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Abstract

This paper presents a new approach to behavioral-social dynamics of

pedestrian crowds by suitable development of methods of the kinetic the-

ory. It is shown how heterogeneous individual behaviors can modify the

collective dynamics, as well as how local unusual behaviors can propagate

in the crowd. The main feature of this approach is a detailed analysis of

the interactions between dynamics and social behaviors.

Keywords: Self-propelled particles, scaling, nonlinear interactions, crowd

dynamics, kinetic theory, active particles.

1 Plan of the Paper

This paper deals with the modeling of behavioral-social crowd dynamics,
where this term is used to indicate that laws of classical mechanics can be sub-
stantially modified by individual behaviors and strategies developed by living
entities. Namely, the individuals in the crowd, are viewed as self-propelled
micro-systems, who can modify their collective behaviors according to their
walking strategies. These micro-scale subsystems are featured by an hetero-
geneously distributed ability to express their walking strategy related to the
interactions with the other entities.
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The paper aims at presenting a unified approach, to modeling and simula-
tion, based on the methods of the kinetic theory and stochastic games [9] which,
according to the authors’ bias, offer an appropriate framework to capture the
greatest part of the complexity features of the systems under consideration.
Classical methods of the kinetic theory for molecular fluids cannot be straight-
forwardly applied. Indeed, conservation of number of particles can be claimed in
the case of self propelled particles, but not conservation of momentum and en-
ergy. The modeling involves several technical difficulties. Understanding these
difficulties is a necessary preliminary step to develop a successful approach.

The interested reader can take advantage of some review papers, which en-
lighten different aspects of the modeling of crowd dynamics. Restricting our
attention to the most recent literature, the survey paper [10] presents and crit-
ically analyzes a variety of crowd models at all representation scales, from the
microscopic (individual) to macroscopic (hydrodynamical). A mathematical ap-
proach to the modeling of swarm dynamics, which has some intersection with
crowd dynamics, is proposed in [11].

Paper [6] is proposed for crowd dynamics in unbounded domain with ho-
mogeneous distribution of walking ability of pedestrians. The present paper
aims at including more general features of behavioral-social dynamics, as well
as interactions with walls. Moreover, the approach of [6] uses discrete velocity
variables, while a continuous variable is used in this present paper. This choice
allows to overcome the uncertainty problem induced by the choice, up to now
heuristic, of the number of velocity module and directions. The contents of the
paper are as follows:

Section 2 defines an assessment of the basic principles of behavioral-social
dynamics of a large systems of interacting self-propelled particles with focus on
crowd dynamics. The analysis is related to the complexity features of these
specific systems referring to a scaling and representation, which anticipates the
mathematical kinetic theory for active particles [9]. The microscopic state of the
latter, which constitute the micro-scale system, whose micro-state includes not
only mechanical variables, typically position and velocity, but also an additional
variable, called activity, suitable to model their strategy.

Section 3 develops the concept of behavioral–social dynamics as a new
science of mechanics, where interactions depend on the behaviors of the entities
of the crowd, which is viewed as a living system. A general structure is used
toward the derivation of specific models. The approach consists in representing
the state of the system by a probability distribution over the micro-scale state
of pedestrians and in deriving a general framework to describe the time and
space dynamics of such distribution by a balance of particles in the elementary
volume of the space of the micro-states. Interactions, which are non local and
nonlinearly additive, are modeled by theoretical tools of stochastic game theory.

Section 4 takes advantage of the framework presented in the preceding sec-
tion to derive models which include also the case of individuals which change the
rules of their participation to the dynamics. The whole section is in three parts.
First the dynamics is modeled in unbounded domains. Then it is shown how
the decision process by which individuals select their trajectories include the
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actions to avoid walls and obstacles. Finally, it is shown their social behavior
evolves in time and space focusing on panic conditions [19, 21].

Section 5 presents some simulations with to test the predictive ability of
the model. Particles methods (Monte Carlo type) are used as this approach
appears to be well consistent with the general mathematical structure proposed
in Section 3. Two types of simulations are developed, the first one to show
how the individuals moving in opposite directions interact, while the second one
aims at understanding how panic conditions can affect the evacuation dynamics.
Paper [20] is an important reference to define specific objective of simulations.

Section 6 presents a critical analysis and indicates how the approach can
be further developed to include additional aspects of the dynamics such as
modeling interactions which induce large deviations in the social behavior of
the crowd. This section also outlines some research perspectives focusing on a
systems approach to crowd dynamics in complex environments.

2 Behavioral-Social Dynamics of Self-Propelled

Particles

This section provides an heuristic description of behavioral dynamics of pedes-
trian crowds to be transferred into appropriate mathematical structures. of the
mesoscopic (kinetic) theories, where the micro-state of pedestrians is given by
position and velocity, while the system is represented a probability distribution
function over such state. Mathematical models describe the time evolution of
this function in the phase space by means of integro-differential equations. The
micro-scale description, where pedestrians are identified singularly, is deliv-
ered by position, velocity, and additional variables suitable to retain features of
pedestrians viewed as living entities.

