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Isospin particle on S2 with arbitrary number of supersymmetries
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We study the supersymmetric quantum mechanics of an isospin particle in the background of
spherically symmetric Yang-Mills gauge field. We show that on S

2 the number of supersymmetries
can be made arbitrarily large for a specific choice of the spherically symmetric SU(2) gauge field.
However, the symmetry algebra containing the supercharges becomes nonlinear if the number of
fermions is greater than two. We present the exact energy spectra and eigenfunctions, which can
be written as the product of monopole harmonics and a certain isospin state. We also find that the
supersymmetry is spontaneously broken if the number of supersymmetries is even.
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The study of supersymmetric quantum mechanics of charged particle in the background of magnetic monopole
[1] revealed several interesting aspects the system [2, 3, 4, 5]. Especially, the system is known to possess a hidden
supersymmetry commuting with the original supersymmetry which squares to the Hamiltonian of the system. This
feature is present both in the case [3] of a charged particle in the background of the Dirac monopole and the case
[4] of an isospin particle in the Wu-Yang monopole [6] background. In Ref. [3], it was shown that the hidden
supersymmetry can be identified with the usual supersymmetry of a charged particle if it is restricted on a sphere.
This led to the manifest extended supersymmetric formulation of charged particle on S2 in the Dirac magnetic
monopole background. In Ref. [5] the complete energy spectra and the corresponding eigenfunctions were obtained
and the issue of the invariance of the ground energy states under the supersymmetry transformation were discussed,
and it was shown that spontaneous breaking of supersymmetry occurred for certain values of the monopole charge.
Furthermore, it was shown that the system on S2 admits N = 4 real supersymmetries in contrast to the N = 1 and
N = 2 supersymmetries on R3 [2]. It turns out that the supersymmetry generators in that case form SU(2|1) [7]
superalgebra rather than the standard supersymmetry algebra in which the superchages square to the Hamiltonian of
the system. In this context it would be interesting to add more fermionic degrees of freedom and check the consequent
superalgebra.
In this paper, we study the supersymmetric quantum mechanics of an isospin particle on S2 in the background of the

Wu-Yang monopole [6], a spherically symmetric solution to the sourceless SU(2) Yang-Mills equations. In particular,
we address the issue of whether the number of internal supersymmetries can be enlarged. The action principle for the
supersymmetric isospin particles was given in Refs. [8] and [4], which generalized bosonic Wong’s equation [9]. This
action has the properties that the system is invariant under the simultaneous rotations of isospace and ordinary space
and under the N = 1 real supersymmetry transformation. We first formulate the supersymmetric isospin particle
system in the CP (1) model approach [5]. It is shown that by introducing N complex fermion degrees of freedom with
a quartic fermion interaction term and considering the system on a sphere in the background of Wu-Yang monopole
gauge, the number of complex supersymmetries N can be made arbitrary. With an appropriate choice of ordering the
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quantized Hamiltonian can be made invariant under the supersymmetry transformations. However, the symmetry
algebra including the supercharges becomes nonlinear when the number of fermions is greater than two. We find that
the algebra becomes the usual supersymmetry algebra when N = 1. If N = 2, the symmetry algebra can be identified
with SU(2|1) superalgebra. For general N > 2 the algebra takes the nonlinear form. We then consider the energy
eigenvalue problem and obtain the energy spectra and the eigenstates. It turns out that the energy eigenfunctions are
given by the product of monopole harmonics [10] and certain isospin states. (See Eq. (27) below.) By looking at the
supersymmetric structure of the ground state we find that the supersymmetry is spontaneously broken depending on
the number of N : it is unbroken when N is odd whereas half of the supersymmetries are broken for even N .
In order to proceed, let us consider an isospin particle in R3 in the background of the Wu-Yang monopole gauge

field [6],

Aa
i = −ǫaij

xj

gr2
, Aa

0 = 0,

the field strength of which is given by

F a
ij = ∂iA

a
j − ∂jA

a
i − gǫabcAb

iA
c
j = ǫijk

xaxk
gr4

.

