

1 +
∫
Y cε(s, ·, y)dy

− λhε(s, ·)
)
ds, t ∈ (0, Tε).

Combining this with (3.20), (3.21), and (3.9), we obtain

‖∇hε(t, ·)‖L∞(Ω)

≤
∥∥∇etDh∆h0ε

∥∥
L∞(Ω)

+

∫ t

0

∥∥∥∥∇e(t−s)Dh∆

(
α
∫
Y cε(s, ·, y)dy

1 +
∫
Y cε(s, ·, y)dy

− λhε(s, ·)
)∥∥∥∥

L∞(Ω)

ds

≤ C5 ‖h0ε‖W 1,∞(Ω)

+ C5

∫ t

0

(
1 + (Dh(t− s))−

1
2

)
e−λ1Dh(t−s)

∥∥∥∥ α
∫
Y cε(s, ·, y)dy

1 +
∫
Y cε(s, ·, y)dy

− λhε(s, ·)
∥∥∥∥
L∞(Ω)

ds

≤ C5 sup
ε∈(0,1)

‖h0ε‖W 1,∞(Ω)

+ C5

(
α+ λ sup

ε∈(0,1)
‖hε‖L∞((0,Tε)×Ω)

)∫ ∞
0

(
1 + (Dhσ)−

1
2

)
e−λ1Dhσdσ

for all t ∈ (0, Tε). In view of (3.1), (3.8), and (3.9), this proves (3.23). �

Next we prove bounds on cε in L∞((0, T );Lp(Ω × Y )) for any p ∈ (1,∞). This is an important step
towards the global existence for (3.6).
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Lemma 3.5 Let (3.1), (3.2), (3.7), and (3.8) be fulfilled and T ∈ (0,∞) such that T ≤ Tε. For any
p ∈ (1,∞) there exists a constant Cp(T ) > 0 such that for any ε ∈ (0, 1) the solution to (3.6) from
Lemma 3.3 satisfies

‖cε(t, ·, ·)‖Lp(Ω×Y ) ≤ Cp(T ) for all t ∈ (0, T ), (3.24)∫ T

0

∫
Y

∫
Ω

(cε + 1)p−2|∇cε|2 dxdydt ≤ Cp(T ). (3.25)

Proof. We fix p ∈ (1,∞) and multiply the first equation of (3.6) by (cε+1)p−1. By using integration
by parts, the boundary conditions in (3.6), Hölder’s and Young’s inequality along with (3.2), (3.7),
(3.8), and Lemma 3.4, we have

d

dt

1

p

∫
Y

∫
Ω

(cε + 1)pdxdy

=

∫
Y

∫
Ω

(cε + 1)p−1∂tcε dxdy

= −(p− 1)

∫
Y

∫
Ω
Dε(vε, hε)(cε + 1)p−2|∇cε|2 dxdy − ε(p− 1)

∫
Y

∫
Ω

(cε + 1)p−2|∂ycε|2 dxdy

+ (p− 1)

∫
Y

∫
Ω
χε(cε, hε)(cε + 1)p−2∇hε · ∇cε dxdy

+ (p− 1)

∫
Y

∫
Ω
cε(cε + 1)p−2Aε · ∇cε dxdy

− (p− 1)

∫
Y

∫
Ω

(∂ygε(t, x, y, hε, vε)cε + gε(t, x, y, hε, vε)∂ycε) (cε + 1)p−1 dxdy

+

∫
Y

∫
Ω

∫
Y

(
1−

∫
Y
cε(t, x, ỹ)dỹ

)
β(y, ŷ)cε(t, x, ŷ)dŷ(cε(t, x, y) + 1)p−1 dxdy

+

∫
Y

∫
Ω
vε(t, x)σ(x, vε(t, x))

∫
Y
κ(y, ŷ)cε(t, x, ŷ)dŷ(cε(t, x, y) + 1)p−1 dxdy

−
∫
Y

∫
Ω
δc(x, y, hε)cε(cε + 1)p−1 dxdy

≤ −(p− 1)C4

∫
Y

∫
Ω

(cε + 1)p−2|∇cε|2 dxdy

+ (p− 1)C3

∫
Y

∫
Ω

(cε + 1)p−1|∇hε| |∇cε| dxdy

+ (p− 1)C6(T )(1 +m)

∫
Y

∫
Ω

(cε + 1)p−1|∇cε| dxdy

+ (p− 1)C6(T )

