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Abstract

In this letter, we investigate a possible modification to the temperature and
entropy of 5−dimensional Schwarzschild anti de Sitter black holes due to incorpo-
rating stringy corrections to the modified uncertainty principle. Then we subse-
quently argue for corrections to the Cardy-Verlinde formula in order to account for
the corrected entropy. Then we show, one can taking into account the general-
ized uncertainty principle corrections of the Cardy-Verlinde entropy formula by just
redefining the Virasoro operator L0 and the central charge c.
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1 Introduction

It is commonly believed that any valid theory of quantum gravity must necessary incor-
porate the Bekenestein-Hawking definition of black hole entropy [1, 2] into its conceptual
framework [3] . However, the microscopic origin of this entropy remains an enigma for two
reasons. First of all although the various counting methods have pointed to the expected
semi-classical result, there is still a lack of recognition as to what degrees of freedom are
truly being counted. This ambiguity can be attributed to most of these methods being
based on dualities with simpler theories, thus obscuring the physical interpretation from
the perspective of the black hole in question. Secondly, the vast and varied number of
successful counting techniques only serve to cloud up an already fuzzy picture.
The Cardy-Verlinde formula proposed by Verlinde [4], relates the entropy of a certain
CFT with its total energy and its Casimir energy in arbitrary dimensions. Using the
AdSd/CFTd−1 [5] and dSd/CFTd−1 correspondences [6] , this formula has been shown to
hold exactly for different black holes (see for example [7]-[15]).
Black hole thermodynamic quantities depend on the Hawking temperature via the usual
thermodynamic relations. The Hawking temperature undergoes corrections from many
sources:the quantum corrections, the self-gravitational corrections, and the corrections
due to the generalized uncertainty principle.
It has been known for some time that the quantum effect (a quantum correction to the
microcanonical entropy due to the correction to the number of microstates, and another
correction due to the thermal fluctuation around equilibrium state) result in logarithmic
corrections to the black hole entropy [16]-[36].
Concerning the Hawking effect [37] much work has been done using a fixed background
during the emission process. The idea of Keski-Vakkuri, Kraus and Wilczek (KKW) [38]-
[40] is to view the black hole background as dynamical by treating the Hawking radiation
as a tunnelling process. The energy conservation is the key to this description. The total
(ADM) mass is kept fixed while the mass of the black hole under consideration decreases
due to the emitted radiation. The effect of this modification gives rise to additional terms
in the formulae concerning the known results for black holes [41]-[43]; a nonthermal part-
ner to the thermal spectrum of the Hawking radiation shows up.
The generalized uncertainty principle corrections are not tied down to any specific model
of quantum gravity; these corrections can be derived using arguments from string theory
[45] as well as other approaches to quantum gravity [46].
Previous studies of the corrected Cardy-Verlinde formula in AdS/CFT or dS/CFT con-
text have neglected the corrections due to the generalized uncertainty principle [48] In
the present paper, we take into account corrections to the Cardy-Verlinde entropy for-
mula of the five-dimensional SAdS black hole that arise due to the generalized uncertainty
principle. In section 2 we review the connection between uncertainty principle and ther-
modynamic quantities, then we drive the corrections to these quantities due to the gener-
alized uncertainty principle [49]. In section 3 we consider the Cardy-Verlinde formula of
a 5−dimensional Schwarzschild anti de Sitter black hole, then we obtain the generalized
uncertainty principle corrections to this entropy formula.
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2 The generalized uncertainty principle

The metric of an SAdS black hole in 5−dimension is given by

ds2 = −(1 −
16πG5M

3Ω3c2r2
+

r2

l2
)dt2 + (1−

16πG5M

3Ω3c2r2
+

r2

l2
)−1dr2 + r2dΩ2

3, (1)

where Ω3 is the metric of the unit S3 and G5 is the 5−dimensional Newton’s constant.
Since the Hawking radiation is a quantum process, the emitted quanta must satisfy the
Heisenberg uncertainty principle

∆xi∆pj ≥ h̄δij , (2)

where xi and pj, i, j = 1...4, are the spatial coordinates and momenta, respectively. By
modelling a black hole as a 5−dimensional cube of size equal to twice its Schwarzschild
radius r+, the uncertainty in the position of a Hawking particle at the emission is