The N = 1 supersymmetric Lagrangian [8], [4] can be written as

L =
1

2
ẋ2i +

i

2
ψiψ̇i + iθ̄θ̇ − gẋiA

a
i I

a − gSiB
a
i I

a, (1)

where Ia = 1

2
θ̄σaθ, and Si := − i

2
ǫijkψjψk denotes the spin. Its Hamiltonian is given by

H =
1

2
ẋ2i + gSiB

a
i I

a =
1

2
(pi − igAa

i I
a)2 + gSiB

a
i I

a,

and the total angular momentum becomes

Ji = ǫijkxj(ẋk − gAa
kI

a) + Ii + Si

= ǫijkxj ẋk + (x̂kIk)x̂i + Si, (2)

where in the second line the explicit form of the gauge field was used. This system is known [3, 4] to possess a hidden
supersymmetry commuting with the original supersymmetry. In Ref. [3], it is also shown that when the particle is
restricted to the sphere of constant radius they together form N = 2 supersymmetries. Therefore, in terms of the
local coordinates of S2 one can write down a manifestly N = 2 supersymmetric Lagrangian. In this paper, however,
we will use CP (1) model type of approach expressing the Lagrangian in terms of the S3 variable z = (z1, z2) satisfying
z̄ · z = 1 and the complex spinor ψ = (ψ1, ψ2) satisfying z̄ · ψ = 0 and its conjugation relation, where we have used
the notation A · B = A1B1 + A2B2. The dynamics on S2 is recovered by imposing the local phase symmetry. The
Lagrangian can be written as

L = 2|Dtz|2 + iψ̄ ·Dtψ + iθ̄θ̇ − i(z̄σiDtz −Dtz̄σiz)Ii, (3)

where Dt defined by Dtz ≡ ż − iaz with a given by

a = − i

2
(z̄ · ż − ˙̄z · z)− 1

2
ψ̄ · ψ

is a covariant derivative with respect to the U(1) phase transformation. Consequently, the Lagrangian describes a
particle on unit S2 although it is written in S3 variables. One can show that, using the unit radial vector xi = z̄σiz
defining S2, the last term of Eq. (3) can be written as

ǫkij ẋixjIk + ψ̄ · ψxiIi,
which is the same as the interaction term of Eq. (1) evaluated on the unit S2 in the background of the Wu-Yang
monopole, if −(ψ̄ · ψ) is identified as the classical analogue of the radial component1 of the spin Si. With the
identification

ψi =
1√
2
(z̄σiψ + ψ̄σiz), (4)

1 For its quantum mechanical definition, see Eq. (15). In fact, when restricted to S2, only the radial component of the spin survives.
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one can further show that the first two terms of the Eq. (3) become the kinetic part of the isospin particle on S2. In
this formalism, supercharges can be written as

Q = 2 ˙̄z · ψ, Q̄ = 2ψ̄ · ż.

From these, two real combinations can be obtained, one of which is the ordinary supercharge restricted to the sphere
and the other one is the so-called hidden supercharge.
We now consider a many fermion generalization of this model. The Lagrangian is given by

L = L1 + L2 (5)

with

L1 = 2|Dtz|2 +
i

2
(ψ̄α ·Dtψα −Dtψ̄α · ψα)−

1

2
(ψ̄α · ψα)

2,

L2 =
i

2
(θ̄θ̇ − ˙̄θθ)− i(z̄σiDtz −Dtz̄σiz)Ii,

where the fermionic variable ψα = (ψα1, ψα2) has additional flavor index α = 1, · · · ,N and satisfies

z̄ · ψα = ψ̄α · z = 0, . (6)

Covariant derivative Dt is defined, as before, by Dtz ≡ ż − iaz, but a given by

a = − i

2
(z̄ · ż − ˙̄z · z)− 1

2
ψ̄α · ψα. (7)