∫
Y

∫
Ω

(cε + 1)p dxdy +
p− 1

p

∫
Y

∫
Ω
∂ygε(t, x, y, hε, vε)(cε + 1)p dxdy

+ C7

∫
Y

∫
Ω

(cε(t, x, y) + 1)p dxdy + C7

∫
Y

(cε + 1)p dxdy

≤ −(p− 1)C4

2

∫
Y

∫
Ω

(cε + 1)p−2|∇cε|2 dxdy +
(p− 1)C2

3

C4

∫
Y

∫
Ω

(cε + 1)p|∇hε|2 dxdy
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+
(p− 1)C2

6 (T )(1 +m)2

C4

∫
Y

∫
Ω

(cε + 1)p dxdy + C8(T )

∫
Y

∫
Ω

(cε + 1)p dxdy

≤ −(p− 1)C4

2

∫
Y

∫
Ω

(cε + 1)p−2|∇cε|2 dxdy + C9(T )

∫
Y

∫
Ω

(cε + 1)p dxdy (3.26)

for all t ∈ (0, T ) with positive constants C6(T ), C7, C8(T ), C9(T ) which do not depend on ε ∈ (0, 1)
and t ∈ (0, T ). Then by Gronwall’s inequality along with (3.1) and (3.8) we deduce that (3.24) is
valid, while (3.25) follows from (3.24) by integrating (3.26) with respect to t ∈ (0, T ). �

Now we are in a position to prove the global existence for each of the approximate problems (3.6) by
standard Hölder estimates.

Lemma 3.6 Assume that (3.1), (3.2), (3.7), and (3.8) are satisfied. Then for each ε ∈ (0, 1) the
solution to (3.6) from Lemma 3.3 exists globally in time and we have Tε =∞.

Proof. We fix ε ∈ (0, 1) and assume for contradiction that Tε ∈ (0,∞). Then (3.2), (3.7), (3.9),
(3.23), (3.24), and (3.6) imply that

∂tcε = ∇x̂ · aε(x̂, t,∇x̂cε) + bε(x̂, t) in (Ω× Y )× (0, Tε),

where x̂ := (x, y) ∈ Rn+1,

aε(x̂, t, ξ) · ξ ≥
1

2
min{C4, ε}|ξ|2 − ψ0(x̂, t), |aε(x̂, t, ξ)| ≤ (C3 + 1)|ξ|+ ψ1(x̂, t)

is fulfilled for all (x̂, t, ξ) ∈ (Ω× Y )× (0, Tε)× Rn+1 with ψ0, ψ1, bε ∈ L∞((0, Tε);L
p(Ω× Y )) for any

p ∈ (1,∞). Hence, by [52, Theorem 1.3 and Remark 1.4] and (3.7), we have

‖cε‖C η
2 ,η,η([0,Tε]×Ω̄×Ȳ )

≤ C6

with some constants C6 > 0 and η ∈ (0, 1). In view of (3.23) and (3.10), this contradicts the assumption
that Tε is finite and proves the lemma. �

3.2 Global weak solution to the original problem

In this subsection we prove the existence of a global weak solution to (2.1),(2.4),(2.5) with the help of
appropriate compactness properties of the solutions to (3.6). In addition to Lemma 3.5 we first need
bounds on the derivative ∂ycε.

Lemma 3.7 Let (3.1), (3.2), (3.7), and (3.8) be satisfied and T ∈ (0,∞). Then for any p ∈ (1,∞)
there exists a constant Cp(T ) > 0 such that for all ε ∈ (0, 1) the solution to (3.6) from Lemma 3.3
fulfills ∫ T

0

∫
Y

∫
Ω
|∂ycε|p dxdydt ≤ Cp(T ). (3.27)

Proof. We fix p ∈ (3,∞) and remark that parabolic regularity theory (see [38]) applied to the first
equation of (3.6) implies that cε ∈ C∞((0,∞) × Ω × Y ). Hence, we may use (3.6), the condition on
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gε in (3.7), integration by parts, (3.2), (3.7), (3.8), (3.22), (3.23), Young’s and Hölder’s inequality to
obtain

d

dt

1

p

∫
Y

∫
Ω
|∂ycε|p dxdy

=

∫
Y

∫
Ω
|∂ycε|p−2∂ycε ∂y(∂tcε) dxdy

=

∫
Y

∫
Ω
∂y (∇ · (Dε(vε, hε)∇cε)) |∂ycε|p−2∂ycε dxdy + ε

∫
Y

∫
Ω
∂3
ycε|∂ycε|p−2∂ycε dxdy

−
∫
Y

∫
Ω
∂y (∇ · (χε(cε, hε)∇hε)) |∂ycε|p−2∂ycε dxdy

−
∫
Y

∫
Ω
∂y (∇ · (cεAε)) |∂ycε|p−2∂ycε dxdy

−
∫
Y

∫
Ω
∂2
y(gε(t, x, y, hε, vε)cε)|∂ycε|p−2∂ycε dxdy

+

∫
Y

∫
Ω

∫
Y

(
1−

∫
Y
cε(t, x, ỹ)dỹ

)
∂yβ(y, ŷ)cε(t, x, ŷ)dŷ|∂ycε|p−2∂ycε dxdy

+

∫
Y

∫
Ω
vε(t, x)σ(x, vε(t, x))

