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Classical models of morphogenesis by Murray and Meinhardt and of epidemics by Ross and
McKendrick can be revisited in order to consider the colocalizations favoring interaction between
morphogens and cells or between pathogens and hosts. The classical epidemic models suppose for
example that the populations in interaction have a constant size and are spatially fixed during
the epidemic waves, but the presently observed pandemics show that the long duration of their
spread during months or years imposes to take into account the pathogens, hosts and vectors
migration in epidemics, as well as the morphogens and cells diffusion in morphogenesis. That
leads naturally to study the occurrence of complex spatio-temporal behaviors in dynamics of
population sizes and also to consider preferential zones of interaction, i.e., the zero-diffusion sets,
for respectively building anatomic frontiers and confining contagion domains. Three examples
of application will be presented, the first proposing a model of Black Death spread in Europe
(1348-1350), and the last ones related to two morphogenetic processes, feather morphogenesis
in chicken and gastrulation in Drosophila.

Keywords: Morphogenesis modelling; epidemics modelling; zero-diffusion set; periodic solutions;
population size dynamics; gastrulation; feather morphogenesis; Black-Death spread.

1. Introduction

Recent advances in morphogenesis and epidemics modelling have been obtained by introducing demographic
aspects, i.e., by considering morphogen, cell, pathogen, host and vector populations whose global size
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changes during morphogenetic, epidemic and endemic histories, as well as spatial aspects about their
diffusion, spread or genetic changes [Gaudart et al., 2007, 2009, 2010; Glade et al., 2007; Abbas et al.,
2009; Horie et al., 2010]
In epidemic studies for example, the mathematical toolbox allowing these improvements has been intro-
duced making classical models [Bernoulli, 1760; d’Alembert, 1761; Murray, 1763; L’épine, 1764; de Baux,
1766; May, 1770; Lambert, 1972; Trembley, 1796; Sprengel, 1815; Ross, 1916; McKendrick, 1925; Kermack
& McKendrick, 1932, 1933; Mac Donald, 1957; Barry & Gualde, 2006] more realistic, hence more conve-
nient for predicting and anticipating the spread, and also testing scenarios (like vaccination or any health
policy limiting the contagion). As applications, one infectious disease dynamics, the Black Death spread
during the middle age in Europe, and the dynamics of two important processes, feather morphogenesis in
chicken and gastrulation in Drosophila, will be studied in the present paper.
Despite their simplicity, the models presented account qualitatively for the global shape of the endemic
spatial distributions and of the morphogenetic patterns. Some perspectives will be drawn concerning the
present epidemic risks: a model like that used for the Black Death spread retro-prediction would be,
“mutatis mutandis”, useful to predict the dynamical behavior of the future epidemics, by considering the
population fluxes along the modern aerial routes, responsible of the rapid dissemination of the pathogenic
agents and infectives in the present pandemics [Khan et al., 2009].

2. Introduction to classical epidemiology: the Ross-McKendrick model

In the seminal work by D. Bernoulli [Bernoulli, 1760; Dietz & Heesterbeek, 2000, 2002; Zeeman, 1993]
proposed for explaining the small pox dynamics, the population was divided into susceptibles (not yet
been infected) and immunes (immunized for the rest of their life after one infection). In [Ross, 1916;
McKendrick, 1925; Kermack & McKendrick, 1932, 1933] is proposed a more sophisticated model called
Susceptible/Infective/Recovered with immunity (SIR) model, with equations (1):

dS

dt
= δS + δI + (δ + γ)R− βSI − δS, (1)

dI

dt
= βSI − (ν + δ)I,

dR

dt
= νI − (δ + γ)R,

where S (resp. I, R) denotes the size of Susceptible (Infective, Recovered) population with S+I+R = N , β
(resp. δ, γ, ν) being the contagion (resp. death/birth, loss of resistance, immunization) rate. The epidemic
parameter R0 = βN/(ν + δ) is the mean number of secondary infecteds by one primary infective and
predicts, if it is greater than 1, the occurrence of an epidemic wave. By defining age classes Si, Ii and Ri

(i = 1, . . . , n) in each subpopulation S, I and R, we have at any stationary state (S∗, I∗, R∗) the following
relationships:

u∗(i) =
S∗i
S∗1

, ν∗(i) =
I∗i
I∗1

, w∗(i) =
R∗i
R∗1

(2)

where the probabilities for a newborn of being alive and either susceptible u∗(i), infected ν∗(i) or immune
w∗(i) at age i make the link between the Bernoulli and the Ross-McKendrick models, but the weakness of
the later still resides in many insufficiencies and approximations:

• when the population size of either susceptibles or infectives tends to be very large, the quadratic term SI
has to be replaced by a Michaelian term SI/[(k + S)(j + I)]
• the immunized infectives or healthy carriers are neglected
• the total population size is supposed to be constant, the fecondity just equalling the natural mortality.

The Bernoulli model taken implicitly into account the fecundity, and explicitly the natural mortality.
The model by d’Alembert [d’Alembert, 1761] improved the Bernoulli’s one by distinguishing the specific
mortality due to the infectious disease from the natural one, being more widely applicable than the model
by Bernoulli which was restricted to immunizing infections. d’Alembert’s method needs the knowledge
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about the survival function after eliminating the specific cause of death due to the infectious disease, but
Bernoulli’s approach provides more insight for a mechanistic interpretation of infection
• variables and parameters are not depending on space (no migration)
• parameters are not depending on time (no genetic adaptation of infectious agent or human population,

even very slow compared to the fast dynamics of epidemics).