Let us now understand what is a crowd and which are the most important
features of a crowd to be taken into account in the modeling approach. First a
definition of the crowd needs to be given. The following one (due to Helbing
and Johanson [20]) appears to be particularly well focused:

Agglomeration of many people in the same area at the same time.

The density of the crowd is assumed to be high enough to cause

continuous interactions with or reaction to other individuals.

According to the authors’ bias, only three important specific features of the
crowd are selected among various ones. Subsequently, a critical analysis of the
existing literature will focus on topics to be considered open, and to be treated
in the next sections.

• Strategy: Pedestrians have the ability to express walking strategies based
on interactions with other individuals and with the surrounding environment.
The latter includes vocal and visual signaling which addresses them toward
optimal and safe ways, including evacuation paths. The modeling of pedestrians’

strategy should include several features, for instance trend toward the exit or a
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meeting point, following or avoiding streams and clusters, avoiding overcrowding

in the proximity of walls, clustering of individuals with similar activity, avoiding

individuals with different activity, and possibly others.

•Heterogeneity: The behavior of pedestrians is heterogeneously distributed
due both to different psychologic attitudes and mobility abilities from individu-
als with handicap to high level walking ability. In addition, a crowd might need
to to be split into different groups related to different strategies, e.g. reach-
ing different objectives, or even an internal hierarchy, which induces different
interaction rules. Heterogeneity can refer to social behaviors, for instance ag-

gressiveness in a crowd where two groups contrast each other or panicking be-

haviors. Indeed, crowds can lose, in panic conditions, optimal strategies. This

feature can be important in extreme situations when sudden dangers can induce

the said conditions.

• Interactions: Interactions involve both mechanical and social-behavioral
features, and are nonlocal as individuals communicate and develop a visual ac-
tivity at a distance; these are nonlinearly additive as the strategy developed by
a pedestrian is a nonlinear combination of different stimuli, while mechanics in-
duces social exchanges and these modify the walking dynamics. Interactions

with the external environment where the pedestrians move, namely different

geometrical and environmental contexts, say corridors, rooms, stairs, sudden

changes of directions, luminosity conditions, and many others, can have an im-

portant effect on the dynamics as the interaction rules, which also depend on

the quality of the environment.

Although only three general features have been selected, one can rapidly
verify that the existing literature does not yet provides an exhaustive answer
to all of them. In fact, recent papers, e.g. [2, 6], only treat some of the afore-
said topics, while the interplay between mechanics and social behaviors deserves
further attention. The meso-scale approach, introduced in [7] and further de-
veloped in [2], shows how pedestrians, viewed as heterogeneous entities chose,
by a decision process modeled by tools of game theory, between different trends
from avoiding walls to reach prescribed exits. It is an approach quite different
from that developed at the microscopic scale, for instance by the social force
model [18], which is based on the assumption that pedestrians are subject to
an acceleration to be related to social interactions within the crowd. However,
models at the microscopic scale can contribute not only to understand how indi-
vidual behaviors can be described by equations, but also to model interactions.
A useful example is given by the paper by Faure and Maury [15], which pro-
vides a detailed analysis of the granular dynamics based on different aspects of
attraction and repulsion between pedestrians.

The next sections present a model, which should at least partially, include
the predictive ability of the aforesaid features. The derivation will be followed by
a critical analysis the said ability also referred to validation issues. This critical
analysis can take advantage of the literature in the field, which already offers
valuable contributions on theoretical models and interpretation of empirical
data, among others, [13, 23, 24, 27, 28].
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Finally, let us mention the strategic motivation to study anomalous behaviors
and, in particular, the onset and propagation of panic conditions. This study is
motivated by the related safety problems, see [19, 21] for a deeper understanding
of a psycho-mechanical study of this extreme phenomenon and [2] for a detailed
analysis of evacuation times and the impact that panic conditions can have on
it. Indeed, the study of this feature is an important issue of this present paper.

3 On the Kinetic Theory Approach to Behav-

ioral Dynamics

Let us consider a large heterogeneous system of pedestrians moving in two di-
mensional domains. The mathematical approach to modeling cannot relay, as
observed in [9], on the deterministic causality principles typical of classical me-
chanics. In fact, pedestrians develop a their own dynamics based on an individ-
ual interpretation of that of the other individuals. Namely, they have a strategy,
which is heterogeneously distributed and which depends on several factors to
be included in the modeling approach. These reasonings lead to introduce the
concept of behavioral-social dynamics as a new science of mechanics, where
interactions depend on the behaviors of the component of the crowd viewed as
a living system. This section proposes a general structure to be used toward
the derivation of specific models.
Bearing this in mind, let us anticipate some terminology and some preliminary
ideas of the approach that will be developed hereinafter.

• The modeling approach proposed in this paper is based on suitable devel-
opments of the so-called kinetic theory for active particles, which applies
to large systems of interacting entities [9]. Hence the meso-scale represen-
tation is chosen.

• Pedestrians, namely the micro-system, are viewed as active particles,
that have the ability of expressing a their own strategy, called activity.
This ability can differ for different groups in the same crowd, being un-
derstood that the activity is heterogeneously distributed.