∆x ≈ 2r+ = l

√

√

√

√

−1 +
√

1 + 64πG5M
3l2Ω3c2

2
, (3)

Using Eq.(2), the uncertainty in the energy of the emitted particle is

∆E ≈ c∆p ≈
h̄

l

√

−1+

√

1+
64πG5M

3l2Ω3c
2

2

, (4)

The entropy, Hawking temperature and energy of black hole are as

SBH =
Ω3r

3
+

4l3p
≈

Ω3

4l3p
(
πl2

h̄c
)3T 3 (5)

T =
h̄c(4r2+ + 2l2)

4πl2r+
≈

h̄c

πl2
r+, r+ ≫ l, (6)

E =
3Ω3r

2
+c

4

16πG5
(1 +

r2+
l2
) (7)

where the approximation r+ ≫ l is known as the high-temperature limit. We now de-
termine the corrections to the above results due to the generalized uncertainty principle.
The general form of the generalized uncertainty principle is

∆xi ≥
h̄

∆pi
+ α2l2lp

∆pi

h̄
, (8)

where lpl = ( h̄G5

c3
)1/3 is the Planck length and α is a dimensionless constant of order one.

There are many derivations of the generalized uncertainty principle, some heuristic and
some more rigorous. Eq.(8) can be derived in the context of string theory [45], non-
commutative quantum mechanics [46], and from minimum length consideration [47]. The
exact value of α depends on the specific model. The second term in r.h.s of Eq.(8) becomes
effective when momentum and length are of the order of Planck mass and of the Planck
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length, respectively. This limit is usually called quantum regime. Inverting Eq.(8), we
obtain

∆xi

2α2l2pl
[1−

√

√

√

√1−
4α2l2pl

∆x2
i

] ≤
∆pi

h̄
≤

∆xi

2α2l2pl
[1 +

√

√

√

√1−
4α2l2pl

∆x2
i

] (9)

Now we consider the corrections to the black hole thermodynamic quantities. Setting
∆x = 2r+ and using Eq.(6) the generalized uncertainty principle-corrected Hawking tem-
perature is

T ′ =
ch̄α2l2pl

2l2πr+(1−

√

1−
α2l2

pl

r2
+

)
(10)

Denominator Eq.(10) may be Taylor expanded around α = 0:

T ′ =
ch̄r+

πl2(1 +
α2l2

pl

4r2
+

)
=

ch̄r+

πl2
(1−

α2l2pl

4r2+
) = (1−

α2l2pl

4r2+
)T. (11)

The generalized uncertainty principle-corrected Hawking temperature is smaller than the
semiclassical Hawking temperature T of Eq.(6). The generalized uncertainty principle-
corrected black hole entropy is

S ′

BH =
Ω3

4l3p
(
πl2

h̄c
)3T ′3 =

Ω3

4l3p
(
πl2

h̄c
)3(1−

3α2l2p

4r2+
)T 3 = SBH(1−

3α2l2p

4r2+
). (12)

From Eq.(12) it follows that the corrected entropy is smaller than the semiclassical
Bekenstein-Hawking.

3 Generalized Uncertainty Principle Corrections to

the Cardy-Verlinde Formula

The entropy of a (1+1)−dimensional CFT is given by the well-known Cardy formula [50]

S = 2π

√

c

6
(L0 −

c

24
), (13)

where L0 represent the product ER of the energy and radius, and the shift of c
24

is caused
by the Casimir effect. After making the appropriate identifications for L0 and c, the same
Cardy formula is also valid for CFT in arbitrary spacetime dimensions d− 1 in the form
[4]

SCFT =
2πR

d− 2

√

Ec(2E −Ec), (14)

the so called Cardy-Verlinde formula, where R is the radius of the system, E is the total
energy and Ec is the Casimir energy, defined as

Ec = (d− 1)E − (d− 2)TS. (15)

In this section we compute the generalized uncertainty principle corrections to the entropy
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of a (d = 5)−dimensional Schwarzschild anti de Sitter black hole described by the Cardy-
Verlinde formula Eq.(14). The Casimir energy Eq.(15) now will be modified due to the
the uncertainty principle corrections as

E ′

c = 4E ′
− 3T ′S ′. (16)

It is easily seen that

E ′

c(2E
′
− E ′

c) = (4πT ′
− 3T ′S ′

BH)(−2πT ′ + 3T ′S ′

BH)

