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Some Historical Aspects of

Error Calculus by Dirichlet Forms

Nicolas Bouleau

Abstract.

We discuss the main stages of development of the error calculation since the beginning of
XIX-th century by insisting on what prefigures the use of Dirichlet forms and emphasizing
the mathematical properties that make the use of Dirichlet forms more relevant and efficient.
The purpose of the paper is mainly to clarify the concepts. We also indicate some possible
future research.

I. Introduction. There are several kinds of error calculations which have not followed the
same historical development. The error calculus by Dirichlet forms that we will explain and
trace the origins has to be distinguished from the following calculations:

a) The calculus of roundoff errors in numerical computations which appeared far before
the representation of numbers in floating point be implemented on computers, and which
possesses its specific difficulties. It has been much studied during the development of the
numerical analysis for matrix discretization methods (cf. Hotelling [54], Von Neumann [57],
Turing [58], Wilkinson [78], etc.);

b) The global evaluation of deterministic errors such as the interval calculus (cf. Moore
[74], etc..). Some works of Laplace are related to this approach and also the paper of Cauchy
[8];

c) The calculus of finite probabilistic errors where the errors are represented by random
variables, which has been used by a very large number of authors to begin an argument and
then, often, modified by supposing the errors to be small or gaussian in order to be able to
pursue the calculation further (cf. Bienaymé [24], Birge [48], Bertrand [35], etc.) because the
computation of image probability distributions is concretely inextricable what, in the second
half of the XX-th century, justified the development of simulation methods (Monte-Carlo and
quasi-Monte-Carlo).

The error calculus by Dirichlet forms assumes the errors to be both small, actually in-
finitesimal, and probabilistic. These two characteristics imply a peculiar differential calculus
for the propagation of errors through models. As we will see the part of the calculation related
to what is called today the squared field operator or more often the carré du champ operator,
is ancient and dates back to the turn of the XVIII-th and XIX-th centuries in connection with
the birth of the least squares method. Let us note, however, that our purpose is not to make a
history of the method of least squares, broad topic that would lead to decline all the benefits
of optimization in L2 and its developments in statistics and analysis. I refer in this regard to
the historical work of Kolmogorov and Yushkevich [84], also to the book of Pearson [85], and
to the article of Sheynin [88] not always clear from a mathematical point of view probably
because of an intrinsic ambiguity of the thought of the authors of the turn of the XVII-th
and XIX-th centuries, but extremely well documented. Unfortunately it does not address at
all the propagation of errors.

Let us note also in this introduction the very important phenomenon of dichotomy of
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small errors which allows to clarify the validity domains of the probabilistic and deterministic
approaches. When we are concern with small errors that means mathematically that we are in
an approximation procedure where – in principle – we are able to make the errors vanish. In
such a situation the description of the asymptotic mechanism of the propagation of infinitely
small errors is different according to the respective size of the variance and the bias of the
error.

Three cases appear in the limited expansions. 1) If the variance is negligible with respect
to the bias, then this property will persist by deterministic computations and it is enough for
the asymptotic calculus to perform a first order differential calculus, i.e. a classical sensitivity
calculation. 2) If the variance is of the same order of magnitude as the bias, then the calculus
has to be a first order differential calculus for the variances which does not involve the bias,
and the calculus for the bias is a second order differential calculus involving both biases and
variances. 3) If the bias is negligible with respect to the variance then from the first calculation
we return to the case 2). In these two last cases the propagation formulae are the following
for a scalar erroneous quantity X:

bias of error on f(X) = (bias of error on X)f ′(X) + 1
2(var of error on X)f ′′(X)

var of error on f(X) = (var of error on X)f ′2(X)

}
(1)

We refer to [152] for more details and typical examples. Situations like case 1) are called
weakly stochastic, and situations like 2) or 3) are called strongly stochastic. Let us mention
that often in practice, in engineering for instance, we are not able to control the nature of the
errors. Errors on the data in modelling are exogenous, we know few where they come from.
It is wise to think according to the case of strongly stochastic errors, especially to take in
account the randomness of the errors through the non-linearities of the model.