Besides the trivial summation over the flavor indices this Lagrangian differs from the previous one by quartic fermionic
interaction term.
A straightforward calculation shows that L1 and L2 are separately invariant and the constraints are preserved under

the following supersymmetric transformations:

δαz = ψα, δαz̄ = 0, δαψβ = 0,

δαψ̄β = 2i∇αβ z̄, δαθ =
1

2
(z̄σaψα)σaθ, δαθ̄ = − 1

2
(z̄σaψα)θ̄σa,

and

δ̄αz = 0, δ̄αz̄ = ψ̄α, δ̄αψβ = 2i∇αβz,

δ̄αψ̄β = 0, δ̄αθ = − 1

2
(ψ̄ασaz)σaθ, δ̄αθ̄ =

1

2
(ψ̄ασaz)θ̄σa,

where

∇αβ z̄ = δαβDtz̄ −
i

2
(ψ̄β · ψα − δαβψ̄γ · ψγ)z̄.

One can show that a defined in Eq. (7) is invariant, so that the transformations commute with Dt. Furthermore, it
turns out that the constraints are also preserved.
The momentum conjugate to z is given by

p = 2Dtz̄ +
i

2
(ψ̄α · ψα)z̄ − iz̄σi(1 − zz̄)Ii.

For the consistency of the time evolution with the constraint Eq. (6), the momentum should satisfy

p · z + z̄ · p̄ = 0.

Furthermore, the local U(1) phase symmetry gives rise to the the Gauss law constraint

−i(z̄ · p̄− p · z)− ψ̄α · ψα = 0.
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The Hamiltonian can be written as

H = 2|Dtz̄|2 − ψ̄α · ψα(z̄σiz)Ii

= 2|ż − z(z̄ · ż)|2 + 1

2
(ψ̄α · ψα)

2 − ψ̄α · ψα(z̄σiz)Ii

=
1

2
|(p̄− z(z̄ · p̄)− i(1− zz̄)σizIi|2 +

1

2
(ψ̄α · ψα)

2 − ψ̄α · ψα(z̄σiz)Ii.

To quantize this system one needs to compute the Dirac brackets. The result can be summarized as follows in the
quantum commutator version2:

[pm, zn] = −iδmn + i
2
z̄mzn, [pm, z̄n] =

i
2
z̄mz̄n,

[pm, pn] =
i
2
(pmz̄n − pnz̄m), [pm, p̄n] =

i
2
(pmzn − p̄nz̄m)− ψ̄αmψαn − 3

2
(δnm − znz̄m),

[

ψ̄αm, ψβn

]

= δαβ(δnm − znz̄m),
[

pm, ψ̄αn

]

= iψ̄αmz̄n,

[Ii, Ij ] = iǫijkIk,

(8)

where indices m,n = (1, 2) are explicitly written and the square bracket between two fermionic operators should be
interpreted as the anticommutator.
In terms of the variables

βα = ǫmnznψαm ≡ ǫzψα, β̄α = ψ̄αmǫmnz̄n ≡ ψ̄αǫz̄,

Bm = pnAnm, B̄m = Amnp̄n,

ŨB = −i(z̄ · p̄− p · z) + ψ̄α · ψα,

the above commutation relations can be simplified [5]:

[Bm, zn] = −iAnm, [Bm, z̄n] = 0,

[Bm, Bn] = −i(z̄mBn − z̄nBm),
[

B̄m, Bn

]

= (ŨB + 1)Amn,
[

ŨB, zm

]

= zm,
[

ŨB, Bm

]

= −Bm,

[

β̄α, ββ
]

= δαβ ,
[

Ia, Ib
]

= iǫabcI
c,

(9)

where we have defined Amn ≡ δmn − zmz̄n for notational convenience. These should be supplemented by the adjoint
relations and all other omitted commutators vanish. Besides these commutation relations the following should be
satisfied:

B · z = 0, z̄ · B̄ = 0,

as operator identities. The Gauss law constraints can be written as

CG ≡ ŨB − 2β̄αβα + αG = 0, (10)

which has to be imposed on the physical states. The constant αG is the ordering parameter that will be fixed. [See
Eq. (13).]
Conversely, original variables can be recovered as follows:

p = B − i

2
(ŨB − β̄αβα)z̄, ψα = ǫz̄βα.