We will improve in the following the Ross-McKendrick model by trying to partially compensate these
defects. We will first introduce the age classes into the host population in order to account for its growth,
the space dependence in order to account for the host and vector population migration and their possible
coexistence, before presenting an example of application and drawing perspectives. The genetic changes
resulting from the adaptation of the concerned populations will be not treated in this paper.

3. Epidemics modelling with demography and diffusion

By exploiting the remarks formulated in the previous Section about the classical models of epidemic
modelling, we now consider the possibility to merge the demographic dynamics introduced in [Demongeot,
2009] and the reaction-diffusion, by simplifying the von Foerster dynamics: we suppose that the biological
age is identical to the chronological one and we choose for the host or vector populations dynamics the
classical Fisher’s equation [Fisher, 1937] with a logistic demographic term. We prove in the following that
the asymptotic behavior of the spatial spread of the population size n(s, t) over the spatial coordinates has
a Gaussian shape. For the sake of simplicity, we consider the problem as isotropic and the space coordinate
s as unidimensional.

Proposition 1. Let us consider the Fisher-like equation defined by:

∂n

∂t
= ∆n+ n(K − n)+ where n(K − n)+ =

{
n(K − n) if n ≤ K
0 if n > K

with the initial conditions: n(., 0) = 1. Its asymptotic solution (t tending to infinity) is given by:

n(s, t) = exp

(
−s

2

4t
+ ln(K) + exp(−Kt)

)
t−1/2

Proof. Let us suppose that
∂n

∂t
= ∆n+ n(K − n)+. For n

K ' 1 (resp. n
K ' 0), we have:

n(K − n) ' −nK ln
( n
K

)
(resp. ' nK)

Then, if we consider the solution n1 of the heat operator, with n1(., 0) = 1, and the solution n2 of the
logistic equation

∂n2
∂t

= −n2K ln
(n2
K

)
,

with n2(., 0) = 1, we have:

(1) If n1(s, t) = exp

(
−s

2

4t

)
t−1/2, then

∂n1
∂s

= −sn1
2t

, hence

∆n1 =
∂2n1
∂s2

= −n1
2t

+ s2
n1
4t2

and
∂n1
∂t

=

(
s2

4t2
− 1

2t

)
n1 = ∆n1

(2) If
n2
K
' 1 (resp.

n2
K
' 0), n2(s, t) = K exp(exp(−Kt)) (resp. n′2(s, t) = exp(Kt)) is an approximate

solution of

∂n2
∂t

= −n2K ln
(n2
K

)
(resp.

∂n′2
∂t

= n′2K)
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Let us consider now n = n1n2; we have:

∂n

∂t
=


n2
∂n1
∂t

+ n1
∂n2
dt

= n2∆n1 − n1n2K ln
(n2
K

)
, if

n2
K
' 1

n′2∆n1 − n1n′2K, if
n2
K
' 0

Because n2 (resp. n′2) is independent of s, then n2∆n1 = ∆n (resp. n′2∆n1 = ∆n) and we have:

n1n2K ln
(n1
K

)
= K exp

(
exp (−Kt)− s2

4t

)[
−s2

4t
− ln(t)

2
− ln(K)

]
t−1/2

tends to 0 when t tends to infinity, for every s.
It is the same for

n1n
′
2K ln

(n1
K

)
= exp

(
Kt− s2

4t

)[
−s

2

4t
− ln(t)

2
− ln(K)

]
t−1/2 when t tends to 0.

Then n = n1n2 = exp

(
−s

2

4t
+ ln(K) + exp(−Kt)

)
t−1/2 is asymptotically in t the solution of the

Fisher-like equation
∂n

∂t
= ∆n+n(K−n)+, n = n1n

′
2 being the approximate solution when t is small.

�

If we consider that the diffusion and the demographic growth are slow compared to the fast epidemic
dynamics, then the initial condition of the Fisher-like equations is the stable steady state of the reaction
part of the system of equations (3), defined by:

∂S

∂t
= ∆S + S(K1 − S)+ − bSI + k1S

ε
(3)

∂I

∂t
= ∆I + I(K2 − I)+ +

bSI − k2I
ε

Proposition 2. If we denote the fast endemic steady state of (3), supposed to be stable, by (S∗, I∗), then
we have as asymptotic (in t) solution of (3) the Gaussian-like functions:

S(s, t) = S∗
exp

(
− s2

4t + ln(K1) + exp (−K1t)
)
t−1/2

exp
(
− s2

4t∗ + ln (K1) + exp (−K1t∗)
)
t∗−1/2

I(s, t) = I∗
exp

(
− s2

4t + ln(K2) + exp(−K2t)
)
t−1/2

exp
(
− s2

4t∗ + ln(K2) + exp(−K2t∗)
)
t∗−1/2

for t ≥ t∗, where t∗ denotes the first time where (S(s, t∗), I(s, t∗)) approximates (S∗, I∗) with a precision
equals to ε in Euclidean norm: (

(S(s, t∗)− S∗)2 + (I(s, t∗)− I∗)2
)1/2

= ε

Proof. The result is the direct consequence of the Proposition 1 and of the fastness of the epidemic
dynamics. �

