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Abstract

In this paper, we describe a method for obtaining the nonabelian
Seiberg-Witten map for any gauge group and to any order in θ. The
equations defining the Seiberg-Witten map are expressed using a cobound-
ary operator, so that they can be solved by constructing a correspond-
ing homotopy operator. The ambiguities, of both the gauge and co-
variant type, which arise in this map are manifest in our formalism.
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1 Introduction

Noncommutative field theories have recently received much attention after it
was realized that in the presence of a background NS B-field, the gauge the-
ory living on D-branes becomes noncommutative [1]. Based on the existence
of different regularization procedures in string theory, Seiberg and Witten[2]
argued that certain noncommutative gauge theories are equivalent to com-
mutative ones and in particular that there exists a map from a commutative
gauge field to a noncommutative one, which is compatible with the gauge
structure of each. This map has become known as the Seiberg-Witten (SW)
map. In this paper, we give a method for explicitly finding this map. We
will consider gauge theories on the noncommutative space defined by

[

xi ⋆, xj
]

= iθij , (1.1)

where θ is a constant Poisson tensor. Then the “⋆” operation is the associa-
tive Weyl-Moyal product

f ⋆ g = f e
i
2
θij
←

∂i
→

∂jg . (1.2)

We believe that our method is much more general, and can in fact be used
even when θ is not constant.

In the next section, we review some previous work [3], which provides
an essential starting point for our own. In Section 3, we replace the gauge
parameters appearing in the SW map with a ghost field, which makes explicit
a cohomological structure underlying the SW map [4]. We then discuss the
ambiguities that appear, distinguishing the gauge and covariant types. In
Section 4, we define a homotopy operator, which can be used to explicitly
write down the SW map order by order in θ. In Section 5, we discuss some
complications that arise in this formalism and some ways to overcome them.

2 General Review

In this section, we review the formalism developed in [3], which provides an
alternative method for obtaining an expression for the SW map.

The original equation which defines the SW map [2] arises from the re-
quirement that gauge invariance be preserved in the following sense. Let ai,
α be the gauge field and gauge parameter of the commutative theory and
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similarly let Ai, Λ be the gauge field and gauge parameter of the noncom-
mutative theory. Under an infinitesimal gauge transformation,

δαai = ∂iα− i[ai, α], (2.1)

δΛAi = ∂iΛ− i[Ai
⋆, Λ] ≡ ∂iΛ− i (Ai ⋆ Λ− Λ ⋆ Ai) . (2.2)

Then, the SW map is found by requiring

Ai + δΛAi = Ai(aj + δαaj , · · ·). (2.3)

In order to satisfy (2.3) the noncommutative gauge field and gauge parameter
must have the following functional dependence

Ai = Ai( a, ∂a, ∂
2a, · · ·)

Λ = Λ(α, ∂α, · · · , a, ∂a, · · ·),
(2.4)

where the dots indicate higher derivatives. It must be emphasized that a SW
map is not uniquely defined by condition (2.3). The ambiguities that arise
[5] will be discussed shortly.

The condition (2.3) yields a simultaneous equation for Ai and Λ. For the
constant θ case, explicit solutions of the Seiberg-Witten map have been found
by various authors up to second order in θ [3, 6]. The solutions were found
by writing the map as a linear combination of all possible terms allowed
by index structure and dimensional constraints and then determining the
coefficients by plugging this expression into the SW equation. The method
we will describe in the rest of the paper provides a more systematic procedure
for solving the SW map. For the special case of a U(1) gauge group, an
exact solution in terms of the Kontsevich formality map is given in [7], while
[8, 9, 10, 11] present an inverse of the SW map to all orders in θ.

An alternative characterization of the Seiberg-Witten map can be ob-
tained following [3]. In the commutative gauge theory, one may consider
a field ψ in the fundamental representation of the gauge group. If we as-
sume that the SW map can be extended to include such fields, then there
will be a field Ψ in the noncommutative theory with the following functional
dependence

Ψ = Ψ(ψ, ∂ψ, · · · , a, ∂a, · · ·), (2.5)

and with the corresponding infinitesimal gauge transformation

δαψ = iαψ , (2.6)

2



δΛΨ = iΛ ⋆Ψ. (2.7)

An alternative to the SW condition (2.3) can now be given by

Ψ + δΛΨ = Ψ(ψ + δαψ, · · · , aj + δαaj , · · ·). (2.8)