Comparing this expression with the definition of the momentum yields the following interpretation

2∇tz̄ ≡ 2 ˙̄z(1− zz̄) = B + iz̄σi(1− zz̄)Ii,

2∇tz ≡ 2(1− zz̄)ż = B̄ − i(1− zz̄)σizIi.

2 In transition from Dirac brackets to quantum commutator there may arise an ordering ambiguity as noted in Ref. [5]. However, it can
be absorbed if the Gauss Law constraint is appropriately ordered. So, here we choose a particular ordering.
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In quantizing the Hamiltonian there arises ordering ambiguity. One can fix one particular ordering and determine the
Hamiltonian by adding the terms arising from changing the operator ordering using other requirement. In our case
we will impose the invariance under the supersymmetric transformations. Therefore, we will tentatively choose the
following form of the Hamiltonian:

H = 2∇tz̄ · ∇tz +
1

2
(ψ̄α · ψα)

2 − ψ̄α · ψαIr + Cψ̄α · ψα +DIr, (11)

where Ir ≡ (z̄σiz)Ii denotes the radial component of the isospin and the constants C,D are ordering parameters to
be fixed later.
The quantum angular momentum operator satisfying the correct commutation relations turns out to be

Ji = − i

2
(pσiz − z̄σip̄)− z̄σiz +

1

2
ψ̄ασiψα + Ii

= − i

2
(Bσiz − z̄σiB̄ − 2iz̄σiz)−

1

2
ŨB z̄σiz + Ii

= ǫijk z̄σjz(∇tz̄σkz + z̄σk∇tz)−
1

2
ŨB z̄σiz + (z̄σkzIk)z̄σiz. (12)

The first expression is the same as the Noether charge except the ordering term which is necessary to produce the
correct angular momentum commutation relations, and the third expression shows the decomposition of the angular
momentum into the orbital part and the the rest. Comparing the final expression with Eq. (2) suggests identifying the
second term as the spin. Indeed, using Eq. (4) one can show that, when restricted to S2, only the radial component
of the spin survives due to the constraint (6). Furthermore, with the choice of ordering constant

αG = N (13)

the Gauss law constraint, Eq. (10) can be written as

CG = ŨB + 2Σ, (14)

where

Σ ≡ −1

2
[β̄α, βα] (15)

can be identified as the radial component of the total spin.3 This expression can be obtained by directly imposing
the constraints on the total spin Si and the eigenvalues range from −N

2
to N

2
.

Quantum mechanical supercharges Qα and Q̄α can be readily obtained from the classical Noether charge because
they have no ordering ambiguity,

Qα = p · ψα + iz̄σiψαIi, Q̄α = ψ̄α · p̄− iψ̄ασizIi.

One can further show that they can be rewritten in the following suggestive form:

Qα = J+βα, Q̄α = J−β̄α, (16)

where

J+ ≡ 2∇tz̄ǫz̄ = iz̄σiǫz̄Ji

J− ≡ 2ǫz∇tz = −iǫzσizJi. (17)

Together with the radial component of the angular momentum,

Jr = −1

2
ŨB + Ir = −1

2
CG + (Σ + Ir), (18)

J± satisfy the usual SU(2) algebra relations:

[J+, J−] = 2Jr, [Jr, J+] = J+, [Jr, J−] = −J−. (19)

3 In this paper we define Σ to be the outward radial component of the spin operator, so it differs from that of Ref. [5] by the sign.