There is an asymptotic identity between the zero-diffusion lines of the susceptibles and of the infecteds, if
the asymptotic mode and variance of their Gaussian shaped functions are the same. When the contagion
coefficient b is considered as depending on space, we choose b(s) as maximal, equal to b∗, on zero-diffusion
lines, i.e., where susceptibles and infecteds have the maximum of chance to coexist and we denote the
steady state values of the fast epidemic dynamics (for b∗) as S∗∗ and I∗∗. If there is no asymptotic identity,
we can define b(s) as inversely proportional to the distance between s and the zero-diffusion set located
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around the concentration peaks.
Let us suppose now that the fast dynamics are the demographic and epidemic ones and that they are
driven by the following differential equations:

dx

dt
= kx(N − x)− C xy

(K + y)
− kk1x (4)

dy

dt
= fy + C

xy

(K + y)
− k2y,

where the host population growth (its size being represented by the variable x) is logistic, the fecundity
being limited by a Malthusian term depending on the maximal population size N . The contagion interaction
is supposed to have a Michaëlian saturation term [Crauste et al., 2008] for controlling a possible excess of
infective vectors (whose population size is y), and the mortality is assumed to be different between host
and vector. By denoting a = k(N − k1) and b = −f + k2, the system (4) becomes:

dx

dt
= −kx2 − C

xy

(K + y)
+ ax (5)

dy

dt
= C

xy

(K + y)
− by

Proposition 3. The steady states of the system (5) are of three types:

• a stable node (resp. focus) (x∗, y∗), in case of small mortality of infecteds (b� 1), if

a > 1 and (C − a)(a− 1) > 2kb (resp. a < 1, 4(1− a)C > ab)

• a stable node, in case of fast epidemics (C � K and a = b = C), if k ≤ 1.
• a neutral steady state (x∗∗, y∗∗) = (0, 0).

Proof. The Jacobian matrix B∗ of the system (5) at the steady state (x∗, y∗) is equal to:

B∗ =

−2kx∗ − by
∗

x∗
+ a −b K

(K + y∗)

b
y∗

x∗
b

K

(K + y∗)
− b


The non zero stationary state is defined by:

x∗ =
b

C
(K + y∗) and kx∗2 + (C − a)x∗ − bK = 0,

therefore the only positive solution, distinct from the saddle, is given by:

x∗ =
a− C +

(
(a− C)2 + 4bkK

)1/2
2k

, y∗ =
C

b
x∗ −K.

Therefore, the characteristic polynomial of the matrix B∗ − λI, denoted PB∗ , is equal to:

PB∗(λ) = λ2 +

[
2kx∗ + b

y∗

x∗
+ b− a− b K

(K + y∗)

]
λ+ ab

K

(K + y∗)

−ab− 2kx∗
[
b

K

(K + y∗)
− b
]

+ b2
y∗

x∗
= 0

and, because

b2
K

C
−
(

2kx∗2 + (b− a)x∗ + by∗
)

= bK

(
b

C
− 1

)
− (a+ b− C)x∗,
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we have:

2x∗λ = bK

(
b

C
− 1

)
− (a+ b− C)x∗ ±

[(
bK(

b

C
− 1)− (a+ b+ C)x∗

)2

+8kx∗2
(
b2
K

C
− bx∗

)
− 4b2y∗x∗ − 4abx∗

(
b
K

C
− x∗

)]1/2
.

We have also:

8kx∗2
(
b2
K

C
− bx∗

)
− 4b2y∗x∗ − 4abx∗

(
b
K

C
− x∗

)
= 4bx∗

[
−2kx∗2 + x∗

(
2bk

K

C
− C + a

)
− bK

( a
C
− 1
)]

and

2Cx∗λ = bK(b− C)− C(a+ b− C)x∗ ±
[
[bK(b− C)− C(a+ b− C)x∗]2

+4bCx∗
[
−2Ckx∗2 + (2bkK + C(a− C))x∗ − bK(a− C)

]]1/2
.

Hence, we have:

(1) if b� 1 such as bK/C − a� 1, then we have:

x∗ ' b K

C − a
> 0, y∗ ' a K

C − a
> 0, bK

(
b

C
− 1

)
− (a+ b− C)x∗ ' −ab2K

C
(C − a) < 0

and 8kx∗2
(
b2
K

C
− bx∗

)
− 4b2y∗x∗ − 4abx∗

(
b
K

C
− x∗

)
' −4ab

K2

C(C − a)2

(
2bk

C − a
+ 1− a

)
(x∗, y∗) is a stable node (a > 1 and (C−a)(a−1) > 2kb) or focus (a < 1 and 4a(1−a)b3K2 > akb4K2/C,
i.e., 4(1− a)C > ab). For example, if we choose a = b = C/3 = 4K = 1/3 and k = 1, then:
x∗ = 0.236/6, y∗ = 0.035 and the B∗ eigenvalues are given by:

λ = (−0.0054± [(0.0054)2 + 0.052(−0.0031− 0.0238 + 0.0093)]1/2)/0.472

and (x∗, y∗) is a stable focus.
(2) if a = b = C � K and k ≤ 1, then x∗ = (CK/k)1/2, y∗ = (CK/k)1/2 −K and the B∗ eigenvalues are:

λ =

[
−C

2
± C

2

(
1− 8

(
Kk

C

)1/2
)(

1−
(
Kk

C

)1/2
)]1/2

.

Then (x∗, y∗) is a stable node.