∫
Y
∂yκ(y, ŷ)cε(t, x, ŷ)dŷ|∂ycε|p−2∂ycε dxdy

−
∫
Y

∫
Ω
∂y(δc(x, y, hε)cε)|∂ycε|p−2∂ycε dxdy

≤ −(p− 1)

∫
Y

∫
Ω
Dε(vε, hε)|∂ycε|p−2|∇(∂ycε)|2 dxdy − ε(p− 1)

∫
Y

∫
Ω
|∂ycε|p−2(∂2

ycε)
2 dxdy

+ (p− 1)

∫
Y

∫
Ω
∂cχε(cε, hε)|∂ycε|p−2∂ycε∇hε · ∇(∂ycε) dxdy

+ (p− 1)

∫
Y

∫
Ω
|∂ycε|p−2∂ycεAε · ∇(∂ycε) dxdy

+ (p− 1)

∫
Y

∫
Ω
cε|∂ycε|p−2∂yAε · ∇(∂ycε) dxdy

−
∫
Y

∫
Ω

(
∂2
ygε cε|∂ycε|p−2∂ycε + 2∂ygε|∂ycε|p + gε∂

2
ycε|∂ycε|p−2∂ycε

)
dxdy

+ C6

∫
Y

∫
Ω

(
1 +

(∫
Y
cε(t, x, ỹ)dỹ

)2
)
|∂ycε|p−1 dxdy

−
∫
Y

∫
Ω

(
∂yδc(x, y, hε) cε|∂ycε|p−2∂ycε + δc(x, y, hε)|∂ycε|p

)
dxdy

≤ −(p− 1)C4

∫
Y

∫
Ω
|∂ycε|p−2|∇(∂ycε)|2 dxdy + (p− 1)C7

∫
Y

∫
Ω
|∂ycε|p−1|∇(∂ycε)| dxdy

+ (p− 1)(1 +m)C8(T )

∫
Y

∫
Ω
|∂ycε|p−1|∇(∂ycε)| dxdy

+ (p− 1)(1 +m)C8(T )

∫
Y

∫
Ω
cε|∂ycε|p−2|∇(∂ycε)| dxdy

17



+ C8(T )

∫
Y

∫
Ω

(
cε|∂ycε|p−1 + |∂ycε|p

)
dxdy +

1

p

∫
Y

∫
Ω
∂ygε|∂ycε|p dxdy

+ C6

∫
Y

∫
Ω

(
1 +

(∫
Y
cε(t, x, ỹ)dỹ

)2
)p

dxdy + C6

∫
Y

∫
Ω
|∂ycε|p dxdy

+ C7

∫
Y

∫
Ω

(
cε|∂ycε|p−1 + |∂ycε|p

)
dxdy

≤ −(p− 1)C4

4

∫
Y

∫
Ω
|∂ycε|p−2|∇(∂ycε)|2 dxdy

+
(p− 1)(C2

7 + (1 +m)2C2
8 (T ))

C4

∫
Y

∫
Ω
|∂ycε|p dxdy

+
(p− 1)(1 +m)2C2

8 (T )

C4

∫
Y

∫
Ω
c2
ε|∂ycε|p−2 dxdy

+ C8(T )

∫
Y

∫
Ω
cpε dxdy + 2C8(T )

∫
Y

∫
Ω
|∂ycε|p dxdy +

C9(T )

p

∫
Y

∫
Ω
|∂ycε|p dxdy

+ C10

(
1 +

∫
Ω

∫
Y
c2p
ε (t, x, ỹ)dỹdx

)
+ C6

∫
Y

∫
Ω
|∂ycε|p dxdy

+ C7

∫
Y

∫
Ω
cpε dxdy + 2C7

∫
Y

∫
Ω
|∂ycε|p dxdy

≤ −(p− 1)C4

4

∫
Y

∫
Ω
|∂ycε|p−2|∇(∂ycε)|2 dxdy + (p− 1)C11(T )

∫
Y

∫
Ω
|∂ycε|p dxdy

(p− 1)(1 +m)2C2
8 (T )

C4

∫
Y

∫
Ω

(cpε + |∂ycε|p) dxdy

+ C11(T )

∫
Y

∫
Ω
cpε dxdy + C10 + C10

∫
Y

∫
Ω
c2p
ε dxdy

≤ −(p− 1)C4

4

∫
Y

∫
Ω
|∂ycε|p−2|∇(∂ycε)|2 dxdy + (p− 1)C12(T )