6

For quantum Hamiltonian, first observe that

1

2
J2 =

1

4
(J+J− + J−J+) +

1

2
J2
r

=
1

2
J+J− +

1

2
J2
r − 1

2
Jr

= 2∇tz̄ · ∇tz +
1

2
Σ2 +ΣIr +

1

2
I2r − 1

2
Σ− 1

2
Ir. (20)

Without the forth term this expression would take the same form as the classical Hamiltonian Eq. (11). Therefore,
from now on we will choose

H ≡ 1

2
J2 − 1

2
I2r

=
1

4
(J+J− + J−J+) + IrΣ +

1

2
Σ2 (21)

as our Hamiltonian. It is supersymmetric and rotationally invariant, and corresponds to quantizing the classical
Hamiltonian with a specific choice of the ordering parameters C,D in Eq. (11). The second term represents the
spin-isospin coupling and the third term may be interpreted as the spin-spin coupling which becomes trivial when
N = 1, but not in general.
From Eqs. (15),(16) and (19) we find

[Qα, Q̄β] = J+J−δαβ − 2Jrβ̄ββα

=
1

2
(J+J− + J−J+)δαβ − 2Jr(β̄ββα − 1

2
δαβ)

=
(

2H − 2(
N − 1

N )IrΣ− (
N − 2

N )Σ2

)

δαβ − 2(Ir +Σ)Sβα, (22)

where Sβα ≡ β̄ββα − 1

N
(β̄γβγ)δαβ denotes SU(N ) generator. Note that the trace part is not the Hamiltonian. In

fact, the trace part alone does not commute with the supersymmetry generators. One can show that

H =
1

2N [Qα, Q̄α] + (
N − 1

N )IrΣ + (
N − 2

2N )Σ2.

The conserved quantities associated with the symmetries of the system are (i) the total angular momentum ~J = ~K+ ~I

where ~K is the angular momentum associated with spatial rotations of z’s and ψα’s [5] and ~I is the isospin associated
with isospace rotations of θ’s, (ii) the spin Σ = −β̄α ·βα+ N

2
(or the fermion number NF = β̄α ·βα) associated with the

global U(1) phase symmetry of the fermion, (iii) the internal SU(N ) charge, SA ≡ SαβTαβ = β̄αT
A
αβββ, associated

with the fermion flavor, where TA are the traceless Hermitian N ×N matrices satisfying [TA, TB] = ifABCTC and
normalized by tr(TATB) = 1

2
δAB, and (iv) the supersymmetric generators Qα = J+βα, Q̄α = J−β̄α.

Although it is not the usual supersymmetry algebra, there are several interesting aspects. If the number of fermion
species is one, i.e., N = 1, Eq. (22) simply becomes [Q, Q̄] = 2(H + 1

8
) which is the ordinary N = 1 SUSY algebra.

If N = 2, it can be shown that ΣSβα = 0 identically and the algebra reduces to

[Qα, Q̄β] = 2Hδαβ − 2Ir

(

Sβα +
1

2
Σδαβ

)

. (23)

This algebra can be cast in the form which is identical to the SU(2|1) algebra. For general N the algebra is nonlinear.
The commutator algebra given in Eq. (9) can be concretely represented on the Hilbert space composed of certain

functions on S3 as follows:

Bm = −iAnm

∂

∂zn
+ iz̄m, B̄m = −iAmn

∂

∂z̄n
, ŨB = zm

∂

∂zm
− z̄m

∂

∂z̄m
.

Operators z and z̄ act as multiplication, and the fermion operators and the isospin can be represented as usual in
terms of matrices. From these, representations for other physical operators can be obtained. In particular, we find

Ji =
1

2

(

z̄σi
∂

∂z̄
− ∂

∂z
σiz

)