The Jacobian matrix B∗∗ of the system (5) at the steady state (x∗∗, y∗∗) is equal to:

B∗∗ =

(
a −b
0 0

)
Then (x∗∗, y∗∗) is a neutral steady state. �

Suppose that the contagion interaction has a double Michaëlian saturation term for controlling both a
possible excess of susceptibles (whose population size is x) and of infective vectors (whose population size
is y), then the system (5) becomes:

dx

dt
= −kx2 − C xy

(J + x)(K + y)
+ ax (6)

dy

dt
= C

xy

(J + x)(K + y)
− by
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Fig. 1. Attractor of the system with double saturation (6) showing (top) a limit cycle and attractor of the system with
a unique saturation term (5) showing (bottom) a stable focus for different initial conditions and for the same set of val-
ues of parameters in case (5) and (6) except for the affinity coefficient J (cf. for the numerical simulations the web site:
http://www.zweigmedia.com/RealWorld/deSystemGrapher/func.html)

Proposition 4. The steady states of the system (6) are of three types:

• a stable node (resp. focus) (x∗, y∗), in case of large saturation of susceptibles (J � 1) and of small mortality
of infecteds (b� 1), if

a > 1 and

(
C

J
− a
)

(a− 1) > 2kb

(
resp. a < 1 and 4(1− a)

C

J
> ab

)
• an unstable focus, in case of slow demographic dynamics (k � 1), compared to the reaction (C > 3), with
a = b < 1/2K and K > JC > 1.

• a neutral steady state (x∗∗, y∗∗) = (0, 0).

Proof. Let us prove the second assertion. If k � 1, the x2 term is neglectible, and (x∗, y∗) verifies:

Cx∗y∗

a(J + x∗)(K + y∗)
' x∗ ' y∗

hence

Cx∗ ' a(J + x∗)(K +Cx∗) = aJK + a(JC +K)x∗ + aCx∗2 and aCx∗2 + (aJC + aK −C)x∗ + aJK = 0.

Then, if we denote −D = C − aJC − aK > 0, we have:

D2 − 4a2CJK = (C + aJC − aK)2 − 4aC2J > (C − aK)2 − 4aCK > (C − 0.5)2 − 2C > 0
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and

2aJK > x∗ =
−D − (D2 − 4a2CJK)1/2

2aC
> 0.

Then the eigenvalues λ of the Jacobian matrix B∗ of the system (6) at the stationary point (x∗, y∗) are
given by det(B∗ − λI) = PB∗(λ) = 0, where:

B∗ − λI =

−CJ
y∗

(J + x∗)2(K + y∗)
+ a− λ −CK x∗

(K + y∗)2(J + x∗)

CJ
y∗

(J + x∗)2(K + y∗)
CK

x∗

(K + y∗)2(J + x∗)
− b− λ



=

a
x∗

J + x∗
− λ −K b

K + y∗

J
a

J + x∗
−b y∗

K + y∗
− λ


Hence, we have for the characteristic polynomial PB∗ of B∗:

PB∗(λ) = λ2 −
[
a

x∗

J + x∗
− b y∗

K + y∗

]
λ+ ab

KJ − x∗y∗

(J + x∗)(K + y∗)
.

Then the eigenvalues λ are complex with a positive real part and gives birth to a limit cycle after a Hopf
bifurcation (cf. Figure 1), because: K > J implies

ax∗

J + x∗
− by∗

K + y∗
> 0

and since x∗ > 2aJK with a < 1/(2K) < 1/(2J), we obtain:

4abKJ

(J + x∗)(K + y∗)
=

4a3JK

Cx∗
>

4a2C

C2
>
a2

C2
(aK + aJ + 2ax∗)2 =

(
ax∗

J + x∗
+

by∗

K + y∗

)2

.

The other results of the Proposition 4. are proved as in Proposition 3. �

4. Definition of the biological age

By introducing a biological age a different from the chronological age t of the demographic dynamics
[Demongeot, 2009], we replace the logistic term in equations (4), (5) and (6) by a von Foerster-like partial
differential equation, where we denote by σx the biological age shift of an individual susceptible with respect
to its chronological age t:

σxxa(a, t) + xt(a, t) = −µxx(a, t), (7)

where x(a, t) is the number of susceptibles in biological age a at time t.
If an ageing acceleration γx of an individual with respect to its chronological age t is allowed, a generalized
von Foerster’s equation can be used [Demongeot, 2009]:

σxxa(a, t) + �x+ xt(a, t) = −µxx(a, t), (8)

where the demographic d’Alembertian operator is equal to �x = γx∂
2x/∂a2 − ∆x and where µx is the

natural mortality coefficient of the susceptibles. The values of parameters like σx, γx and µx can depend
both on space, biological age and time.

5. Introduction of a spatial dynamics

The introduction of the space in Ross-McKendrick models can be done through stochastic spatial Markovian
or renewal models [Demongeot & Fricot, 1986] or through deterministic Partial Differential Equations
(PDE’s) in which the diffusion of hosts or vectors is modelled by the Laplacian operator ∆ or possibly by
the d’Alembertian �, when some sub-populations can present an accelerated ageing [Demongeot, 2009].
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Fig. 2. Coexistence of zero-diffusion zones for both susceptibles x and infecteds y, where the contagion is maximum, in the
case of an isotropic diffusion of these two populations

These models are called SIR with Diffusion (SIRD) [Gaudart et al., 2010]. During the susceptible and
infective vector spread, the maximum of contagion is observed on the common zones of least diffusion,
which can be asymptotically identical, the common zero-diffusion domains allowing a maximum of contacts
between interacting species (cf. Figure 2), i.e., reducing the effect of the thermic fluctuations which give
birth to large values of the diffusion coefficients.
Taking into account the diffusion of all vector subpopulations (vector susceptibles, infecteds/non infectives
and infectives), it is possible to simulate a model and compare its numerical results to the data recorded
on the ground. For improving the fit, we take into account the diffusion of the human subpopulations S,
G, I and R (susceptibles, infectives, infecteds/non infectives and recovereds). The contagion parameters
are chosen depending on space, e.g., being maximum in zones where diffusion of infective vectors (Ai) and
susceptible hosts (S) is minimum and in zones where sizes S of susceptible hosts and Ai of infective vectors
are maximum (DS ∆S/S minimum), ensuring locally a large coexistence time, i.e., a high contagion rate
in interacting subpopulations. In case of isotropic diffusion, the zero-diffusion or zero Laplacian (or zero
curvature or maximal gradient) lines of the concentration surfaces of the concerned populations are, if they
are identical (cf. Figure 2), such a contagion domain, where hosts, vectors and infectious agents interact.
These lines correspond to regions where the mean Gaussian curvature of the concentration surfaces S and
Ai vanishes, these lines regions defined respectively by