This is important because, by extending the ideas of Poincaré on the errors [37], it is possi-
ble to see that measurements done with graduated instruments are always strongly stochastic

(because of the error on the choice of the nearest graduation cf. [143] [133], [149]). This
is related to the theory of arbitrary functions (cf. von Kries [34], Fréchet [39], Borel [40],
Hostinský [43], Hopf [49], [50], [51]).

In summary we can distinguish
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Infinitesimal errors Finite errors

Deterministic sensitivity analysis :
Deterministic derivation with respect to Interval calculus,
approaches the parameters of the model sup norm

Error calculus using
Probabilistic Dirichlet forms Probability theory :
approaches first order second order images of

calculus only calculus with probability
dealing with variances and distributions
variances biases

Table 1: Main categories of error calculi

II. Gauss inventor of the carré du champ operator ?

Referring to the turn of the XVIII-th and the XIX-th centuries we see that two wakes were
clearly drawn among researchers in matter of error : that of Laplace and that of Gauss.

Let us begin by Gauss whose works interess us particularly here. The current he initiates
gives a fundamental place to his law of errors : assuming that, after several independent
measures xi the arithmetic average 1

n

∑n
i=1 xi is the best value to take in account, he showed,

with some additional assumptions, that the errors follow necessarly a normal law and the
arithmetic average is both the most likely value and the one given by the least squares method.

Gauss tackled this question in the following way. First he admits – and this idea will be
kept in the error theory with Dirichlet forms – that the quantity to be measured is random. It
can vary in the scope of the measurement device following an a priori law. In modern language,
let X be this random variable, µ its law. The results of the measurement operations are other
random variables X1, . . . ,Xn and Gauss assumes

a) the conditional law of Xi given X to be of the form P{Xi ∈ E|X = x} =
∫
E
ϕ(x1 −

x) dx1,
b) the variables X1, . . . ,Xn to be conditionally independent given X.
Then he is easily able to compute the conditional law of X given the results of measure, it

has a density with respect to µ and writing this density is maximal at the arithmetic average,
he gets the relation

ϕ′(t− x)

ϕ(t− x)
= a(t− x) + b

hence

ϕ(t− x) =
1√
2πσ2

exp(−(t− x)2

2σ2
).

It is probably in the course Calcul des Probabilités of Poincaré [37] at the end of the XIXth
century that Gauss’ argument is the most clearly explained because Poincaré tries both to
explicit all hypotheses and to generalize the proof1. He studies the case where the conditional

1It is about this ‘law of errors’ that Poincaré writes “everybody believes in it because experimenters imagine
it is a theorem of mathematics and mathematicians it is an experimental fact".
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law of Xi given X is no more ϕ(y−x) dy but of the more general form ϕ(y, x) dy. That gives
him a way to explain the seeming paradox of the error permanency: "with a meter divided in
millimeters, he writes, as often the measures be repeated, never will a length be determined
up to a millionth of millimeter". This phenomenon is well known by physicists who noted
of course that during the whole history of experimental sciences never a quantity has been
precisely measured with rough instruments, cf [81]. The discussion leads Poincaré to suggest
that measurements could be independent whereas the errors be not, when done by the same
instrument. He doesn’t develop a new mathematical formalism for this idea but emphasizes
on the advantage of assuming small errors because then the argument of Gauss giving the
normal law becomes compatible with non linear changes of variables and can be performed
through differential calculus. It is the question of the error propagation.

It is in his Theoria Combinationis Observatonum Erroribus Minimis Obnoxiae published
in 1823 that Gauss details his ideas about the errors propagation.

In the introduction, he cites Laplace and discusses the merits of reasonning with repeated
observations or with observations immediately erroneous. Behind this discussion is the fact
that Laplace gave the first analytical proof of the central limit theorem, and that Gauss
intends to assert the interests of his demonstration that if the arithmetic mean is taken as the
correct value then the law is necessarily normal, that he replaces in a more general approach
of some kind of error calculus in an extended meaning. This dicussion is deepened in his
section 17.