More compactly, one writes

δΛα
Ψ(ψ, aj , · · ·) = δαΨ(ψ, aj , · · ·). (2.9)

The dependence of Λ on α is shown explicitly on the left hand side, and on
the right hand side δα acts as a derivation on the function Ψ, with an action
on the variables ψ and ai given by (2.6) and (2.1) respectively. Next, one
considers the commutator of two infinitesimal gauge transformations

[

δΛα
, δΛβ

]

Ψ = [δα, δβ] Ψ. (2.10)

Since [δα, δβ] = δ−i[α,β], the right hand side of (2.10) can be rewritten as

δ−i[α,β]Ψ = δΛ
−i[α,β]

Ψ = iΛ−i[α,β] ⋆Ψ = Λ[α,β] ⋆Ψ.

The last equality follows from the fact that Λ is linear in the ordinary gauge
parameter, which is infinitesimal. As for the left hand side,

[

δΛα
, δΛβ

]

Ψ = δΛα
(iΛβ ⋆Ψ)− δΛβ

(iΛα ⋆Ψ)

= i (δαΛβ − δβΛα) ⋆Ψ+ [Λα
⋆, Λβ] ⋆Ψ.

Equating the two expressions and dropping Ψ yields

(δαΛβ − δβΛα)− i [Λα
⋆, Λβ] + iΛ[α,β] = 0 . (2.11)

An advantage of this formulation is that (2.11) is an equation in Λ only,
whereas (2.3) must be solved simultaneously in Λ and Ai. If (2.11) is solved,
(2.2) with (2.3) then yields an equation for Ai and (2.7) with (2.8) for Ψ.

3 The Ghost Field and the Coboundary Op-

erator

It is advantageous to rewrite equations (2.2), (2.7) and (2.11) in terms of a
ghost field in order to make explicit an underlying cohomological structure.
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Specifically, we replace the gauge parameter α with a ghost v, which is an
enveloping algebra valued, Grassmannian field1. We define a ghost number
by assigning ghost number one to v and zero to ai and ψ. The ghost number
introduces a Z2 grading, with even quantities commuting and odd quantities
anticommuting. In our formalism, the gauge transformations (2.1) and (2.6)
are replaced by the following BRST transformations:

δvv = iv2

δvai = ∂iv − i [ai, v]
δvψ = ivψ .

(3.1)

We also take δv to commute with the partial derivatives,

[δv, ∂i] = 0 . (3.2)

The operator δv has ghost number one and obeys a graded Leibniz rule

δv(f1f2) = (δvf1)f2 + (−1)deg(f1)f1(δvf2) , (3.3)

where deg(f) gives the ghost number of the expression f . One can read-
ily check that δv is nilpotent on the fields ai, ψ and v and therefore, as a
consequence of (3.3), we have

δ2v = 0 . (3.4)

Following the procedure outlined in the previous section, we characterize
the SW map as follows. We introduce a matter field Ψ(ψ, ∂ψ, · · · , a, ∂a, · · ·)
and an odd gauge parameter Λ(v, ∂v, · · · , a, ∂a, · · ·) corresponding to ψ and
v in the commutative theory. Λ is linear in the infinitesimal parameter v and
hence has ghost number one. As before, we require that the SW map respect
gauge invariance

δΛΨ ≡ iΛ ⋆Ψ = δvΨ. (3.5)

The consistency condition (2.10) now takes the form

δ2ΛΨ = δ2vΨ = 0 , (3.6)

and again it yields an equation in Λ only. Since

0 = δ2ΛΨ = δΛ(iΛ ⋆Ψ) = iδvΛ ⋆Ψ+ Λ ⋆ Λ ⋆Ψ ,

1 In the U(1) case, the introduction of a ghost has been considered by Okuyama [12].
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we can drop Ψ and obtain
δvΛ = iΛ ⋆ Λ. (3.7)

Once the solution of (3.7) is known, one can solve the following equations
for Ψ and the gauge field

δvΨ = iΛ ⋆Ψ , δvAi = ∂iΛ− i [Ai
⋆, Λ] . (3.8)

It is natural to expand Λ and Ai as power series in the deformation
parameter θ. We indicate the order in θ by an upper index in parentheses

Λ =
∑∞

n=0 Λ
(n) = v +

∑∞

n=1 Λ
(n)

Ai =
∑∞

n=0A
(n)
i = ai +

∑∞

n=1A
(n)
i .