∂2S

∂x2
∂2S

∂y2
−
(
∂2S

∂x∂y

)2

= 0, and by
∂2Ai

∂x2
∂2Ai

∂y2
−
(
∂2Ai

∂x∂y

)2

= 0.

We can show the possibility of intersection of these lines on one tangency point or on two points (cf. Figure
2) or on whole zero-diffusion sets if they are asymptotically identical (cf. Figure 6 bottom) for some values
of the ratio between diffusion coefficients DS/DAi [Michon et al., 2008].

6. An example of application: the Black Death in Europe between 1348 and 1350

Plague was considered as endemic in the steppes of Southern-Russia where Mongols originated [Zhang et
al., 2008]. Born in the Caspian sea area (probably triggered by contacts between Mongolian and Genoa
sailors and warriors during wars around 1346), epidemic wave went through the Mediterranean routes (cf.
Figure 3). It reached ports like Marseilles in France and Genoa in Italy at the end of the year 1347. During 5
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Fig. 3. Top left: spread of bubonic plague over see and overland routes (after <http://www.cosmovisions.com/
ChronoPestesMA02.htm>). Top right: Observed wave fronts after 1 (red), 2 (blue) and 3 (green) years of spread from the
two initial Mediterranean entry ports Genoa and Marseilles (1348) until the Atlantic ocean (1350) [Mocellin-Spicuzza, 2002];
black grid corresponds to the collected altitudes. Bottom: Simulation of equation (9) with wave fronts of concentration of
susceptibles S after 3 (left) and 12 (right) months from Marseilles and Genoa

years it was spread widely in Europe from these two large commercial cities and come back to the Caspian
reservoir. A simple Susceptible-Infective-Recovered model with Diffusion (SIRD) explains the essential of
the observed front wave dynamics during years between 1348 and 1350 [Gaudart et al., 2010]. The model
uses only 3 coefficients: (i) a local viscosity proportional to the altitude, (ii) a contagion parameter and
(iii) a death/recovering parameter (representing the future of infecteds/infectives as dead or immunized
after being cured of the plague).
The Fisher equation [Fisher, 1937; Murray, 2003] has been firstly used for representing the evolution of
the host and vector sub-populations during the spread of the Black Death.
The model used for modelling the Black Death spread is a SIRD model as in the Bankoumana study
[Gaudart et al., 2007, 2009, 2010], but without vector terms and has for its reaction term the form of a
Lotka-Volterra Ordinary Differential Equation (ODE) of dimension 3, plus a diffusion term:

dS

dt
= ε∆S − βSI,

dI

dt
= ε∆I + βSI − γR, (9)

dR

dt
= ε∆R+ γR,



April 2, 2013 15:37 ”IJBC Demongeot”

Zero-diffusion domains in reaction-diffusion morphogenetic & epidemiologic processes 11

Fig. 4. World distribution of plague in 1998 (after [WHO, 1999])

where βSI term comes from the “law of mass action”, assuming homogeneous mixing between susceptibles
and infecteds, β being the rate of transition from susceptible to infected state calculated per infected and
per susceptible, γ is the rate of transition from infected to post-infected state (e.g., death or immunity)
per infected person and ε is the diffusion coefficient. By taking the viscosity (inverse of ε) proportional
to the altitude, the simulated front waves are more similar to the observed ones (cf. Figure 3) than in
the previous simulations [Murray, 2003]. The initial population size of susceptibles in the main middle age
cities has been fixed following the demographic data. The results of simulations (cf. Figure 3 bottom) are in
agreement with the data observed in the 370 hospitals of the order of St Anthony (cf. Figure 3 top right).
Improvements could come from considering multiple entrance points (ports like Barcelona reached in June
1348 or La Rochelle, Rouen and Dover reached later in 1348), and taking into account all the commercial
sea (Mediterranean and Atlantic) and overland routes (cf. Figure 3 top left) as well as the demography
(fecundity and natural mortality). The present endemic state (cf. Figure 4) could be explained by a new
model taking into account the air routes [WHO, 1999]. An efficient prediction from simulations of a realistic
model taking into account new aerial routes with a minimal viscosity [Khan et al., 2009] could serve this
cause. Another improvement could come from considering saturation effects like those taken into account
in system (6). The contagion parameter β could also be chosen depending on space, e.g., maximum in zones
which constitute overlaps between domains where diffusion of infective vectors and hosts is minimum and
domains where concentration of susceptibles is maximum, ensuring locally a large coexistence time, hence
a high contagion rate between these large interacting subpopulations.