∫
Y

∫
Ω
|∂ycε|p dxdy

+ C12(T )

∫
Y

∫
Ω
cpε dxdy + C10 + C10

∫
Y

∫
Ω
c2p
ε dxdy (3.28)

for all t ∈ (0, T ) with positive constants C6, C7, C8(T ), C9(T ), C10, C11(T ), and C12(T ), which may
depend on p, but are independent of ε ∈ (0, 1). In view of Lemmas 3.5 and 3.6, an application of
Gronwall’s inequality to (3.28) along with (3.1) and (3.8) implies (3.27) for p > 3. Since (0, T )×Ω×Y
is bounded, the lemma is proved for any p ∈ (1,∞). �

A final preparation for the compactness of (vε)ε∈(0,1) is the following L∞ bound for
∫
Y c dy locally in

time which is also of interest on its own.

Lemma 3.8 Assume that (3.1), (3.2), (3.7), and (3.8) are fulfilled and T ∈ (0,∞). Let further
uε(t, x) :=

∫
Y cε(t, x, y) dy for (t, x) ∈ [0,∞) × Ω̄, where cε is the function from Lemma 3.3. Then

there exists a constant C(T ) > 0 such that for any ε ∈ (0, 1) we have

‖uε‖L∞((0,T )×Ω) ≤ C(T ). (3.29)
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Proof. By integrating the first equation of (3.6) with respect to y ∈ Y and using the boundary
conditions for cε as well as the condition on gε in (3.7), we obtain

∂tuε =

∫
Y
∂tcε dy

= ∇ · (Dε(vε, hε)∇uε)−∇ ·
∫
Y

(χε(cε, hε)∇hε + cεAε) dy

+

∫
Y

∫
Y

(
1−

∫
Y
cε(t, x, ỹ)dỹ

)
β(y, ŷ)cε(t, x, ŷ) dŷdy

+

∫
Y
vε(t, x)σ(x, vε(t, x))

∫
Y
κ(y, ŷ)cε(t, x, ŷ)dŷdy −

∫
Y
δc(x, y, hε)cε dy (3.30)

for (t, x) ∈ (0,∞)×Ω. Hence, in view of (3.6), (3.2), (3.7), and Lemmas 3.3–3.6, uε ∈ C1,2([0,∞)× Ω̄)
is a solution to ∂tuε = ∇ · (D̃ε(t, x)∇uε) +∇ · (f̃ε(t, x)) + g̃ε(t, x), (t, x) ∈ (0,∞)× Ω,(

D̃ε(t, x)∇uε + f̃ε(t, x)
)
· ν = 0, (t, x) ∈ (0,∞)× ∂Ω,

(3.31)

where D̃ε and f̃ε are C1-functions and g̃ε is continuous. In addition, we have D̃ε ≥ C4 > 0 and, for any
fixed T ∈ (0,∞) and p0, q1, q2 ∈ (1,∞), there are appropriate constants such that ‖f̃ε‖L∞((0,T );Lq1 (Ω)) ≤
Cq1(T ), ‖g̃ε‖L∞((0,T );Lq2 (Ω)) ≤ Cq2(T ), and ‖uε‖L∞((0,T );Lp0 (Ω)) ≤ Cp0(T ) are satisfied. Hence, we first

fix m = 1, q1 > n+ 2, and q2 >
n+2

2 , and then apply [61, Lemma A.1] with some p0 > 1 large enough
to conclude that (3.29) is valid with some constant C(T ) > 0 for all ε ∈ (0, 1). We remark that the
proof of [61, Lemma A.1] is still valid for the boundary condition in (3.31) (the original proof is given
for ∇uε · ν = 0 = f̃ε · ν on (0, T )× ∂Ω). As C(T ) only depends on Ω, C4, Cq1(T ), Cq2(T ), Cp0(T ), and
supε∈(0,1) ‖uε(0, ·)‖L∞(Ω), we deduce from (3.1) and (3.8) that C(T ) does not depend on ε ∈ (0, 1). �

Now we are in a position to prove the announced precompactness of the solution components with a
method similar to [57, Lemma 3.8].

Lemma 3.9 Let (3.1), (3.2), (3.7), and (3.8) be fulfilled and T ∈ (0,∞). Then for the solution to
(3.6) from Lemma 3.3 we have that (cε)ε∈(0,1) is strongly precompact in L2((0, T ) × Ω × Y ), while
(vε)ε∈(0,1) and (hε)ε∈(0,1) are strongly precompact in L2((0, T )× Ω).