(3.9)

Note that the zeroth order terms are determined by requiring that the SW
map reduce to the identity as θ goes to zero. Using this expansion we can
rewrite equations (3.7) and (3.8) as

δvΛ
(n) − i{v,Λ(n)} =M (n)

δvA
(n)
i − i[v, A

(n)
i ] = U

(n)
i ,

(3.10)

where, in the first equation, M (n) collects all terms of order n which do not
contain Λ(n), and similarly U

(n)
i collects terms not involving A

(n)
i . We refer to

the left hand side of each equation as its homogeneous part, and toM (n) and
U

(n)
i as the inhomogeneous terms of (3.10). Note thatM (n) contains explicit

factors of θ, originating from the expansion of the Weyl-Moyal product (1.2).
If the SW map for Λ is known up to order (n−1), thenM (n) can be calculated

explicitly as a function of v and ai. On the other hand, U
(n)
i depends on both

Λ and Ai, the former up to order n and the latter up to order (n− 1). Still,
one can calculate it iteratively as a function of v and ai.

The structure of the homogeneous portions suggests the introduction of
a new operator ∆

∆ =

{

δv − i{v, ·} on odd quantities
δv − i[v, ·] on even quantities .

(3.11)

In particular, ∆ acts on v and ai as follows

∆v = −iv2 , ∆ai = ∂iv . (3.12)
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As a consequence of its definition, ∆ is an anti-derivation with ghost-number
one. It follows a graded Leibniz rule identical to the one for δv (3.3). Another
consequence of the definition (3.11) is that ∆ is nilpotent

∆2 = 0 . (3.13)

The action of ∆ on expressions involving ai and its derivatives can also
be characterized in geometric terms. Specifically, ∆ differs from δv in that it
removes the covariant part of the gauge transformation. Therefore, ∆ acting
on any covariant expression will give zero. For instance, if one constructs the
field-strength, Fij ≡ ∂iaj − ∂jai − i[ai, aj ], one finds by explicit calculation

∆Fij = 0. (3.14)

It can also be checked that the covariant derivative, Di = ∂i − i[ai, ·], com-
mutes with ∆

[∆, Di] = 0. (3.15)

In terms of ∆ the equations (3.10) take the form

∆Λ(n) =M (n)

∆A
(n)
i = U

(n)
i .

(3.16)

In the next section, we will provide a method for solving these equations.
Also note that since ∆2 = 0, it must be true that

∆M (n) = 0

∆U
(n)
i = 0 .

(3.17)

Indeed one should verify that (3.17) holds order by order. If (3.17) did not
hold, this would signal an inconsistency in the SW map.

Many authors have commented on the ambiguities of the SW map [3, 5,
6, 13]. At any particular order, the ambiguities can be seen as an invariance
of (3.16) when Λ(n) is changed by an amount ∆S(n)

Λ(n) → Λ(n) +∆S(n) , (3.18)

which follows from the fact that ∆ is nilpotent. Then the corresponding
change in the potential is

A
(n)
i → A

(n)
i +DiS

(n) . (3.19)
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This follows from the fact that the equation of order n for the gauge field is
always of the form

∆A
(n)
i = DiΛ

(n) + · · · , (3.20)

where the ellipsis denotes terms which are explicitly θ-dependent. Notice
that (3.19) is a consequence of the fact that the coboundary operator ∆
commutes with the covariant derivative Di. The ambiguities at order n also
affect the solutions at higher order.

These ambiguities can also be understood as an invariance of (3.7)
and (3.8) under the following transformations [13]

Λ → G−1ΛG+ i G−1δvG

Ai → G−1AiG+ i G−1∂iG (3.21)

Ψ → G−1Ψ ,

where all products are star products and G is an arbitrary element of the
enveloping algebra with ghost number zero. Notice that G should also be
unitary if we require that Λ and Ai remain real.