• The overall state of the system is described by a probability distribution
over the variable deemed to define the physical state of the said entities,
while interactions are modeled by theoretical tools of game theory [25]. A
general overview of this approach is presented in the survey paper [9], while
applications to model crowd dynamics and social systems are proposed
in [6, 7].

• The overall system is subdivided into groups of pedestrians who share
common features. The partition follows the hallmarks of a systems theory
of social systems introduced in [1] and followed in [8, 14].
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• Active particles can communicate and develop a social dynamics, as they
learn from interactions and accordingly modify both strategy and dynam-
ical rules followed in the movement. The output is a collective behavior
which can be observed in the whole.

Modeling is developed in three steps, each of them presented in the next
subsections, namely representation of the system, modeling of micro-scale in-
teractions, and derivation of a mathematical structure consistent with the com-
plexity paradigms of behavioral dynamics. This last subsection also proposes a
concise critical analysis.

3.1 Representation

Let us now consider a crowd which can be subdivided into different groups
distinguished either by different walking objectives and/or abilities. Pedestrians
move in the whole plane R

2, but at an initial time are located in a domain Σ.
Each group, called functional subsystem, has a different walking purpose, for
instance either following a certain direction or reaching a meeting point.

The microscopic state of pedestrians, viewed as active particles, is de-
fined by position x, velocity v, and activity u. Dynamics in two space dimensions
is considered, while polar coordinates are used for the velocity variable, namely
v = {v, θ}, where v is the velocity modulus and θ denotes the velocity direction.

Moreover, we assume that each group, called functional subsystem, can
be featured by a different group’s strategy, ability to express it is modeled by a
variable u ∈ [0, 1], called activity, such that u = 0 denotes the worst walking
ability, while u = 1 the best one. Moreover, the quality of the environment is
also taken into account by a parameter α ∈ [0, 1], where the lower value α = 0
denotes the worse environmental conditions that prevents the movement, while
α = 1 the best one.

Dimensionless, or normalized, quantities are used by referring the compo-
nents x and y to the length ℓ that corresponds to the largest dimension of Σ,
while the velocity modulus is divided by the maximum admissible velocity Vℓ,
which can be reached by a fast pedestrian in free flow conditions; t is the di-
mensionless time variable obtained referring the real time to a suitable critical
time Tc identified by the ratio between ℓ and Vℓ.

The mesoscopic (kinetic) representation of the overall system is deliv-
ered by the statistical distribution at time t, over the micro-scale state:

fi = fi(t, x, v, θ, u), x ∈ Σ, v ∈ [0, 1], θ ∈ [−1, 1) u ∈ [0, 1], (1)

for each functional subsystem labeled by i = 1, . . . , n, and denoted by the
acronym i-fs.

Remark 3.1. Functional subsystems can be identified by different features, for

instance trend to different exits or directions, different roles in the crowd such

as hierarchical behaviors. Examples will be given in the applications proposed in

the following.
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If fi is locally integrable then fi(t, x, v, θ, u) v dv dθ du is the (expected)
infinitesimal number of pedestrians who, at time t, have a micro-state comprised
in the elementary volume of the space of the micro-states of each i-fs. The
following compact expression w = {v, θ, u}, with w ∈ Dw, is occasionally used
in the following so that fi = fi(t, x, v, θ, u) = fi(t,x,w), while the fi are divided
by nM , which which defines the maximal full packing density of pedestrians.
Although their state is represented by a point, pedestrians are supposed to have
a finite dimension.

Macroscopic observable quantities can be obtained, under suitable in-
tegrability assumptions, by weighted moments of the distribution functions:

ρi(t,x) =

∫ 1

0

∫ 1

−1

∫ 1

0

fi(t, x, v, θ, u) vdv dθ du, (2)

while analogous calculations lead to the flux

qi(t,x) =

∫ 1

0

∫ 1

−1

∫ 1

0

v fi(t, x, v, θ, u) vdv dθ du. (3)

Global quantities are obtained by summing over the index labeling the functional
subsystems. For instance, mean velocity and velocity variance are computed as
follows:

ξ(t,x) =
1

n(t,x)

n
∑

i=1

ξi(t,x) =
1

n

n
∑

i=1

qi(t,x)

ρi(t,x)
(4)

and

σ(t,x) =
1

n

n
∑

i=1

∫ 1

0

∫ 1

−1

∫ 1

0

(v − ξ(t,x))2 fi(t, x, v, θ, u) vdv dθ du. (5)

An additional quantity to be taken into account in the modeling of inter-
actions is the perceived density ρaθ along the direction θ. According to [7], this
quantity is defined as follows:

ρaθ = ρaθ [ρ] = ρ+
∂θρ

√

1 + (∂θρ)2

[

(1− ρ)H(∂θρ) + ρH(−∂θρ)
]

, (6)

where ∂θ denotes the derivative along the direction θ, whileH(·) is the Heaviside
function, H(· ≥ 0) = 1, andH(· < 0) = 0. Therefore, positive gradients increase
the perceived density up to the limit ρ = 1, while negative gradients decrease it
down to the limit ρ = 0 in a way that

∂θρ→ ∞ ⇒ ρa → 1 , ∂θρ = 0 ⇒ ρa = ρ , ∂θρ→ −∞ ⇒ ρa → 0 .