7. The feather primordia morphogenesis

The feather primordia morphogenesis is an embryonic process, which allows to well position adult feathers
permitting for example to the peacock to do the wheel in order to attract the female (cf. Figure 5).
The reaction-diffusion system corresponding to the feather primordia morphogenesis [Michon et al., 2008]
rules 3 variables, the density n of migrant primordial cells and the concentration u (resp. v) of an activator
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Fig. 5. Feather morphogenesis with identification of an activator u (BMP − 7), an inhibitor v (BMP − 2) and a mediator
(Follistatine) as morphogens (left) interacting at the genetic level, where Gu (resp. Gv) and Ou (resp. Ov) denote the gene
coding for u (resp. v) and its operator (top middle and bottom right) for giving first feathers primordia and after, adult
feathers allowing the wheel of feathers in the peacock (top right)

(resp. inhibitor), the BMP − 7 (resp. BMP − 2), following the equations:

∂n

∂t
= −�n− β∂n

∂a
+∇(χn∇u),

∂u

∂t
= Du ∆u+ f0(u, v)− kuu, (10)

∂v

∂t
= Dv ∆v + g0(u, v)− kvv,

with f0(u, v) = c1nu
2/(1 + v), g0(u, v) = c2nu

2, n(s, 1, t) =
∫M
1 2QβCn(s, a, t)n(s, a, t) da, and also with

Neumann boundary conditions. For the sake of simplicity, we will use in the following a simplified equation
for n:

∂n

∂t
= Dn ∆n−∇(χn∇u) + bn(1− n) (11)

Then it is possible to derive explicitly Turing’s instability necessary conditions [Turing, 1952], where us
(resp. vs) denotes the stationary concentration of u (resp. v) and f0u (resp. g0u) the first derivative of f0
(resp. g0) with respect to u at (us, vs):

(1) f0u + g0u < 0⇒ 2c1kvus/(kv + c2u
2
s)− ku − kv < 0,

(2) f0ug0v − f0vg0u > 0⇒ −2c1k
2
vus/(kv + c2u

2
s) + kukv + 2c1c2k

2
vu

3
s/(kv + c2u

2
s)

2 > 0⇒ −2c1k
3
vus/(kv +

c2u
2
s)

2 + kukv > 0
(3) Dug0v +Dvf0u < 0⇒ 2Dvc1kvus/(kv + c2u

2
s)−Dvku −Dukv < 0

(4) (Dug0v + Dvf0u)2 > 4DuDv(f0ug0v − f0vg0u) ⇒ 2Dvc1kvus/(kv + c2u
2
s) − (Dvku + Dukv) >(

4DuDvkukv − 8DuDvc1k
3
vus/(kv + c2u

2
s)

2
)1/2

If v � 1 and n are near their stationary value, e.g., if Dn, χ and b are large, such as the system reaches
rapidly its slow (u, v) manifold, we can decompose the two last equations of (10) in order to get a potential-
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Fig. 6. Coincidence of the null-curvature lines of the u (in red) and v (in blue) concentration surfaces, when Du/Dv varies
from 0.05 (left) to 0.07 (right). For Du/Dv = 0.06 (middle), the coincidence is perfect on the central part of the picture, which
corresponds roughly to the experimental value of the diffusion coefficients ratio

Hamiltonian system, with:

∂u

∂t
= −∂P

∂u
+
∂H

∂v
,

∂v

∂t
= −∂P

∂v
− ∂H

∂u
,

P = (kuu
2 + kvv

2)/2,

H = c1nu
2 ln(1 + v)− c2nu3/3.

Then c1 and c2 (resp. ku and kv) can be considered as frequency (resp. amplitude) modulating parameters
[Demongeot et al., 2007a,b; Forest et al., 2007; Glade et al., 2007] and the synchronizability can be estimated
by considering the isochrons landscape of the simplified system [Demongeot & Françoise, 2006].
The last very important parameter is the ratio between the diffusion coefficients Du/Dv, which is less than
1 as usually in lateral inhibition [Demongeot et al., 2009]: if the ratio is equal to the critical value 0.06, we
observe both in experiments (cf. Figure 5) and in simulations (cf. Figure 6) a temporo-spatial synchrony
between the effectors u and v. Both experiments and simulations show a coincidence of their remarkable
Gaussian lines, i.e. the projections of the null-curvature lines on the u and v concentration surfaces, defined
by the following equations expressing the vanishing of the mean Gaussian curvature:

Cu(x, y, t) =
∂2u

∂x2
∂2u

∂y2
−
(
∂2u

∂x∂y

)2

= 0,

Cv(x, y, t) =
∂2v

∂x2
∂2v

∂y2
−
(
∂2v

∂x∂y

)2

= 0.

These two remarkable lines for the effectors u and v coincide for the critical value of Du/Dv = 0.06 (cf.
Figure 6). The 2D projections of these lines form front waves moving in the same direction as the fronts
of the concentration contour lines, and where they coincide, the diffusion term vanishes and u and v are
susceptible to form at this location an assemblage like the phospho-lipo-proteic plasmic membrane or the
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Fig. 7. On the left: diminishing kv (from 35 to 0 with step of 5) causes the decrease of the feather number and amplitude. On
the right: diminishing c2 (from 4500 to 1200 with step 1100) causes feather motifs disparition and diffusion wins over reaction

inner mitochondrial membrane [Demongeot et al., 2007c]. The coexistence at this common least diffusion
location of migrant cells n as well as morphogens u and v permits indeed to build an anatomic boundary
for the future feathers, avoiding chemical reactions between these components, which change their physical
nature and involve thermic fluctuations (hence no zero diffusion). These phenomena are summarized on
Figure 6 which shows the coincidence (or the spatial synchrony) between the remarkable lines in 2D,
suggesting that this mechanism can be met in many circumstances of formation of an anatomic boundary:
for example, in [Demongeot et al., 2007c], a lateral inhibition mechanism is also used to show a spatial
synchrony between transmembrane proteins (the ATPase and the Translocase) allowing the realization
of a variational principle, which maximizes the mitochondrial ATP production and minimizes the mean
free path of adenylates inside the mitochondrion, by favouring the spatial vicinity between the ATPase
and Translocase sites inside the inner mitochondrial membrane. Many other parameters like c2 and kv are
critical for the occurrence of feathers (cf. Figure 7).