To compare (3.21) with (3.18) and (3.19) it is useful to introduce the
operators

D̂i ≡ ∂i − i[Ai
⋆, ·] (3.22)

∆̂ ≡

{

δv − i[Λ ⋆, ·] for even quantities
δv − i{Λ ⋆, ·} for odd quantities ,

(3.23)

which satisfy
∆̂2 = 0, [D̂i, ∆̂] = 0 (3.24)

and which reduce to Di and ∆ in the limit of vanishing θ. Then (3.21) can
be rewritten as

Λ → Λ + i G−1∆̂G (3.25)

Ai → Ai + i G−1D̂iG . (3.26)

To recover (3.18) and (3.19) we set

G = 1− i S(n) , (3.27)

and take (3.25) and (3.26) at order n. These ambiguities are of the form of
a gauge transformation. Notice that in the particular case, ∆S(n) = 0, A(n)

is modified while Λ(n) is unaffected.
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In [5] it has been observed that there are also other kinds of ambiguities,
which don’t have the form of a gauge transformation, but are of a covariant
type. To see this, we rewrite the SW equation for A (3.8) using ∆̂

∆̂Ai = ∂iΛ . (3.28)

It is then possible to add to the gauge potential a quantity Si,

Ai → Ai + Si, ∆̂Si = 0 , (3.29)

while keeping Λ unchanged.

4 The Homotopy Operator

For simplicity, we begin by considering in detail the SW map for the case of
the gauge parameter Λ. Much of what we say actually applies to the other
cases as well with minor modifications.

In the previous section, we have seen that order by order in an expansion
in θ, the SW map has the form:

∆Λ(n) =M (n), (4.1)

where M (n) depends only on Λ(i) with i < n. Clearly, if one could invert
∆ somehow, we could solve for Λ(n). But ∆ is obviously not invertible, as
∆2 = 0. In particular, the solutions of (4.1) are not unique, since if Λ(n) is a
solution so is Λ(n)+∆S(n) for any S(n) of ghost number zero2. That is, ∆ acts
like a coboundary operator in a cohomology theory, and the solutions that
we are looking for are actually cohomology classes of solutions, unique only
up to the addition of ∆-exact terms. The formal existence of the SW map
is then equivalent to the statement that the cycle M (n) is actually ∆-exact
for all n. Since we know that ∆2 = 0, this fact would follow as a corollary
of the stronger statement that there is no non-trivial ∆-cohomology in ghost
number two. In other words, there are no ∆-closed, order n polynomials with
ghost number two which are not also ∆-exact. To prove this stronger claim,
we could proceed as follows. Suppose that we could construct an operator
K such that

K∆+∆K = 1. (4.2)

2These are precisely the ambiguities in the SW map that were first discussed in [5],

where our operator ∆ was called δ̂′.
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Clearly, K must reduce ghost number by one, and therefore must be odd.
Consider its action on a cycle M , (so ∆M = 0)

(K∆+∆K)M = ∆KM =M. (4.3)

Therefore, M = ∆Λ, with Λ = KM , which not only shows that M is ex-
act, but also computes explicitly a solution to the SW map. We note that
this method of solution is nearly identical to the method used by Stora and
Zumino [14] to solve the Wess-Zumino consistency conditions for nonabelian
anomalies. In fact, it was the parallels between these problems that moti-
vated the current approach. [4]

We now proceed to construct K. First we notice that M (n) depends on
v only through its derivative ∂iv, as one can see by looking at the explicit
expressions. The same is true for U

(n)
i since it depends on v only through Λ.

It is convenient to define
bi = ∂iv , (4.4)

so that M and Ui can all be expressed as functions of ai, bi and their deriva-
tives only. Furthermore, we rewrite M (n) solely in terms of covariant deriva-
tives, rather than ordinary ones. After these replacements, we may consider
M (n) an element of the algebra generated by ai, bi, and Di. As explained in
the next section this algebra is not free, but for the moment we ignore this
issue. The action of the operator ∆ takes on a particularly simple form in
terms of these variables:

∆ai = bi , ∆bi = 0 , [∆, Di] = 0. (4.5)

Let us first define an odd operator L, which obeys the super Leibniz rule,
and satisfies

Lai = 0 , Lbi = ai , [L,Di ] = 0 . (4.6)

Acting on either a or b, we have L∆ + ∆L = 1, but this is no longer true
acting on monomials of higher order. The solution is to define

K = D−1L , (4.7)

where D−1 is a linear operator which when acting on a monomial of total
order d in a and b multiplies that monomial by 1/d. In can be proven that
K defined in this way satisfies (4.2) when acting on monomials of degree
greater than or equal to one. Since L satisfies the Leibniz rule, we see that
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L2 = 0, by considering its action on the generators of the algebra (4.6). It
then follows that

K2 = 0. (4.8)

Notice that this prescription requires that we rewrite any expression involving
ordinary derivatives in terms of covariant derivatives and gauge fields only.