3.2 Hallmarks toward modeling interactions

As already mentioned, interactions may depend not only on the micro-state of
the interacting particles (pedestrians), but also on their distribution functions.
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When only the first type of interaction appears, one talks about linear in-
teractions, otherwise when also second type occur, the concept of nonlinear
interactions needs to be used. While linearity involves only independent vari-
ables, i.e., micro-state variables, nonlinearity involves the dependent variables,
i.e., the distribution function and/or its moments. In the following, round and
square parenthesis distinguish, respectively, the former and latter interactions.

The modeling of interactions corresponds to a decision process for each par-
ticle related to the micro-state, and distribution function, of the particle and
of all those in its interaction domain. For each functional subsystem, three
types of particles are involved in the process at each time t: The test particle
with micro-state w and distribution function fi(t,x,w); the field particle, in
x∗, with micro-state w∗ and distribution function fi(t,x,w

∗); and candidate
particle, in x, with micro-state w∗ and distribution function fi(t,x,w∗). The
candidate particle can acquire, in probability, the micro-state of the test particle
after interaction with the field particles, while the test particle loses its state in
the interaction with the field particles. The test particle is representative, for
each functional subsystem, of the whole system of particles.

Interactions of test and candidate particles with field particles, can be mod-
eled by the following quantities: interaction domain Ω, interaction rate
η, and transition probability density A. These quantities can depend, as
already mentioned, on the micro-state and distribution function of the inter-
acting particles, as well as on the quality of the environment. Moreover, they
refer to interactions involving all functional subsystems. The expression of these
terms is reported in the following, where the term i-particle is used to denote a
pedestrian belonging to the i-th functional subsystem.

• Interaction domain: Active particles have an interaction domain Ω
to be related to their visibility domain which can be defined as an arc
of circle, with radius R and RV , symmetric with respect to the velocity
direction being defined by the visibility angles Θ and −Θ. For practical
applications and according to the normalization, one can assume Ω ∼=
[− 1

3 ,
1
3 ] corresponding to a visibility of 120 degrees.

• Interaction rate: This term models the interaction rate between a can-
didate h–particle (or test) in x∗ (or in x) and a field k–particle in x∗ ∈ Ω.
The following notation, referred to candidate and field particles, can be
used ηhk[f ](x∗,x

∗,w∗,w
∗;α). Analogous notation is used for a test par-

ticle in x and a field particle in x∗.

• Transition probability density: Interactions can be modeled by the
probability density Ai

hk[f ](w∗ → w|w∗,w
∗;α), which models the proba-

bility that a candidate h-particle with state w∗ in x∗ falls into the state
w due to the interaction with a field k–particle in x∗ ∈ Ω with state w∗.

Remark 3.2. When the system does not allow transitions from across func-

tional subsystems the following notation is used Ai
ik =: Aik, while when inter-

actions do not depend on the other subsystems one has Ai
ii =: Aii.
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Remark 3.3. In general, both ηhk and Ai
hk can depend on the micro-scale

states of the interacting particles and on the density of the field particles in

the domain Ω. Moreover interactions depend on the quality of the environment

which can be modeled by the parameter α ∈ [0, 1], where α = 0 correspond the

worse conditions preventing the dynamics, while α = 1 to the best ones, which

allow a rapid dynamics. This type of nonlinearity will be discussed later.

3.3 A mathematical structure

The mathematical framework consists in an integro-differential equation suitable
to describe the time dynamics of the distribution functions fi, which can be
obtained by a balance of particles in the elementary volume of the space of the
micro-states. This conservation law writes:

Variation rate of the number of active particles

= Inlet flux rate - Outlet flux rate,

where the inlet and outlet fluxes are caused by interactions. This equality
corresponds to the following structure:

(∂t + v · ∂x) fi(t,x,w) = Ji[f ](t,x,w;α) =
(

Gi − Li

)

[f ](t,x,w;α), (7)

where the various terms Ji can be formally expressed, consistently with the
definition of η, and A. The formal result, in the case of individuals who do not
move from one functional subsystem to the other, is as follows:

Gi =

n
∑

k=1

∫

Ω×D2
w

ηik[f ](w∗,w
∗;α)Aik [f ](w∗ → w|w∗,w

∗, u∗;α) (8)

× fi(t,x,w∗)fk(t,x
∗,w∗) dw∗ dw

∗ dx∗, (9)

and

Li =

n
∑

k=1

fi(t,x,v)

∫

Ω×Dw

ηik[f ](w∗,w
∗;α) fk(t,x

∗,w∗) dw∗ dx∗. (10)

When the aforesaid crossing over functional subsystems, induced by change
of behaviors, are allowed, the interaction term of the structure modifies as fol-
lows:

Gi =

n
∑

h=1

n
∑

k=1

∫

Ω×D2
w

ηhk[f ](w∗,w
∗)Ai

hk[f ](w∗ → w|w∗,w
∗, u∗)

× fh(t,x,w∗)fk(t,x
∗,w∗) dw∗ dw

∗ dx∗, (11)

and

Li =
n
∑

k=1

fi(t,x,v)

∫

Ω×Dw

ηik[f ](w∗,w
∗) fk(t,x

∗,w∗) dw∗ dx∗. (12)
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Finally, it can be briefly shown that this structure is consistent with the
paradigms presented in Section 2. The ability of pedestrians to express walk-
ing strategies based on interactions with other individuals is modeled by the
transition probability density, while the heterogeneous distribution of the said
strategy (behavior) corresponding both to different psychologic attitudes and
mobility abilities is taken into account by the use of a probability distribution
over the activity variable. Interactions have been assumed to be nonlocal and
nonlinearly additive as the strategy developed by a pedestrian is a nonlinear
combination of different stimuli generated by interactions with other pedestri-
ans and with the external environment.

4 Mathematical Models

The hallmarks to derive models by the kinetic theory for active particles are
reported in [9], where the hallmarks proposed in this present paper can be
followed. In detail, first a general structure suitable to capture the main com-
plexity features of living systems is derived and subsequently such a structure
is implemented by models of interactions at the micro-scale. This approach
aims at overcoming the lack of first principles that govern the living matter.
Specific models are derived in this section within the framework proposed in
the preceding one. The approach first refers to Eqs. (3.7),(3.8),(3.9) focusing to
well defined case studies, where active particles do not move from one subsys-
tem to the other; subsequently, it is shown how models can be generalized to
include also the aforesaid transition as by Eqs. (3.7),(3.10),(3.11). The next two
subsections are devoted to this objective, while the third one presents a criti-
cal analysis focused on the modeling of panic conditions, and more in general
anomalous behaviors.

4.1 Models in unbounded domains

Let us now consider the modeling of crowd dynamics when pedestrians have a
well defined strategic objective and do not cross from one functional subsystem
to the other. In this specific case, the activity variable corresponds to the walk-
ing ability and the derivation of models needs defining the terms ηik and Aik,
which describe interactions at the micro-scale. First some phenomenological as-
sumptions on the qualitative micro-scale dynamics are made and subsequently
these are transferred into models to be implemented into the mathematical
structure. In detail:

1. The encounter rate corresponds to the frequency by which each pedestrian
develops contacts with the other ones in the visibility zone Ω.

2. Interactions modify the dynamics of pedestrians who first might change
the direction of movements, and subsequently adapt their velocity to the
local density conditions.
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3. Three types of stimuli contribute to the modification of walking direction:
(i) desire to reach a well defined target, namely a direction or a meet-
ing point; (ii) attraction toward the mean stream; (iii) attempt to avoid
overcrowded areas.

4. Pedestrians moving from one direction to the other, adapt their velocity to
the local new density conditions, namely they decrease speed for increasing
density and increase it for decreasing density.

5. The dynamics is more rapid in amply and high quality areas. Moreover
rapidity is heterogeneously distributed and increases for high values of the
activity variable.

6. Interactions also modify the activity variable according to a social dynam-
ics based on attraction and/or repulsion of social behaviors.

Bearing all above in mind, let us transfer this qualitative description into mathe-
matical models of a micro-scale dynamics. According to these phenomenological
assumptions, the gain and loss terms in the kinetic equation, Eqs. (9) and (10)
respectively, simplify to:

Gi =

∫

Ω×Dw

ηi[f ](w∗;α) Ai[f ](w∗ → w|w∗, u∗;α)fi(t,x,w∗) dw∗, (13)

Li =

∫

Ω×Dw

ηi[f ](w∗;α) dw∗ fi(t,x,w). (14)

Modeling the encounter rate, ηi. In general, the encounter rate can depend
on the micro-state and the meso-state of the interacting individuals viewed as
active particles. A rule generally adopted is that the frequency of interactions
depends on the number of particles in the interaction domain. However, the
conjecture that individuals consider only a fixed number of individuals to de-
velop the decision process on their walking strategy was posed in [5]. See also
the general formalization of [11] and the computational hints in [3]. Therefore,
if the visibility allows to capture this critical density, a reasonable assumption
is simply η ∼= η0. However, lack of visibility or presence of obstacles can reduce
this encounter rate.

Modeling the transition probability density, Ai. Let us consider a can-
didate pedestrian located in x with velocity direction θ∗ and modulus v∗, and
let us define the following unit vectors:

• ν
(t)
i (x) directed to a prescribed meeting point or to a walking direction;

• ν
(s)
i [f ](x) along the local stream (we assume the mean velocity but other

choices can be made, i.e., mean flux);

• ν(v)[f ](x) directed along the direction of lowest density gradient;

11



where both ν
(s)
i and ν(v) are computed within the visibility zone.