Gauss states the main problem in the following way: Given a quantity U = F (V1, V2, V3, . . .)
function of the erroneous quantities V1, V2, V3, . . ., compute the potential quadratic error to ex-

pect on U with the quadratic errors σ21 , σ
2
2 , σ

2
3 , . . . on V1, V2, V3, . . . being known and assumed

small and independent.

His answer is the following formula :

σ2U = (
∂F

∂V1
)2σ21 + (

∂F

∂V2
)2σ23 + (

∂F

∂V3
)2σ23 + · · · (2)

He also provides the covariance between an error on U and an error on another function of the
Vi’s. Formula (2) displays a property which makes it much to be preferred to other formulae
encountered in textbooks throughout the XIXth and XXth centuries. It features a coherence
property. With a formula such as

σU = | ∂F
∂V1

|σ1 + | ∂F
∂V2

|σ3 + | ∂F
∂V1

|σ3 + · · · (3)

errors may depend on the way in which the function F is written. These "ugly" formulae
remain for instance in [53], [59]. Today we can understand that this difficulty does not arise
with Gauss’ calculus thanks to its connection with the theory of Dirichlet forms. Introducing
the differential operator

L =
1

2
σ21

∂2

∂V 2
1

+
1

2
σ22

∂2

∂V 2
2

+
1

2
σ23

∂2

∂V 2
3

· · · (4)

and supposing the functions to be smooth, we remark that formula (2) can be written as

σ2U = L(F 2)− 2FL(F ) (5)
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and coherence follows from the transport of a differential operator by an application. Today
these intrinsic properties are understood also by the link with the stochastic calculus on
manifolds and particularly the differential calculus of second order [124], [91], [144].

The errors on V1, V2, V3, . . . are not necessarily supposed to be independent nor constant
and may depend on V1, V2, V3, . . ., that gives formulas obtained by, what we call today, polar-
isation.

For the proof of (2) Gauss performs – as will do most of the applied textbooks thereafter
– a computation supposing errors are infinitely small quantities and may replace differentials
dV1, dV2, etc. But even Gaussian random variables have non compact support. There exists
therefore a small probability that the errors be large. This is a difficulty that can be only
treated with more precise notions of convergence or with the theory of Dirichlet forms, the
proof of Gauss will then appear as a computation of what we call a gradient in the sense of

Dirichlet forms often denoted by the term sharp (cf [133]), we will return to this point for
clarification below in part V.

If we read the sections 19 and 20 of his treatise, we may ask whether the question posed
by Gauss is not – in germ – the idea of a quadratic form which would be the ancestor of a
Dirichlet form.

In some sense Gauss is on a product error structure (he assumes the errors of observation
to be independent – in the sake of simplicity he says, because he is able to treat the general
case). He obtains that the error on a quantity is given by a random quadratic function that he
gets by local linearization with his change of variable formula, and whose expectation is the
mean quadratic error : this random function is the "carré du champ". I do not say that Gauss
had the idea of the carré du champ, but I say that his direction of research has something to
do with Dirichlet forms what is not philosophically surprising since the landscape of potential
theory was for him familiar.

Let us say now some words of the wake left by Laplace. By studying (cf [1], [4], [7] and
Cauchy [8]) the mean of the positive errors and that of negative errors then taking the mean
anew, Laplace, actually studies the first absolute moment of the error

E[ |error| ]

instead of its variance. It is what seems for him the most natural. He has among available
tools to make calculation the method of characteristic functions that he perfectly masters,
and for this he must choose hypotheses on the law of this random variable |error|. But for the
propagation he faces the usual difficulty of intractable calculations. He is then led to assume
small and Gaussian errors following the argument provided by the central limit theorem when
observations are repeated.

But when the errors are Gaussian the moments of order 1 and 2 are linked and we have,
if V is N(0, σ) distributed,

E[ |V | ] =
√

2

π
σ

so that, if the errors are small, the relation between variances is equivalent to the following
relation for the first absolute moment :

E[ |eF | ] =
√
F ′2
1 (E|e1|)2 + · · ·+ F ′2

n (E|en|)2.
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We see that for first order moment a formula is obtained very similar to the one of Gauss (2)
(instead of "ugly" formulae like (3) ).