+ Ii. (24)
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Let us study energy eigenfunctions of the Hamiltonian (21). Since Ji is the sum of two commuting angular
momentum operators Ki and Ii and the isospin is easy to handle, first consider the representation theory of Ki.
Besides K2, K3 there is another operator commuting with them, which is the radial component Kr of Ki. Let
|k, k3, kr〉 be their simultaneous eigenstates. It can be shown that kr behaves exactly as k3 relative to k, i.e., they are
integer spaced and for a given k, −k ≤ kr ≤ k. In fact, as k3 is raised and lowered by K1 ± iK2, kr is raised and
lowered by K± defined as in Eq. (17). Thus, one can construct all |k, k3, kr〉 starting from

|k, k3 = k, kr = k〉 ∼ z̄2k1 (25)

via a successive application of the lowering operators K1 − iK2 and K−. For instance, one finds

|k, k3 = k, kr〉 ∼ zk−kr

2 z̄k+kr

1 . (26)

They are in fact monopole harmonics.4

Since the Hamiltonian is made of J2 and Ir, we need a complete set of commuting operators containing them. We

can choose ~J2, J3, Kr, I
2, Ir and Σ. Since the Gauss law constraint (18) can be written in terms of these operators as

Kr = Σ, the problem reduces to constructing the simultaneous eigenstates of ~J2, J3, I
2, Ir, Σ from the simultaneous

eigenstates of K2, K3, I
2, I3, Σ. This can be done in general but for the sake of simplicity we will consider 1

2
-isospin

case. Since I2r = 1

4
in this case, the energy spectrum of the Hamiltonian (21) is determined by j. Other quantum

numbers represent degeneracies. Let I3 = 1

2
σ3. Among the eigenstates of Ir we choose the ones having j = 0. They

are given by

|j = 0, ir = +1/2〉 =
(

z1
z2

)

, |j = 0, ir = −1/2〉 =
(

−z̄2
z̄1

)

. (27)

Now, it can be shown that the simultaneous eigenfunctions of ~J2, J3, I
2, Ir and Σ can be obtained by taking the

product of three states

|j, j3, ir, σ〉 = |j = 0, ir〉|j, j3, σ + ir〉|σ〉, (28)

where |j, j3, σ + ir〉 is the monopole harmonics previously defined. We have omitted I2 because it is constant.
We illustrate some cases. First, let us consider N = 1 case. In this case, σ = ±1/2. The ground states are

characterized by j = 0, for which j3 = 0 and jr = 0. The latter condition implies that σ + ir = 0. Consequently, the
ground states consist of the following two states with E = −1/8:

|0, 0,−1

2
,+

1

2
〉 = |0,−1

2
〉|0, 0, 0〉|+ 1

2
〉 =

(

−z̄2
z̄1

)

|+ 1

2
〉,

|0, 0,+1

2
,−1

2
〉 = |0,+1

2
〉|0, 0, 0〉| − 1

2
〉 =

(

z1
z2

)

| − 1

2
〉.

Note that ir = σ = ±1/2 states are not allowed. One can check that the both states are annihilated by Q and Q̄.
The first exited states correspond to the value of j = 1. In this case, j3 = (1, 0,−1), ir = ±1/2, σ = ±1/2. Therefore,
there are twelve states with E = 7/8:

|1, (1, 0,−1),+
1

2
,+

1

2
〉 = |0,+1

2
〉|1, (1, 0,−1), 1〉|+ 1

2
〉 = z̄z̄

(

z1
z2

)

|+ 1

2
〉,

|1, (1, 0,−1),−1

2
,+

1

2
〉 = |0,−1

2
〉|1, (1, 0,−1), 0〉|+ 1

2
〉 = zz̄

(

−z̄2
z̄1

)

|+ 1

2
〉,

|1, (1, 0,−1),+
1

2
,−1

2
〉 = |0,+1

2
〉|1, (1, 0,−1), 0〉| − 1

2
〉 = zz̄

(

z1
z2

)

| − 1

2
〉,

|1, (1, 0,−1),−1

2
,−1

2
〉 = |0,−1

2
〉|1, (1, 0,−1),−1〉| − 1

2
〉 = zz

(

−z̄2
z̄1

)

| − 1

2
〉, (29)

where the omitted indices on zz, zz̄ and z̄z̄ are determined depending on the values of j3 and σ + ir. For instance
from Eq. (26), one can infer that in the first line of Eq. (29), each j3 = (1, 0,−1) corresponds to z̄z̄ = (z̄21 , z̄1z̄2, z̄