Pedestrians in addition to the trend to ν
(t)
i , which depends on the position

only, develop a decision process between the attraction by the stream, namely

ν
(s)
i , and the search of a low density path ν(v), where both unit vectors depend

on x and on f through velocity and density, respectively. Paper [2] suggests
that a preferred direction can be heuristically chosen. Accepting this hint, the
following model of preferred direction is proposed:

ν
(p)
i =

(1− ρ)ν
(t)
i + ρ

[

βν
(s)
i + (1 − β)ν(v)

]

∥

∥

∥
(1− ρ)ν

(t)
i + ρ

[

βν
(s)
i + (1 − β)ν(v)

]∥

∥

∥

, (15)

where β is a parameter which models the sensitivity to the stream with respect
to the search of vacuum.

Remark 4.1. If the crowd has not a well defined trend to a prescribed direction

or to a meeting point, then the dynamics is simply ruled by the remaining two

trends and the preferred direction is:

ν
(p)
i =

βν
(s)
i + (1− β)ν(v)

∥

∥

∥
βν

(s)
i + (1− β)ν(v)

∣

∣

∣

· (16)

Remark 4.3. A correspondence can be easily identified, for practical simula-

tions, between the preferred direction ν
(p)
i and the preferred angle of motion,

θ
(p)
i , i.e., ν

(p)
i = (cos θ

(p)
i , sin θ

(p)
i ).

All tools have now been defined to model the decision process leading to the
transition probability density, Ai, which is defined as follows

Ai[f ](t,x,w;α) = D[ρ](u∗ → u)C[ρ](v∗ → v)Bi[ρ,qi](θ∗ → θ). (17)

More in detail:

1. The candidate pedestrian in x with velocity direction θ∗ changes in prob-

ability θ∗ into θ depending on the direction θ
(p)
i , on the local density,

activity, and quality of the environment;

2. After having changed velocity direction the velocity is modified by increas-
ing (decreasing) its modulus depending on whether the perceived density
is lower (higher) than the previous one;

3. Finally, the candidate pedestrian modifies the activity by social commu-
nications.

According to the aforesaid phenomenological description, the transition proba-

bility density for angles is assumed to vary linearly from θ∗ to θ
(p)
i , i.e.,

Bi[ρ, qi] (θ∗ → θ = (θ∗ +∆θ) mod 2π) = 2
φθ − ψi,θ

∆θ2i,max

|∆θ|+
1+ ψi,θ − φθ
|∆θi,max|

, (18)
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where ∆θ ∈ [0,∆θi,max] and the maximum possible variation of velocity direc-
tion is given by

∆θi,max = (θ
(p)
i − θ∗)− 2π sign(θ

(p)
i − θ∗) H(|θ

(p)
i − θ∗| − π) (19)

where H(·) is the Heaviside function. In Eq. (18), φθ and ψθ give the negative

and positive contributions to the trend to θ
(p)
i , respectively,

φθ = ρ, and ψi,θ = αu∗
|∆θi,max|

π
(20)

Likewise, the transition probability density for the velocity modulus is given by

C[ρ] (v∗ → v = v∗ +∆v) = 2
φv − ψv

∆v2max

|∆v|+
1 + ψv − φv
|∆vmax|

, (21)

where ∆v ∈ [0,∆vmax] with ∆vmax = vp−v∗ and the preferred velocity is given
by vp = H(ρaθ∗ − ρaθ). An explicit definition of ∆θmax and ∆vmax is reported in
Fig. 1. In Eq. (21), φθ and ψθ give the negative and positive contributions to
the trend to vp, respectively,

φv = ρ, and ψv = αu∗∆vmax. (22)

Finally let us consider the third step consisting in modeling how interactions
modify the activity variable by increasing or decreasing it, but supposing that
each pedestrian keeps one’s own strategy without transition into another func-
tional subsystem. The simplest assumption is that given a random initial condi-
tion of the distribution over such variable, then this is not modified by interac-
tions. This assumption correspond to the following expression of the transition
probability density

D(u∗ → u) = δu. (23)

4.2 Models in bounded domain

When dealing with dynamics in a bounded domain, nonlocal interactions oc-
cur with walls, obstacles, and one or more exists. The strategy pursued in our
modeling approach is that the aforementioned interactions, which replace the
classical local boundary conditions, define a new preferred walking direction
which is determined by a two-steps procedure. As a first step, the candidate
pedestrian changes in probability the direction of motion and the velocity mod-
ulus by following the same rules described in the preceding subsection, Eqs. (18)
and (21), respectively. As a second step, by keeping the same velocity modulus,
the direction of motion is further changed so as to account for the presence of
solid walls. Accordingly, the probability transition density modifies to

Ai[f ](t,x,w;α) = B(2)(θ(1) → θ)D[ρ](u∗ → u)C[ρ](v∗ → v)B
(1)
i [ρ,qi](θ∗ → θ(1)).