= −8π2T 2
− 16π2T∆T + 18πSBHT

2 + 38πTSBH∆T + 18πT 2∆S −

9T 2S2
BH − 18T 2SBH∆S − 18TS2

BH∆T. (17)

We substitute the previous expression (17) in the Cardy-Verlinde formula in order that
generalized uncertainty principle corrections to be considered,

S ′

CFT = SCFT [1 +
T [−16π2∆T + 18πT∆S + 30πSBH∆T − 18SBHT∆S − 18S2

BH∆T ]

2Ec(2E −Ec)
](18)

where

∆T =
−α2l2p

4r2+
T (19)

∆S =
−3α2l2p

4r2+
SBH (20)

If we would like to express the modified Cardy-Verlinde entropy formula in terms of the
energy and Casimir energy, it is necessary to rewrite the T, SBH ,∆T,∆S in terms of
energy as following

T =
2h̄

πl2
(
πG5l

2E

3Ω3

)1/4 (21)

SBH =
Ω3c

3

4h̄G5

(
16πG5l

2E

3Ω3c4
)3/4, (22)

∆T =
−α2h̄c2l2p

8πl2
(

3Ω3

πG5l2E
)1/4, (23)

∆S =
−3α2Ω3

16lp
(
16πG5l

2E

3Ω3c4
)1/4 (24)

As we saw in above discussion these corrections are caused by generalized uncertainty
principle.
Then, we can taking into account the generalized uncertainty principle corrections of the
Cardy-Verlinde entropy formula by just redefining the Virasoro operator, L0 = ER, and
the central charge c

6
= (d−2)Sc

π
= 2EcR, where Sc is the Casimir entropy

L′

0 = E ′R =
3Ω3l

6π3

16h̄4G5

T ′4R = (1−
α2l2p

r2+
)ER = (1−

α2l2p

r2+
)L0 (25)

c′ = 12E ′

cR = 12(4E ′
− 3S ′

BHT
′)R = 12R(1−

α2l2p

r2+
)Ec = (1−

α2l2p

r2+
)c (26)
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his redefinition includes only a multiplicative constant term and, therefore can be con-
sidered as a renormalization of the quantities entering in the Cardy formula. 1In [17]
Carlip have computed the logarithmic corrections to the Cardy formula, according to his
calculations, logarithmic corrections to the density of states is as

ρ(∆) ≈ (
c

96∆3
)1/4 exp(2π

√

c∆

6
), (27)

where ∆ = L0, the exponential term in (27) gives the standard Cardy formula, but we
have now found the lading correction, which is logarithmic. In the other hand as we saw
the effect of the generalized uncertainty principle to the Cardy- Verlinde formula appear
as the redefinition of the c and L0 only. As Carlip have discussed in [17], the central charge
c appearing in (27) is the full central charge of the conformal field theory. In general, c
will consist of a classical term which appear in the Poisson bracets of the Virasoro algebra
generators, plus a correction due to the quantum (here generalized uncertainty principle)
effects, that can change the exponent in (27) from its classical value. Moreover we saw
that L0 take a similar correction as eq.(25), then the similar discussion about L0 is correct.
Therefore the first order corrections to the L0 and c are given by

∆L0 = L′

0 − L0 = (E ′
− E)R =

−α2l2p

r2+
L0 (28)

∆c = c′ − c = 12R(E ′

c − Ec) =
−α2l2p

r2+
c (29)

4 Conclusion

In this paper we have examined the effects of the generalized uncertainty principle in
the generalized Cardy-Verlinde formula. The general form of the generalized uncertainty
principle is given by Eq.(8). Black hole thermodynamic quantities depend on the Hawking
temperature via the usual thermodynamic relation. The Hawking temperature undergoes
corrections from the generalized uncertainty principle as Eq.(10). Then we have obtained
the corrections to the entropy of a dual conformal field theory live on boundary space
as Eq.(18). Then we have considered this point that the Cardy-Verlinde formula is the
outcome of a striking resemblance between the thermodynamics of CFTs with asymptoti-
cally Ads dual’s and CFTs in two dimensions. After that we have obtained the corrections
to the quantities entering the Cardy-Verlinde formula:Virasoro operator and the central
charge.
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