2
2),

4 The monopole harmonics Yq,l,m of Ref. [10] corresponds to our |k, k3, kr〉 with k = l, k3 = m, kr = −q.
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in the second line zz̄ = (z2z̄1, |z2|2 − |z1|2, z1z̄2) and in the fourth line zz = (z22 , z1z2, z
2
1). In general, the energy

eigenfunctions with j, j3, ir, σ are given by the states

|0, ir〉|j, j3, σ + ir〉|σ〉,

with an arbitrary integer j, j3 (−j ≤ j3 ≤ j), and ir, σ satisfying −j ≤ σ + ir ≤ j.
Next, let us consider N = 2 case. We have σ = +1, 0, 0,−1, and the corresponding four spin states will be denoted

by | + 1〉, |0±〉, | − 1〉. Since ir = ±1/2 and jr = σ + ir = (3/2, 1/2,−1/2,−3/2), j can be half integral. Also, jr
should satisfy −j ≤ jr ≤ j. The ground states correspond to j = 1/2 states and are given by

|0,−1

2
〉|1
2
, (+

1

2
,−1

2
),+

1

2
〉|+ 1〉 = z̄

(

−z̄2
z̄1

)

|+ 1〉,

|0,+1

2
〉|1
2
, (+

1

2
,−1

2
),+

1

2
〉|0±〉 = z̄

(

z1
z2

)

|0±〉

|0,−1

2
〉|1
2
, (+

1

2
,−1

2
),−1

2
〉|0±〉 = z

(

−z̄2
z̄1

)

|0±〉

|0,+1

2
〉|1
2
, (+

1

2
,−1

2
),−1

2
〉| − 1〉 = z

(

z1
z2

)

| − 1〉.

Altogether, there are twelve independent ground states with energy E = 1/4. Again omitted indices depend on
the values of j3. In the first and second line j3 = (+1/2,−1/2) corresponds to (z̄1, z̄2), and in the last two lines
j3 = (+1/2,−1/2) correspond to (z2, z1). It can be shown that the above ground states are invariant under the half
of supersymmetry, and supersymmetry is, in some sense, spontaneously broken from N = 2 to N = 1.
The analysis can be extended to the general N . Spin states can be obtained using the representation

β1 = 1⊗ 1⊗ · · · 1⊗ σ−,

β2 = 1⊗ 1⊗ · · ·σ− ⊗ σ3,

· · ·
βN = σ− ⊗ σ3 ⊗ · · · ⊗ σ3,

and the eigenvalues of the spin operator is given by σ = (N/2,N/2− 1, · · · −N/2+ 1,−N/2). For N = odd integer,
the ground states are given by |0,∓1/2〉|0, 0, 0〉| ± 1/2〉, and the supersymmetry is unbroken. For N = even integer,
the ground states are given by |0,∓1/2〉|1/2, (+1/2,−1/2),±1/2〉|±1〉 and |0,±1/2〉|1/2, (+1/2,−1/2),±1/2〉|0〉, and
half of the supersymmetries is spontaneously broken.
In summary, we showed that the number of supersymmetries can be made arbitrarily large for supersymmetric

isospin particles on sphere in the background of specifically chosen spherically symmetric SU(2) gauge field. The
supersymmetry generators form the standard N = 1 SUSY algebra for a single complex fermion, su(2|1) algebra
for N = 2. But for higher N , it become the nonlinear realization of the su(N|1) algebra. We also gave exact
energy spectra and corresponding eigenfunctions in the case of I = 1/2 and found that half of the supersymmetry
is spontaneously broken if the complex number of fermion degrees of freedom is even. It would be interesting to
investigate details of the nonlinear algebra Eq. (22) and extend the analysis further to general values of isospin I
other than 1/2.
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