(24)
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Figure 1: Explicit expressions of ∆θmax and ∆vmax.

where B
(1)
i is defined by Eq. (18), with θ(1) in place of θ, and B(2) reads

B(2)(θ(1) → θ) = δ(θ − θ(2)(θ(1))) (25)

In Eq. (25), the angle of motion θ(2) gives the direction of the velocity when the
latter is rotated so as to reduce its normal component linearly with the distance
from the wall. More specifically, after the first step, the velocity components
normal and tangential to the wall are given, respectively, by

v(1)n = (n⊗ n)v(1) (26)

v
(1)
t = (I− n⊗ n)v(1) (27)

where v(1) is the velocity of the pedestrian after the decisional process that
weigths target, stream and vacuum effects, and (n⊗n), (I−n⊗n) are the pro-
jection operators in the directions normal and tangential to the wall. Due to the
interaction with the wall, in a second step, the pedestrian velocity components
are modified as follows

v(2)n = dwv
(1)
n (28)

v
(2)
t = sign(v

(1)
t )

[

v(1)
2
− v(2)n

2
]1/2

(29)

Eq. (28) shows the the velocity component normal to the wall decreases linearly
approching the wall and becomes nought in the limiting case of a pedestrian

14



in contact with the wall. The tangential component, as given by Eq. (29), is
obtained by requiring that the modulus of the velocity is constant. The angle
θ(2) which enters in Eq. (25), is thus given by

v(2) = v(2)n n+ v
(2)
t (I− n⊗ n) = v(2)(cos θ(2), sin θ(2)) (30)

4.3 Models in panic conditions

The mathematical model proposed in the preceding subsections is such that
pedestrians equally share the different trends, however already paper [2] ob-
served that the presence of panic increases their attraction toward the stream
effect. Namely, pedestrians try excessively to do what the others do and ne-
glect the search of less congested areas. This feature can be modeled by the
parameter β in Eq. (15). However, the attraction toward the stream is not the
only effect of panic, which increases the walking ability up to a certain extent.
Summarizing, increasing the level of panic indices the following:

• β ↑: Attraction to what the others do against the search of less crowded
areas.

• u ↑: Increasing of the ability to express the walking ability.

If the crowd is in a sufficiently small domain, one can suppose that at a
certain critical time tc the aforesaid effects are homogeneously captured by the
whole population. Therefore a simplest approach consists in introducing a pa-
rameter p suitable to define the level of panic, or other anomalous behaviors,
by p ∈ [0, 1], where p = 0 corresponds to normal conditions, while p = 1 to the
highest admissible level. Then, the transition of the parameter of the model can
be defined as follows:

t ≤ tc : βp = β, up = u,

(31)

t > tc : βp = β + p(1− β), up = u[1 + p(1− u)].

On the other hand, in case of overcrowding in a large environment, one can
figure out situations where panic, or any anomalous behavior, is localized in a
small area and is transported in the whole domain. For instance:

p > 0, for x ∈ Σp ⊂ Σ; p = 0, for x 6∈ Σp.

The modeling approach can be developed by adding p to the set, which de-
fines the micro-state so that the distribution functions are fi = fi(t, x, v, θ, u, p),
while the transition probability density is factorized as follows:

A[f ](w∗ → w) = C[ρ](v∗ → v)B[ρ](θ∗ → θ)E [ρ](p∗ → p)D[ρ](u∗ → u), (32)

where now w = {v, θ, u, p}. The modeling of E can be based on a consensus
and learning type games, see Section 3 of [9], while the following adjustment of
Eq. (4.21)2 can be used again
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5 Simulations

This section develops some computation and simulations to test the capability
of the model to depict emerging behaviors which are observed in reality and
are of interest in the evacuation dynamics. More specifically, we consider the
problem of two groups of people walking in opposite directions in a crowded
street [22]. The analysis focuses in particular on the role of the parameter β
which is descriptive of the presence of panic conditions. It is well understood
that this case study do not cover the whole varieties of dynamics to be consid-
ered. However, it leads to a number of dynamical behaviors worth to be studied.
In Subsection 5.1, we give a a brief overview of the numerical method adopted
in the present study to solve Eq. (7). The simulations results are then presented
and discussed in Subsection 5.2.

5.1 Outline of the numerical method

Obtaining numerical solutions of Eq. (7) is a challenging task because the un-
known function depends, in principle, on seven variables. Moreover, the compu-
tation of the interaction term on the right hand side requires the approximate
evaluation of a multidimensional integral. Numerical methods for solving sim-
ilar kinetic equations in rarefied gas dynamics studies can be roughly divided
into three groups:

(a) Particle methods

(b) Semi-regular methods

(c) Regular methods

Particle methods are by far the most popular and widely used simulation meth-
ods [12, 26]. The basic idea is to represent the distribution function by a number
of mathematical particles which move in the computational domain and inter-
act according to stochastic rules derived from the kinetic equation. Macroscopic
flow properties are obtained by means of weighted averages of the particle prop-
erties. Methods in groups (b) and (c) adopt similar strategies in discretizing
the distribution function on a regular grid in the phase space and in using finite
difference schemes to approximate the streaming term on the l.h.s of Eq. (7).
However, they differ in the way the interaction integral is evaluated. In semi-
regular methods, the interaction integral is computed by Monte Carlo or quasi
Monte Carlo quadrature methods [16] whereas deterministic integration schemes
are used in regular methods [4, 17].
Kinetic equations for pedestrian dynamics are usually solved by means of regu-
lar methods of solution [6, 2]. In the present work, however, Eq. (7) is solved by
using a Nanbu-like particle scheme. Compared with different methods of solu-
tions, the proposed approach provides some advantages such as the possibilities
to easily deal with complex geometries as well as to account for a sophisticated
behavioral decisional process.
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Figure 2: Geometry of the case study.