Proof. By (3.2), (3.7), and Lemmas 3.3–3.6 there exists a constant C6(T ) > 0 such that for any
ϕ ∈ C∞0 (Ω× Y ) and each ε ∈ (0, 1) we have∫

Y

∫
Ω
∂tcεϕdxdy

= −
∫
Y

∫
Ω
Dε(vε, hε)∇cε · ∇ϕdxdy − ε

∫
Y

∫
Ω
∂ycε ∂yϕdxdy

+

∫
Y

∫
Ω
χε(cε, hε)∇hε · ∇ϕdxdy +

∫
Y

∫
Ω
cεAε · ∇ϕdxdy

+

∫
Y

∫
Ω
gε(t, x, y, hε, vε)cε∂yϕdxdy
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+

∫
Y

∫
Ω

∫
Y

(
1−

∫
Y
cε(t, x, ỹ)dỹ

)
β(y, ŷ)cε(t, x, ŷ) dŷϕ(x, y) dxdy

+

∫
Y

∫
Ω
vε(t, x)σ(x, vε(t, x))

∫
Y
κ(y, ŷ)cε(t, x, ŷ) dŷϕ(x, y) dxdy −

∫
Y

∫
Ω
δc(x, y, hε)cεϕdxdy

≤

[
C6(T ) + C3

(∫
Y

∫
Ω
|∇cε|2 dxdy

) 1
2

+

(∫
Y

∫
Ω
|∂ycε|2 dxdy

) 1
2

]
‖ϕ‖

W 1,2
0 (Ω×Y )

for all t ∈ (0, T ). In conjunction with (3.25) and (3.27), this implies the uniform boundedness of
(∂tcε)ε∈(0,1) in L2((0, T ); (W 1,2

0 (Ω×Y ))∗). Moreover, (cε)ε∈(0,1) is uniformly bounded in L2((0, T );W 1,2(Ω×
Y )) by Lemmas 3.5 and 3.7, W 1,2(Ω× Y ) is compactly embedded into L2(Ω× Y ), and L2(Ω× Y ) ⊂
W 1,2

0 (Ω× Y ))∗. Hence, the Aubin-Lions lemma (see e.g. [62, Theorem 2.1 in Chapter III]) yields the
strong precompactness of (cε)ε∈(0,1) in L2((0, T );L2(Ω× Y )).
In a similar way we obtain from Lemmas 3.4 and 3.5 that (∂thε)ε∈(0,1) and (hε)ε∈(0,1) are uniformly

bounded in L2((0, T ); (W 1,2
0 (Ω))∗) and in L2((0, T );W 1,2(Ω)), respectively. Therefore, we deduce the

strong precompactness of (hε)ε∈(0,1) in L2((0, T );L2(Ω)) due to the Aubin-Lions lemma.
Next, let D ⊂ Rs be a bounded domain with some s ∈ N. We recall that by Kolmogorov-Riesz a set
M⊂ L2(D) is strongly precompact in L2(D) if and only if

sup
f∈M

‖f‖L2(D) <∞ and lim
z→0

(
sup
f∈M

‖fz − f‖L2(D)

)
= 0,

where z ∈ Rs and fz(ζ) := f(ζ+ z) for ζ ∈ D such that (ζ+ z) ∈ D and fz(ζ) := 0 if (ζ+ z) ∈ Rs \D.
In order to prove the claimed precompactness of (vε)ε∈(0,1) we set D := (0, T )×Ω and ζ := (t, x) ∈ D.
Integrating the second equation of (3.6), recalling the definition of uε in Lemma 3.8, and using (3.9)
and (3.29), we obtain constants C7(T ) and C8(T ) such that

d

dt

∫
Ω

(vzε − vε)2(t, x) dx

≤ C7(T )

∫
Ω

[(|vzε − vε|+ |uzε − uε|+ |hzε − hε|) |vzε − vε|] (t, x) dx

≤ C8(T )

∫
Ω

(
|vzε − vε|2 + |uzε − uε|2 + |hzε − hε|2

)
(t, x) dx

is fulfilled for all t ∈ (0, T ), ε ∈ (0, 1) and z ∈ Rn+1. Thus, Gronwall’s inequality yields the existence
of C9(T ) > 0 such that

sup
ε∈(0,1)

‖vzε − vε‖L2((0,T )×Ω)

≤ C9(T ) sup
ε∈(0,1)

(
‖vz0ε − v0ε‖L2(Ω) + ‖czε − cε‖L2((0,T )×Ω×Y ) + ‖hzε − hε‖L2((0,T )×Ω)