In the wake of the works of Gauss on errors we could cite almost all treatises on probability
of the XIX-th century, let us quote particularly Faa di Bruno [32] who follows narrowly his
approach and cites him explicitely (p38 et 53), also Liagre [33].

In the wake of Laplace we can cite Bravi [17], Bravais [20] who extends the arguments
of Laplace to the multivariate case and introduces the error ellipsoids (cf [133] Chap.I), A.
Meyer (1857) who in a treatise of very good mathematical level [30] opts for the approach
of Laplace and argues this position, also the physicist Airy (1861) [31] who takes the whole
theory of probability starting only from the treatise of Laplace.

Belonging clearly to both wakes are Hagen [16], Bienaymé [24] and also Biver [25] who, in
1853 introduces a general cost functional to be minimized to manage errors.

The propagation formula is encountered also in statistics if one is interested in the prop-
agation of the Fisher information [41], [42]. If Pθ, θ ∈ Rd, is an indexed family of probability
measures satisfying the conditions of regular models, having a density f(., θ) with respect a
measure Q, the Fisher information related to the parameter θ is the matrix

J = 4

∫
(
d
√
f(., θ)

dθ
)(
d
√
f(., θ)

dθ
)t dQ.

If instead of the parameter θ we consider the parameter ϕ = g(θ) where g is smooth and
injective, we find that the inverse matrix Γ(θ) = J−1(θ) that represents a precision on θ, is
transported following Gauss formula.

Γij(ϕ) =
∑

kℓ

∂gij

∂θk

∂gij

∂θℓ
Γkℓ(θ)

see on this topic [137] et Chorro [140]. This link with statistics gives a new interpretation
of the carré du champ operator in terms of accuracy of a statistical estimate, there are no
small errors more, only information and its inverse the precision. In this interpretation the
Fréchet-Cramer-Rao inequality says that efficient estimates give the best precision.

We understand then that obtaining bounds for the propagation of the Fisher information
is a means to express the regularity of a carré du champ matrix cf. Villani [128] p824 et seq.

III. Why should we ask the quadratic form to be closed?

The Dirichlet form strictly speaking appeared in potential theory in the classical case of the
Laplacian operator far before the thought structures of the Hilbert spaces be available, it was
simply a quantity whose minimum value was looked for. Dirichlet uses it [21] as soon as 1846,
Thomson [22] and Riemann [23] near after, we refer to the historical sudies on the potential
theory itself of Brelot [79], Temple [92], Ancona [94] among others on these developments.

After the works of Henri Cartan [55] and the thesis of Jacques Deny [60], [61] it is during the
collaboration between Arne Beurling and Jacques Deny [68], [69], [77] that Hilbertian methods
have taken a new importance especially by this discovery that the fact that contractions
operate on a closed positive quadratic form is a necessary and sufficient condition for the
associated contraction semi-group be positive on positive functions, i.e. be the transition
probability semi-group of a Markov process.
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The study of these questions under the angle of symmetric Markov processes developed
quickly during the 1970s, Silvestein [80], Le Jan [86], (see also the references of the contribu-
tions to the Colloque en l’honneur de J. Deny, Orsay 1981), what allows Masatoshi Fukushima
to discover these famous continuous additive functionals with zero quadratic variation but not
finite variation [87].

The book of Fukushima [89], has been a reference for researchers and the starting point
of several works. The notion of Dirichlet form appeared there so clearly – a primary notion
somehow – that it came immediately to the mind that this notion could accompany any prob-
ability space from where the links with Malliavin calculus and error calculus.

From the point of view of error theory, the idea of imposing a priori that the quadratic
form (the expectation of the carré du champ) be closed is a major step. The error calculus
of Gauss contains the limitation of supposing that both the function F and the random
variables V1, V2, V3, . . . are analytically known. In probabilistic modelling however, we are
often confronted to situations in which all the random variables, functions and covariances
matrices are given by limits. For such situations, a means of extension thereby becomes
essential.