5 Constraints

We have so far only considered the free algebra, generated by ai , bi and Di,
where the construction of K was relatively simple. To show that our algebra
is not free consider the following

∆Fij = ∆(Diaj −Djai + i[ai, aj ]) .
= Dibj −Djbi + i[bi, aj ] + i[ai, bj] .

(5.1)

As an element of the free algebra, the right hand side is not zero, but ac-
cording to (3.14), the left hand side should be. The problem becomes more
serious when one rewrites M (n) in terms of the elements of the free algebra.
Beyond first order, one finds that ∆M (n) is no longer zero in general, but
vanishes only by using the following constraints

[Fij , · ]− i[Di, Dj](·) = 0 , ∆Fij = 0 . (5.2)

If ∆M (n) is not zero identically, K no longer inverts ∆ when acting on M (n),
and we no longer have a method for solving (3.16) for Λ(n). The origin of the
constraints can be traced to the fact that partial derivatives commute

∂i∂j − ∂j∂i = 0 , ∂ibj − ∂jbi = 0, (5.3)

since bi = ∂iv. This is no longer manifest in our algebra. In fact, written
in terms of covariant derivatives, (5.3) becomes (5.2). There seems to be no
way to eliminate these constraints since K is not defined on v, but only on
bi = ∂iv. One might expect that at higher orders one would have to use
additional constraints to verify that ∆M (n) vanishes, but this is not the case.
For example, when one rewrites

∂i∂kbj − ∂j∂kbi = 0 (5.4)
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in terms of covariant derivatives, the resulting expression is not an indepen-
dent constraint, but can be written in terms of the two fundamental ones
(5.2).

The reason why ∆M (n) is not zero in general is because the existence of
the constraints allows us to write M (n) in terms of the algebra elements in
many different ways. Our goal will then be to define a procedure for writing
M (n) in terms of algebra elements so that ∆M (n) = 0, identically. We will
describe two procedures.

The first is the method used in [4] to calculate some low order terms of
the SW map. One begins by obtaining an expression forM (n) in terms of the
algebra elements. Generically, ∆M (n) will be proportional to the constraints.
At low orders, once ∆M (n) is calculated, it is easy to guess an expression
m(n), which is proportional to the constraints, such that the combination
M (n) + m(n) is annihilated by ∆. Acting K on this new combination then
gives the solution Λ(n). We believe this guessing method can be formalized,
but at higher orders the second procedure which we will now describe seems
to be more systematic.

First we introduce a new element of the algebra, fij, which is annihilated
by all the operators defined in previous sections

∆fij = Lfij = 0 . (5.5)

We also introduce a new constraint

fij − Fij = 0 , (5.6)

where Fij is considered a function of Di and ai. We want to show that using
this enlarged algebra and the constraints we can rewrite M (n) so that it has
the following dependence

M (n) =M (n)(a, b, (Dka)s, (D
lb)s, D

hf) , (5.7)

where the subscript s indicates that all the indices within the parentheses
should be totally symmetrized. It would then follow that ∆M (n) depends
on the same variables. Since it is impossible that ∆M (n) contains any term
antisymmetric in the indices of Da or Db, the constraints (5.6) and (5.2)
cannot be generated. However, we may find that ∆M (n) is proportional to
the following constraints

[fij , · ]− i[Di, Dj](·) = 0 , Difjk +Djfki +Dkfij = 0 . (5.8)
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Since these constraints commute with the action of both K and ∆, if we
add to M (n) a term proportional to (5.8), our result for Λ(n) = KM (n) is
unchanged. To show that we can actually write M in the form suggested
above, we begin with an expression for M (n) as found by expanding the star
product

M (n) =M (n)(a, (∂k)sa, (∂
l)sv) , (5.9)

where we choose to explicitly write the derivatives in symmetric form. By
replacing ∂(·) → D(·) + i[a, ·], and ∂v → b the expression takes the form

M (n) =M (n)(a, b, (Dk)sa, (D
lb)s) . (5.10)

The difference (Dka)s − Dka contains terms that are proportional to the
antisymmetric parts of DD or Da. But using the constraints we can make
the following substitutions

[Di, Dj](·) → −i[fij , · ] , Diaj −Djai → fij − i[ai, aj] . (5.11)

This must be done recursively since the commutator term involving a’s above
may again be acted on by D’s. But at each step, the number of possible D’s
acting on a is reduced by one. After carrying out this procedure M (n) will
have the form (5.7).
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