)
(3.32)

for all ε ∈ (0, 1) and z ∈ Rn+1. In view of the strong precompactness of (cε)ε∈(0,1) in L2((0, T )×Ω×Y ),
of (hε)ε∈(0,1) in L2((0, T )×Ω) and of (v0ε)ε∈(0,1) in L2(Ω) by (3.8), we deduce from Kolmogorov-Riesz
that the right hand side of (3.32) converges to 0 as z → 0. As (vε)ε∈(0,1) is uniformly bounded in
L2((0, T )× Ω) by (3.9), its strong precompactness in L2((0, T )× Ω) follows from Kolmogorov-Riesz.
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Finally, we are in a position to prove our main result, namely the existence of a global weak solution
to (2.1),(2.4),(2.5).
Proof of Theorem 3.2. By Lemma 3.9 along with Lemmas 3.3–3.8 there exist a sequence
(εj)j∈N ⊂ (0, 1) with εj ↘ 0 as j →∞ and functions

c ∈ L∞loc([0,∞);Lp(Ω× Y )) ∩ L∞loc([0,∞)× Ω̄;L1(Y )) ∩ L∞((0,∞);L1(Ω× Y ))

∩ L2
loc([0,∞);W 1,2(Ω× Y )), v ∈ L∞((0,∞)× Ω), h ∈ L∞((0,∞);W 1,∞(Ω))

for all p ∈ (1,∞) such that

cε → c strongly in L2
loc([0,∞);L2(Ω× Y )) and a.e. in (0,∞)× Ω× Y,

vε → v and hε → h strongly in L2
loc([0,∞);L2(Ω)) and a.e. in (0,∞)× Ω,

∇cε ⇀ ∇c and ∂ycε ⇀ ∂yc weakly in L2
loc([0,∞);L2(Ω× Y )),

∇hε ⇀ ∇h weakly in L2
loc([0,∞);L2(Ω))

are fulfilled as ε = εj ↘ 0. When combined with (3.1), (3.2), (3.7), (3.8), and the dominated
convergence theorem, these properties allow us to pass to the limit as ε = εj ↘ 0 in the weak
formulation of (3.6) corresponding to (3.3)–(3.5). We conclude that (c, v, h) is a global weak solution
to (2.1),(2.4),(2.5) in the sense of Definition 3.1 which satisfies the additional regularity properties
claimed in Theorem 3.2. �

4 Numerical simulations

We carried out the numerical simulations by using the DUNE framework [6, 7]. The implementation
allows for simulations in different space dimensions, but in the following we only consider the 1D case.
Using a structured grid with meshwidth h, we first discretize in space using (similarly to [28]) a finite
volume formulation, where we discretize the advective terms by using upwind stabilization. In the
same way we discretize the structure variable y ∈ Y by using finite volumes, which is equivalent to a
binning of the structure variable y and then treating the classes as individual species.
To incorporate the nonlocal evaluation of the adhesion velocity A we employ an IMEX approach,
where A is evaluated explicitly with respect to the previous time step, while the coupled nonlinear
reaction-diffusion-advection system is solved implicitly. The resulting nonlinear system is solved using
a Newton scheme and an ILU preconditioned CG solver for the linearized problem.
We compute on a 1D domain of length h = 0.6 mm with a resolution of 400 discretization cells.
The time step size is controlled depending on the convergence of the Newton scheme and is at most
τ = 10s, which allows to keep the splitting error small and to capture the fast dynamics, in particular
in the first time steps. The total simulation time covers 172800 s = 48h. If not indicated differently
we use a resolution of 1

9 in Y .
For the initial conditions we chose a total tumor population of ĉ = 0.7 in the interval x = 0 . . . 0.1 mm
and a homogeneous distribution along Y . The tissue fiber density v is chosen such that v + ĉ ≤ 1; in
particular we set v = (1− ĉ)1.2, and h is chosen as 10−1.4+ĉkMol/cm3, which means that the pH value
ranges between 6.6 and 7.4. The model functions and coefficients are summarized in Table 1 below.
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Model functions

D(v, h) := Dc
hv+hT
hT (1+v)

χ(c, h) := s̃h
hT c

(hT+h)2

g(t, x, y, h, v) := 1
2(k+ h

hT
+K+v)(1− y)− 1

2(k− +K−)y

β(y, ỹ) := µc
1+yỹ

1+y+ỹ

κ(y, ỹ) := µc
y
2e
− y

2

σ(x, v) := (1− v)

δc(x, y, h) := δ̃cy
h
hT

δv := δ̃v
1
hT

α := 2λhT

Scc(t, y, ỹ) := S̃cc
yỹ

1+yỹ

Scv(t, y) := S̃cv
y

1+y

γ(h) := − log10(h/hT )