Let us suppose that the quantities be defined on the probability space (Ω,A,P). The
extension tool lies in the following : we assume that if Xn → X in L2(Ω,A,P) and if the
variance of the error Γ(Xn−Xn) on Xn−Xn can be made as small as we wish in L1(Ω,A,P)
for m,n large enough, then the variance of the error Γ(Xn −X) on Xn −X goes to zero in
L1. This idea can be interpreted as a reinforced coherence principle, it means that the error
on X is attached to X and furthermore, if the sequence of pairs (Xn, error on Xn) converges
suitably, it converges necessarily to a pair (X, error on X).

The main benefit of the extension tool is that error theory based on Dirichlet forms ex-
tends to the infinite dimension, which allows error calculus on stochastic processes (Brownian
motion, Poisson random measures, diffusions defined by stochastic differential equations). But
also the calculus itself becomes more flexible : it allows now Lipschitzian changes of variables.

From a historical perspective, we can say that the main characteristic of the XX-th century
with respect to XIX-th century, already so extraordinarily developed in mathematics, is the
use of functional spaces (where points represent functions) and especially complete functional
spaces like Hilbert spaces, Banach spaces, that permit to handle objects defined by limits.
This idea has been the origin of gigantic progress in all domain of analysis. The closedness of
Dirichlet forms allows to install an error calculus in most situations of classical analysis and
stochastic analysis.

We arrive then to a kind of enriched error calculus, where any development – in particu-
lar asymptotic theorems – may be accompanied by errors. For instance the famous Donsker
theorem on the approximation of the Brownian motion by a random walk extends in term
of erroneous random walk which yields naturally the Ornstein-Uhlenbeck structure on the
Wiener space cf [141].

IV. Dirichlet form generated by an approximation

If we want to perform very precise error calculations – this is not an oxymoron ! – we
must be concern by the biases. Among the engineers who ask for a great precision from the
observations, there are the geodesists and it seems that it was in this domain that has been
used for the first time the fact that the random nature of errors imply a bias. No doubt
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everyone has long known that the image of the expectation for a non-linear mapping is not
the expectation of the image, but geodesists write down differential error calculi with biases.
This is explicit in Elkins (1950) [62], [64], [76], Jeudy (1988) [104], Hangos-Leisztner (1989)
[109], Teunissen [105][106], Coleman-Steele [107].

In Section 17 of the Theoria Combinationis Gauss writes "It is necessary to warn here that
in the following research, it will issue only random errors reduced of their constant part. It is
the observer’s responsibility to remove the causes of constant error carefully. We reserve for
another opportunity to examine the case where the observations are affected to an unknown
error, and we will discuss this issue in another memory" maybe he would have encountered
the question of the bias. . .

As we will see in the framework of Dirichlet forms the bias is represented by the generator
of the semi-group associated with the form. The exact formula for the propagation of the
bias is the following (see [111] p42 Exercise 6.2 and the precise hypotheses required for this
formula)

A(F (f)) =
n∑

i=1

F ′

i (f)Afi +
1

2

∑

i,j

F ′′

i,jΓ(fi, fj).

A similar expression is used by the geodesists.

But the bias is a delicate notion because of some latitude in its definition. Let us resume
what says the theory. If we consider two random variables Y and Yn close together, the
asymptotic behaviours of

E[(φ(Yn)− φ(Y ))χ(Y )]

and of
E[(φ(Yn)− φ(Y ))χ(Yn)]

where φ and χ are test functions, are generally different. As a consequence several bias
operators have to be distinguished (cf. [145]) :

The asymptotics of E[(ϕ(Yn)− ϕ(Y ))χ(Y )] yields the theoretical bias operator A,
the asymptotics of E[(ϕ(Y )− ϕ(Yn))χ(Yn)] yields the practical bias operator noted A
that of E[(ϕ(Yn)− ϕ(Y ))(χ(Yn)− χ(Y ))] gives the symmetric bias operator Ã,
and eventually E[(ϕ(Yn)− ϕ(Y ))(χ(Yn) + χ(Y ))] provides the singular bias operator \A.