8. The gastrulation process

The gastrulation process is critical for a living organism, because it initiates the construction of the diges-
tive tube, just before the neural chord (cf. Figures 8 and 9). Many experimental observations show that
invagination preceding tube cylindrization starts on the two embryo extremities and propagates until its
middle part (cf. Figure 10 D), where occurs a high concentration of myosin in bottle cells (yellow on Figure
10 E). In these cells, apical constriction occurs when actomyosin contractility folds the cell membrane to
reduce the apical surface area. By considering a 3D mesh representing the terminal region where curvature
changes, we can simulate “in silico” the phenomenon by only taking into account the contractility in the
central cells of the mesh due to a local excess of mysosin diffusing from a random fluctuation in the central
embryonic part.
A gastrulation model needs to account for 4 mechanisms, allowing realistic simulations:

(1) change (due to random fluctuations) in concentration of metabolites critical for cell shape, like myosin,
actin, tubulin or of the substrates (notably ATP, GTP) and enzymes ruling adenylate and guanylate
pools (mainly ADenylate Kinase or ADK, Guanylate Kinase or GK and Nucleoside-Diphosphate Kinase
or NDK) required for their polymerization. The cell shape change into a truncated pyramid (or bottle,
or flask) shape is achieved in the apical portion of the cell which constricts

(2) diffusion of critical metabolites provoking locally the bottle cell differentiation (in region 1 on Figure
11)
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Fig. 8. In grey, eyes, gills and gastrula cavity anatomic frontiers in Zebra fish embryo (left, [Zanella et al., 2010], corresponding
to negative curvature, maximal proliferation and minimal morphogen diffusion domains. Adult animal (right)

(3) cell contraction from the apical cell surface (cf. 2 on Figure 11) and centrosome displacement in the
cell depth at the cell extremities due to the elastic forces balance during the first invagination stage of
the gastrulation (3 on Figure 11), which is purely mechanical without proliferation

(4) cell cycle arrest for bottle cells [Kurth, 2005] and after, proliferation at the end of gastrulation, con-
solidating the tube formation (4 on Figure 11). For example, the onset of gastrulation in rodents
is associated with the start of bottle cell differentiation within the embryo proper and after, with a
dramatic increase in the rate of growth and proliferation, the cell cycle time being 7 to 7.5 hours in
ectoderm and mesoderm, but 3 to 3.5 hours in the cells of the primitive streak, whose total cell cycle
time is reduced by shortening S and G2, as well as G1 in contrast to cells later in development, where
the cell cycle duration is modulated by varying the G1 length [Mac Auley et al., 1993].

The gastrulation model formalizes the mechanisms causing the mechanical perturbations due to the first
bottle cell differentiation (cell 2 in blue on Figure 11): after the apical constriction of the upper cells (cf.
Figures 10 and 11) and myosin diffusion, each cell evolves with its walls following the Newton law: the
sum of exerted forces is equal to the acceleration of the wall in the resultant direction (the mass of a wall
being equal to 1), and each cell is submitted to forces related to internal and external pressures (created by
elastic forces applied from the centrosome to the cells extremities in Figure 10 bottom), plus contact forces
imposed by neighbour cells. Each force is orthogonally applied to the concerned cell wall and is proportional
to its length, coefficients being either the pressure or the cadherins concentration. The updating of each
cell force balance is sequential: when a cell moves, it takes its neighbours with itself. These movements
cause variations of cells areas: we suppose that growth occurs where the forces are high and that cells
are incompressible. After a radial division due to a small nutritive surface/volume ratio of the bottle cells
(following the Thom’s law, described in [Forest & Demongeot, 2004, 2008; Forest et al., 2004, 2006], we
suppose that the growth in G1 following the mitosis increases this ratio, ensuring a convenient nutrition.
Cells are often shaped by requirements of cell surface S over volume V ratio (S/V ) and namely intestinal
cells have tendency to increase the area through which nutrients are absorbed [Stanek, 1983; Miller &
Levine, 2002]. Ratio S/V decreases when invagination occurs (cf. Figure 9 bottom), especially if actomyosin
fibers are orthogonal to microtubules [Silverman-Gavrila et al., 2008], depolymerization reducing the extent
of the apical constriction [Lee & Harland, 2010]. Forces exerted on walls push centrosome and nucleus to
move in the cell depth at the level of the first curved distal parts of the embryo (cf. Figures 9 & 10) in
agreement with experiments [Leptin & Grünewald, 1990], due to the location of the elastic forces application
points supposed to be the same on neighbour walls, located at the cadherin and myosin-membrane-attached
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Fig. 9. Building gastrulation cavity with invagination first phase showing 4 types of cells: 1) the exothelial, 2) the bottle (BC
on middle left, arch “keystone”), 3) the trapezoidal and 4) the endothelial (top). Genetic network ruling the gastrulation, with
only 2 fixed point attractors, if genes b and c vanish (middle right and bottom)