Constant Value Unit

Dc 2.1 · 10−11 cm2

s

s̃h 1.6 · 10−9 cm
s

k+, k− 3 · 10−4 s−1

K+,K− 0.1 s−1

µc 2 · 10−5 s−1

µv 5 · 10−7 s−1

δ̃c 5 · 10−10 s−1

δ̃v 5 · 10−9 s−1

hT 0.1 kMol
cm3

λ 5 · 10−7 s−1

ρ 3 · 10−3 cm

R 5 · 10−3 cm

S̃cc 0.1

S̃cv 2.0

Table 1: Choice of model functions (left) and constants (right).
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Figure 1: Simulation results of tumor invasion at different time steps. An oscillatory pattern formation
due to adhesion is visible.
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Figure 2: Comparison of different resolutions of Y at the final timestep T = 48h. Depending on the
number of y-intervals the oscillatory pattern becomes more visible.
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Figure 3: Comparison of different simulation scenarios. The default scenario is the one corresponding
to the choice of functions and coefficients in Table 1. In scenario 3 we use a reduced value of S̃cv = 0.1.
In the last scenario we increased s̃h = 8 ·10−4 to compensate for the reduced S̃cv, but clearly the effects
of adhesion and pH-taxis lead to different patterns.
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Results The numerical experiments show the evolution of a spatial pattern behind an advancing
tumor front (see Figure 1). In order to assess the influence of the supplementary structure variable y
we consider several regimes for the receptor binding states; correspondingly, we represent the cancer

cell densities ci(t, x) =
∫ i+1

3
i
3

c(t, x, y)dy (i = 0, 1, 2). A somewhat periodic structure is observable,

whereby the length of a single phase corresponds approximately to the sensing radius R. Notice that
the main part of the tumor mass is made up of cells with low or moderate amounts of bound receptors,
since too large such amounts indicate cells tightly packed between tissue fibers and/or binding lots of
protons, both situations being impedimental for proliferation.
It is interesting to observe that the infiltration speed of cells into the tissue is dramatically influenced
by the Y -structure, as cells with lower receptor binding state are faster invading the surrounding ECM,
thus leading to enhanced tumor expansion. Figure 2 compares simulation results featuring different
resolutions of the Y domain; thereby, we considered several intermediate intervals for the variable
y, by further dividing each of the subintervals (i/3, (i + 1)/3) (i = 0, 1, 2) into 3, 9, etc. parts and
computing c0, c1, and c2 accordingly 10. Looking at the simulation results it becomes obvious that a
sufficient resolution of Y is required at all to obtain an expansion speed of approximately 4 cm per
year. Comparing the third and the fourth simulation scenarios in Figure 2 indicates that a resolution of
9 intervals for the Y domain seems to be sufficient to capture the dynamics; in order to get completely
reliable quantitative results the resolution might need to be further increased and proper convergence
studies ought to be carried out. This is an important issue, as an incorrect resolution might lead to
under- or overestimation of the tumor invasion.
Furthermore, looking at the first row in Figure 2 it can be seen that without any Y -structure the
tumor expansion is very much limited (and actually, hardly taking place), let alone the patterning.
The diffusion of tumor cells is relatively slow (e.g., with respect to that of protons), thus advection via
pH-taxis and adhesion ∇· (Ac) has significant impact. In particular, cell-cell and especially cell-tissue
adhesion play a dominant role, as shown by the third simulation scenario in Figure 3, where the cell-
tissue adhesion S̃cv coefficient was reduced to S̃cv = 0.1, leading to a slower expansion of the tumor.
Varying the cell-cell adhesion coefficient S̃cc led to less prominent changes in the tumor behavior (not
shown). The enhancement of pH-tactic effects (still in the case of reduced cell-tissue interactions)
causes less tumor expansion than in the case with increased S̃cv, thus endorsing the surmise that
cell-ECM adhesion is a crucial factor for tumor advancement, even more important than cell-cell ad-
hesion.11 For the pure macroscopic cell adhesion model considered in [26] and featuring similar PDEs12

and constant cell-cell and cell-ECM adhesion coefficients it was found that a substantial increase in
the former coefficient led to an oscillatory pattern, while a similar increase in cell-ECM adhesion only
led to an accumulation of cells at a specific site depending on the density of the surrounding substrate.
Since the pH-taxis does not seem to play a decisive role in the simulation outcome we believe that
it is the supplementary structure variable and the afferent terms (in particular, y-dependent adhe-
sion coefficients and the transport term ∂y(g(t, x, y, h, v)c)) which greatly contribute to the different
qualitative behavior of the cell population.