These operators are related thanks to the relations

Ã =
A+A

2
\A =

A−A

2
.

The symmetric bias operator satisfies

< Ã[ϕ], χ >L2(PY )=< ϕ, Ã[χ] >L2(PY )

under natural hypotheses it is indeed the generator of a Dirichlet form E which possesses
a carré du champ operator Γ. It may be shown that this Dirichlet form is local iff the
asymptotics (with the same weight) of E[(ϕ(Yn)− ϕ(Y ))4] vanishes.

If the asymptotics of both variances E[(ϕ(Yn)−ϕ(Y ))2ψ(Y )] and E[(ϕ(Yn)−ϕ(Y ))2ψ(Yn)]
coincide – what is usually the case – the singular bias operator is a first order operator in the
sense that it satisfies on the test functions

\A[ϕχ] = \A[ϕ]χ+ ϕ\A[χ].
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Let us take an example. A very frequent situation in probability theory involve a triplet
of real random variables (Y,Z, T ), a real random variable G independent of (Y,Z, T ) centered
with variance one, and the approximation Yε of Y given by

Yε = Y + εZ +
√
εTG. (6)

In that case the operator A may be shown to be given by

A[ϕ](y) = E[Z|Y =y] ϕ′(y) +
1

2
E[T 2|Y =y] ϕ′′(y)

and the Dirichlet form is given by

E [ϕ,χ] = E[T 2ϕ′(Y )χ′(Y )]

The operator Ã depends only on T , not on Z, A is obtained by difference.
A weakly stochastic approximation (see Part I above) may now be defined more precisely

by the condition Ã = 0.

V. "Small errors" what does it mean ?

We can now clarify the question of small errors that has been historically a kind of conceptual
blockage. We have seen that the theory of local Dirichlet forms with a carré du champ operator
should be seen as a more accurate and rigorous form of the error calculation developped in
the wake of Laplace and Gauss, allowing an extension of the sensitivity calculation to broader
and more difficult situations involving stochastic calculus and Brownian motion.

In the setting of Dirichlet forms we know that the carré du champ operator represents
the variance of the error and that the bias of the error can be represented by the symmetric
generator (depending on which bias we speak as seen above). But the error itself, what is
it ? The error theory by Dirichlet forms considers that the error is Xt −X0 where Xt is the
symmetric Markov process associated to the Dirichlet form and which is taken as a tangent

process to the studied approximation procedure. The error is not the "sharp". The "sharp" is
mathematically a gradient. It is a linear operator which restores the carré du champ by taking
the square. Actually it is a randomized gradient, for example in the classical case on R2 it
writes f ♯ = f ′1ξ1 + f ′2ξ2 where ξ1 and ξ2 are auxiliary orthogonal reduced random variables.
This looks like an error by the fact that it is random but it is a tangent vector (a first order
differential operator) which acts proportionally to itself.

On the contrary Xt evolves with a transition probability kernel. The crucial point is that
for small t, Xt − X0 is always a sum of infinitely many quantities with independent sources

of randomness, it is not a quantity which decreases homothetically to itself, it does not fall
under the Taylor formula

f(x+ h) = (ehDf)(x) = f(x) + hDf(x) + · · · + hn

n!
Dnf(x) + · · ·

what is relevant for it is the theory of semi-groups of operators.

The errors may receive a rigorous mathematical treatment only if they are thought inside
an approximation procedure. We can say that throughout the nineteenth century there was
confusion between an error of the type hY with h a scalar number tending to zero and an
error with accumulation of independence as a Markov process in small time. In this respect
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Louis Bachelier [36] with his players of infinitesimal games appears well marking the turning
of the two centuries. He will be cited by Kolmogorov [46].