sites [Inoue, 1995; Angst et al., 2001; Laevsky & Knecht, 2003; Hanson et al., 2007]. Expression of genes like
Rho (cf. Figure 9) ruling enzymes and carrier proteins needed for controlling metabolites critical for cell
shaping [Chisholm, 2006] depends on a genetic regulatory network described in [Leptin, 1999; Demongeot et
al., 2003; Aracena et al., 2006]. Figure 9 shows the minimal architecture having 4 attractors corresponding
to the 4 cell types needed for achieving the digestive tube.
The domains of minimal diffusion of myosin are shown in yellow on Figure 9 and are located on the frontiers
of the invagination (zones of zero-curvature). The link between these domains and the anatomic boundaries
have to be confirmed in further 3D microscopic studies by comparing the null-curvature maps of the embryo,
the zero-diffusion domains of the critical metabolites and the maximal proliferation zones. We conjecture
in concluding these two short studies about feather morphogenesis and gastrulation that the zero-diffusion
sets could be good candidates for ensuring locally the coexistence, and after the auto-assemblage of the
components (carrier, receptor and attachment proteins as well as phospho-lipids) of cell interfaces between
two tissues needed for separating organs functionnally specified by differentiated cells. In the zero-diffusion
zones indeed the effect of the temperature on the diffusion is minimum, because the viscosity (inverse of
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Fig. 10. Progressive invagination due to the first bottle cell differentiation in gastrulation process: experimental data (top left,
from http://www.molbio1.princeton.edu/wieschaus/); tentative mechanism of propagation of the random myosin fluctuation
(in blue, top right); model with myosin diffusion (in red) and cell contraction, yellow color indicating the zones of minimal
diffusion (middle left) with explanation of the inward movement (middle right) and central mesh contraction showing the
terminal invagination in axonometric and profile views, with calculation of forces exerted by the elastic constraints propagation
on a central and distal cell, located respectively on the cylindric (A) and curved terminal (B) parts of the embryo (bottom)
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Fig. 11. Top: First steps of the gastrulation with 1) diffusion of constriction metabolites from the first bottle cells (in blue),
2) occurrence of the invagination from the initial bottle cell and 3) proliferation of bottle cells, before 4) closing and enlarging
the tube. Bottom: Curves showing the cell surface S over cell volume V ratio (S/V ) depending on the mode of attachment of
the myosin fibers inside the cells A and B of Figure 10
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the diffusion coefficient D) is proportional to exp(E/kT ), where E is an activation energy, T the absolute
temperature and k the Boltzmann’s constant. We can also notice that if the concentration front wave is
Gaussian, the zero-diffusion zone corresponds to the domain where the partial de Donder affinity ln(u),
where u is the concentration of the diffusing substance [Dutt, 2000], does not vary, after reaching the
reaction equilibrium, in the case where the reaction has a fast dynamics with respect to a slow diffusion:

∂ ln(u)

∂t
=

1

u

∂u

∂t
=
D∆u

u

If we authorize the value of D∆u/u to be sufficiently small, that corresponds also to the domain where
the diffusion of u is minimum and its concentration maximum. If the corresponding value of u minimizes
a chemical potential from which the reaction velocity derives, like in n-switches involved in morphogenetic
processes [Cinquin & Demongeot, 2002a,b], then the zero-diffusion domains, in the case where they coincide
for several constituents (e.g., of a membrane or aponeurosis), correspond to a local constancy of their
concentrations favouring their interactions in order to build the auto-assemblage the least sensitive to the
thermal fluctuations.

9. Conclusion

We have considered firstly in this paper some natural extensions of the classical Ross-McKendrick-Mac
Donald approaches, in order to account for demographic and spatial dependencies of the variables involved
in an infection process. One example has been presented, concerning the Black Death spread in Europe
during the middle-age, which shows the interest of introducing space and biological age into the classical
equations. In the future, other infectious diseases (like Sexually Transmitted Diseases) could be treated
with the same approach showing the importance of the demography (the sexual relationships depending
on the age of the partners) and of the socio-geography (conditioning the sexual behavior). Based on the
knowledge of the new aerial routes [Khan et al., 2009], epidemics modelling will be also revisited in a short
future for predicting new pandemics, with a viscosity minimal on the aerial routes. A second type of spatial
dependency in a reaction-diffusion process occurs in the morphogenesis modelling: like for the epidemics,
both age and spatial diffusion can explain the occurrence of spatial patterns, e.g., in the cases of feather
morphogenesis and gastrulation.
In both epidemics and morphogenesis models, further studies have to be done in order to definitely empha-
size and make more precise the functional role of the zero-diffusion domains, in which chemical or infectious
agents coexist and interact.
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Gaudart, J. Touré, O., Dessay, N., Dicko, A. L., Ranque, S., Forest, L., Demongeot, J. & Doumbo, O.

K. [2009] “Modelling malaria incidence with environmental dependency in a locality of Sudanese
savannah area, Mali”, Malaria J. 8, 61.

Gaudart, J., Ghassani, M., Mintsa, J., Waku, J., Rachdi, M., Doumbo, O. K. & Demongeot, J. [2010]
“Demographic and spatial factors as causes of an epidemic spread, the copule approach. Application



April 2, 2013 15:37 ”IJBC Demongeot”

REFERENCES 21

to retro-prediction of the Black Death of 1346”, IEEE AINA’2010 (IEEE Press, Piscataway), pp.
751-758.

Glade, N., Forest, L. & Demongeot, J. [2007] “Liénard systems and potential-Hamiltonian decomposition.
III Applications in biology”, Comptes Rendus Mathématique 344, 253-258.
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pour examiner, discuter les avantages et les inconvénients de l’inoculation de la petite vérole, Faculté
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Usher, M. B. [1969] “A Matrix Model for Forest Management”, Biometrics 25, 309-315.
WHO [1999] “La peste humaine en 1997”, Relevé Epidémiologique Hebdomadaire OMS 74, 340-344.
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