10e.g., for 9 y-intervals we compute ci(t, x) =
∫ i+1

3
i
3

c(t, x, y)dy =
2∑
k=0

∫ i
3
+ k+1

9
i
3
+ k

9

c(t, x, y)dy

11at least as far as our model is concerned
12however without taxis and further structure variables
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5 Discussion

We proposed and analyzed a novel multiscale model for tumor invasion into a tissue network, thereby
paying particular attention to cell-cell and cell-tissue adhesion, but also to the effects of receptor
binding, hence to subcellular dynamics. The latter is captured by way of a supplementary structure
variable, which led to a structured PDE for the density of cancer cells and which also controls both
the adhesion and proliferation terms, in agreement to known biological facts. We proved the global
existence of a weak solution as defined in Section 3, the boundedness and uniqueness of which remain
open. The numerical simulations elicited -as was the case with previous models involving adhesion- the
crucial role of adhesion terms involving spatial nonlocality, but beyond that also the vast importance
of the new structure variable, which led to irregular infiltrative patterns as they are often observed
in vivo (see e.g. [1]). Interestingly, the simulations of our structured multiscale model with adhesion
coefficients depending on the subcellular dynamics highlighted the dominance of cell-tissue over cell-
cell adhesions.
Observe as in [47] that the form of the adhesion velocity in Section 2 (in particular the part describing
cell-tissue interactions) points on an ECM gradient across the sensitivity radius, which can determine
cell motility in the direction of such gradient, hence haptotaxis. A characterization of tumor invasion
by way of a continuous model involving a haptotaxis term of the form ∇ · (Ψ(c, v, h)∇v) has its
advantages, among others the fact that it avoids the integrals inherent to the adhesion term and
is actually obtained in a framework where the solution depends on time and space only, thus not
involving further structure variables and hence also not the additional transport term w.r.t. y. This
simplifies not only the setting, but also the analysis and numerics; however there are still plenty of
mathematical challenges for that type of models as well, see [58, 66, 67]. In [45, 58] we proposed
a multiscale model for cancer invasion with chemo- and haptotaxis, where the subcellular scale was
represented, too, by the dynamics of receptor binding; however, the connection between the scales
was different and the amount y of bound receptors did not act as another structure variable. As one
of the main purposes of this work is to model multiscale cancer invasion (migration and proliferation)
through adhesive binding and acid-mediated receptor activation, we kept the structured population
framework and the corresponding integral terms.
The model introduced here gives rise to challenges both from the analytical and the numerical view-
point; the former relates to less regular data requirements and more information about the qualitative
(long time) behavior of the solution, while in the numerical framework there is an obvious need for
investigating the mathematical properties of adequate procedures, also in higher dimensions.

Acknowledgment

C. Stinner acknowledges the support of the Carl Zeiss Foundation. C. Surulescu was supported by
the German Research Foundation DFG in the project SU 807/1-1.

References

[1] Japanese classification of gastric carcinoma: 3rd english edition. Gastric Cancer 14 (2011), 101–
112.

27



[2] A.R.A. Anderson, A hybrid multiscale model of solid tumour growth and invasion: Evolution and
the microenvironment, A.R.A. Anderson, M.A.J. Chaplain and K.A. Rejniak (eds.), Single-Cell-
Based Models in Biology and Medicine, Birkhäuser, Basel, 2007, pp. 3–28.
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[59] A. Szabó and R.M.H. Merks, Cellular Potts modeling of tumor growth, tumor invasion, and tumor
evolution, Front Oncol. 3 (2013), article 87, 1–12.

[60] Z. Szymańska, C. Morales Rodrigo, M. Lachowicz and M.A.J. Chaplain, Mathematical modelling
of cancer invasion of tissue: The role and effect of nonlocal interactions, Math. Models Methods
Appl. Sci. 19 (2009), 257–281.

[61] Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with
subcritical sensitivity, J. Differential Equations 252 (2012), 692–715.

31



[62] R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, Studies in Mathematics
and its Applications, Vol. 2, North-Holland, Amsterdam, 1977.

[63] B.A. Webb, M. Chimenti, M.P. Jacobson and D.L. Barber, Dysregulated pH: A perfect storm for
cancer progression, Nature Rev. Cancer 11 (2011), 671–677.

[64] M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model,
J. Differential Equations 248 (2010), 2889–2905.

[65] M. Winkler and C. Surulescu, Global weak solutions to a strongly degenerate haptotaxis model,
arXiv:1603.04233, 2016, submitted.

[66] A. Zhigun, C. Surulescu and A. Hunt, Global existence for a degenerate haptotaxis model of tumor
invasion under the go-or-grow dichotomy hypothesis, arXiv:1605.09226, 2016, submitted.

[67] A. Zhigun, C. Surulescu and A. Uatay, Global existence for a degenerate haptotaxis model of
cancer invasion, arXiv:1512.04287, accepted by Z. Angew. Math. Phys.

32


	Introduction
	The model
	Global existence of a weak solution
	Global existence for the regularized problems
	Global weak solution to the original problem

	Numerical simulations
	Discussion