We find, more in Laplace’s writings than in Gauss’ ones (he keeps his distance) the concern
that errors are sums of many independent terms. Chapters III and V of the Théorie Analytique

insistently express this idea. But beyond the central limit theorem, Laplace is obviously not in
position to make a theory where the Taylor formula be replaced by exponentials of operators,
i.e. the theory of operators semi-groups.

In Section 17 of the Theoria combinationis Gauss writes "Laplace, considering the question
under a different point of view, showed that this principle [of supposing that the errors follow
a normal law] is better than any other choice, for any probability distribution of the errors
of observation as soon as the number of observations is very large. But when this number is
restricted, the question remains untouched; so that if our hypothetical law [the normal law] is
rejected, the least squares method rests better than the others [e.g. than the use of absolute
first moment], by the simple reason that it leads to simpler calculations."

This remark is relevant, but it shows also that Gauss somehow underestimates the math-
ematical importance of the accumulation of small errors.

Today we know that the infinitesimal reduction of random quantities is well described
by the infinitesimal generators of Markov semi-groups which are second order differential
operators (Kolmogorov [46], Ventsel [66], Hunt’s complete maximum principle [67] Section 15,
Meyer-Dellacherie [100] Theorem XIII 22-24) and have a fractional part (integro-differential
operator) only in the presence of jumps (case of non local Dirichlet forms, cf below VI §e).
Similarly the stochastic diffential geometry uses second order tangent vectors (cf [144], Meyer
[91]).

It emerges from this discussion that the "small errors" in Gauss’ calculation have to be
read as a computation of gradient, what reinforces the importance of the propagation formula
under its analytical form (2) which is that of the carré du champ operator.

VI. Trails of research

a) Obtaining numerical results is often difficult in probability theory because the spaces are
high dimensional, often infinite dimensional. Therefore the simulation methods, also called
Monte Carlo methods are very usefull thanks also to their generality, cf for instance [117].
Intuitively the computation of the value of the carré du champ operator on a random variable
in a parametrized modell, say X(ω, λ), when λ is erroneous and the modell is not, is very
simple. It is enough to take a cluster of points in the neighborhood of the value of λ centered
on λ0 and with quadratic dispersion σ2 around λ0 and then to collect the dispersion of the
corresponding values of X, with ω being fixed. The dispersion matrix will give the matrix
Γ(X) and the discrepancy between X(ω, λ0) and the mean of the cluster of the values of X
will yield the bias.

If the model is itself erroneous, the method has to be extended with a cluster around ω0.
This clusters method for the error calculus has already been used (Scotti [150]) but has not
been theoretically studied up to now and many questions arise : optimal number of points in
the cluster with respect to its concentration toward λ0, obtention of the mean error (which is
the square root of the Dirichlet form taken on X), use of acceleration by quasi-Monte-Carlo,
etc.

At present theoretical results are in the opposite way : the methods of calculation of
densities of probability distributions (cf for example [65], [71], [73], [82], [76], [121],[127], etc.)
may be accelerated if an error structure is available (or a Malliavin calculus) see Caballero-
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Fernandez-Nualart [126], Kohatsu-Higa-Pettersson [132], Bouleau [139].

b) A purely mathematical enigma remains at present. It is the conjecture of the so-called
Energy Image Density property or EID. This property is true for any local Dirichlet structure
with carré du champ for real valued fonctions (cf Bouleau [93] Theorem 5 and Corollary 6),
(see also the very close method of Davydov-Lifshitz [96], [97]). It has been conjectured in 1986
(Bouleau-Hirsch [99] p251) that (EID) be true for any local Dirichlet structure with carré du
champ. This has been proved for the Wiener space equipped with the Ornstein-Uhlenbeck
form and for some other Dirichlet structures by Bouleau-Hirsch (cf [111] Chap. II §5 and
Chap. V example 2.2.4), it has been proved by Coquio [116] for random Poisson measures
on Rd and by Bouleau-Denis as soon as the "bottom" space satisfies itself EID. But this
conjecture is at present neither proved nor refuted in all generality, it has to be established
in each particular framework. (EID) on the Wiener space is now a very frequently used tool
to prove existence of density.

c) The error calculus by Dirichlet forms and the mathematically rigourous framework for
the carré du champ operator may be used not only for the computation of measurement
errors propagation, but to study the effect of fluctuations on physical systems. Very often
the physicists handle fluctuations as small errors denoted ∆X and conduct calculations in
the spirit of Gauss calculus. The program is then to write down anew the fluctuation theory
and the deviation that it yields for (non linear) measurements thanks to Dirichlet forms.
Theoretical advances have been already obtained in the direction cf for example Albeverio-
Grothaus-Kondratiev-Röckner [129], Dembo-Deutschel [156].