5.2 Numerical results

In the following, simulations are carried out for two flows of pedestrians mov-
ing in opposite directions in a narrow street. The geometry of the problem is
displayed in Fig. 2. Initially, the two groups of pedestrians are uniformly dis-
tributed in a rectangular room of dimension Lx×Ly = 20m×4m which is open
on the left and on the right sides. Periodic boundary conditions are assumed in
the transversal direction.
The objectives of the simulations are the following:

1. Describing the segregation of pedestrians into lanes of uniform walking
direction and assess the influence of the parameter β and of the density ρ
on the shape of the pattern.

2. Study of the evacuation dynamics for the two crowds.

We first show that the model predicts the spontaneous formation of parallel
lanes. The transient from disorder to order can be quantitatively assess by
computing the band index, YB(t) which measures the segregation of opposite
flow directions [29]. In the present work it may be generalized to the expression

YB(t) =
1

LxLy

∫ Lx

0

∫ Ly

0

|ρ1(t,x)− ρ2(t,x)|

ρ1(t,x) + ρ2(t,x)
dx (33)

According to its definition, YB(t) = 0 for mixed counterflows and 1 for a perfect
segregation of the opposite flows. In a low density crowd of 10 pedestrians,
Fig. 3a shows that the band index is only slightly different from zero. Indeed
pedestrians randomly fill the domain and no segregation takes place as shown
in Fig. 3b which reports snapshots of pedestrian density at time t = 0 s (upper
panel) and t = 625 s (lower panel). Figs. 4a and 4b show the same results but
for a dense crowd of 150 pedestrians. In this case, the emergence of spatial
segregation is apparent, namely the different groups of pedestrians form in line
and file alternatively. It is worth pointing out that, unlike most of the previous
studies on the subject, no specific repulsion forces have been assumed between
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Figure 3: Bidirectional flow of 10 pedestrians. Left panel: Temporal evolution
of the band index. Right panels: Contour plots of the pedestrian density at
time t = 0 s (upper panel) and t = 625 s (lower panel).
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Figure 4: Bidirectional flow of 150 pedestrians. Left panel: Temporal evolution
of the band index. Right panels: Contour plots of the pedestrian density at
time t = 0 s (upper panel) and t = 625 s (lower panel).

pedestrians belonging to different populations. We then compute the ratio be-
tween the pedestrian mean flow rate through a section of the street and the
number of pedestrian as a function of the number of pedestrian for a differ-
ent sensitivity to the stream with respect to the search of vacuum. Below a
threshold value, Np ≈ 125, the reduced mean flow rate is almost constant for
any value of β, whereas, as the number of pedestrian increases, it reduces. This
is not unexpected since in the behavioral decisional process of pedestrians the
weight of the target direction decreases with the mean crowd density, ρ̄. When
Np & 125, which corresponds to ρ̄ & 1/2, the stream and vacuum effects become
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dominant thus leading to a loss of efficiency in reaching the target.
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6 Some preliminary reasonings on further step

towards a social crowd dynamics

The sequential steps followed in this paper to pursue the objective of developing
an approach to behavioral social dynamics can be listed as follows:

1. Definition of the features of behavioral dynamics;

2. Derivation of a general structure suitable to offer the conceptual basis for
the derivation of models;

3. Modeling interactions at the microscopic scale to implement the aforesaid
structure and derive specific models in unbounded and bounded domains;

This process has been focused on a detailed analysis of the influence of panic
conditions on the overall dynamics, which included some aspects of behavioral
dynamics by the activity variable assumed to be heterogeneously distributed
over individuals. It has been shown how this distribution evolves in time and
space due to interactions. However, the approach does not yet tackle a challeng-
ing problem, which consists in modeling the dynamics of a crowd subdivided into
different functional subsystems behaving with different features and purposes.
In particular, the dynamics should predict transitions from one subsystem to
the other.

It is worth mentioning that this type of investigation is motivated by se-
curity problems. As an example, one can consider a crowd of individuals in a
public demonstration to support or make opposition to political issue. These
individuals can be subdivided into a large group manifest correctly their posi-
tion, while a small group are rioters. Their number can grow in time due to
interactions which might persuade the other part of the crowd to join them.
Similarly a small group of security forces might react to provocations out of the
settle protocol, but their number might also grow due to interactions, which
cause an excess of reactions. The modeling can take advantage of the more gen-
eral structure given in Eqs. (3.7), (3.10), (3.11), as well as of the literature on
social dynamics [8, 14]. These brief perspective ideas guide a research program
already in progress.
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