In order to be concrete, let us look how L. landau and E. Lifchitz in their famous textbook
[75] compute the deviation of a stretched string due to the thermal fluctuations (Chapter XII
exercise 8) :

Let ℓ be the length of the string, F the tension force. Let be a point at the distance x from an end of
the string, y its transverse deplacement. To determine y2 we have to determine the equilibrium shape of the
string for a given deplacement y of the point x; there are two segments of straight line betwen the ends and
the point (x, y). The work spent for such a deformation of the string is equal to

Rmin = F.(
√

x2 + y2)− x) + F.[
√

x2 + y2
− (ℓ− x)] ∼=

Fy2

2
(
1

x
+

1

ℓ− x
)

The mean square is therefore y2 = T

Fℓ
x(ℓ− x).

These results are in perfect accordance with the approach that consists in taking the Ornstein-
Uhlenbeck form on the Brownian bridge, because if

Xt = Bt − tB1 =

∫ 1

0
(1[0,t] − t)dBs

then
Γ[Xt] =

∑1
0(1[0,t] − t)2ds = t− t2 = t(1− t)

Γ[Xs,Xt] =
∑1

0(1[0,s] − s)(1[0,t] − t)du = s ∧ t− st = s(1− t)

for s < t.

d) If we have an error structure, we have also a capacity theory associated with the Dirichlet
form. This allows a refinement of the almost everywhere computations (see Fukushima [95]
and works in the wake). This may be related with the error theory under the following regard :
this helps to understand that during an approximation procedure some things are not seen.
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The fact that there are errors, hence randomness, in the approximation procedure erases

some features of reality. In our framework, the procedure is replaced by a Markov process Xt

which is in a sense osculating when t→ 0. But the paths of Xt do not see very fines things.
An approximation with strongly stochastic errors (cf above and [152]), particularly when

the object to be approximated is a point of a functional space or a path of an erroneous
stochastic process, may make visible only some properties of this path.

e) Up to now we have dealt with local Dirichlet forms admitting a carré du champ operator,
of course non local Dirichlet forms may possess also such an operator. It would mean to
consider non local errors. This is not at all a crazy idea and such a concern appeared already in
physics for example in Brillouin [70] Chap XV. About frequency rays of emission or absorption
Brillouin distinguishes four possible cases of errors, one of which describes a very narrow ray
with companion rays rather far from it with low probability. It seems that non local Dirichlet
forms may be relevant in such cases for describing errors.

Of course no differential calculus is available under such hypotheses for the propagation
through calculations.

Concluding remarks.

With respect to the theory of Dirichlet forms, the error calculus à la Gauss looks quite like
what the simply additive probability theory is with respect to the σ-additive theory.

The error calculus by Dirichlet forms allows to perform computations on complex objects
defined by limits – as typically solutions to stochastic differential equations. But what yields
it to engineers ? The question here is still very similar to the one we could ask about the
probability calculus axiomatised by Kolmogorov in the framework of measure theory. This
can bring much to engineers dealing with stochastic processes.

Not only finance in interested in processes ! Especially all signal processings like Wiener
and Kalman filtering, image improving, recognition, information transmission though channels
à la Shannon, and particularly non linear treatments raise the question of an error calculus.
We must get used to consider that any input process is accompanied with some accuracy
defined by an error structure conditioning – depending on the stochasticity and the intrinsic
accuracy of the treatment – the precision on the output expressed also by an error structure,
so that a new treatment may be applied.
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