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Abstract

Estimation of an asset price process under the physical measure can be regarded as
the first step of the calibration problem, hence is of practical importance. In this article,
supposing that a log-price process is expressed by a possibly skewed stable driven model
and that a high-frequency dataset over a fixed period is available, we provide practical
procedures of estimating the dominating parameters. Especially, the scale parameter may
be time-varying and possibly random as long as it is independent of the driving skewed
stable Lévy process. By means of the scaling property and realized bipower variations,
it is possible to estimate the index and positivity (skewness) parameters without specific
knowledge of the scale process. When the target scale parameter is constant, our estimators
are asymptotically normally distributed, the rate of convergence being

√
n. When the scale

is actually time-varying, we focus on estimation of the integrated scale, which is an analogue
to the integrated volatility in the Brownian-semimartingale framework. In this case we show
that estimation of the integrated scale exhibits a kind of asymptotic singularity with respect
to the unknown index parameter, with the rate of convergence being the slower

√
n/ logn.

Keywords: High-frequency sampling, Parameter estimation, Skewed stable Lévy process.

1 Introduction

Nowadays there exists a vast amount of option-pricing theories for many kinds of underlying
asset price processes, which depend on either finite- or infinite-dimensional unknown parameters.
In order to implement the theories in practice, we are often forced to calibrate (estimate) the
model in question. Typically, we are first given an underlying asset price process whose law is
governed by a physical measure (real world), and then construct a risk-neutral measure under
which a price formula is provided through a change of measure. To implement this procedure in
practice, the first step is to estimate the structure of the underlying asset price process based on
observed return data.

In this article, we address the estimation problem for a class of asset price models driven by
a possibly skewed stable Lévy process. Specifically, we provide simple recipes for estimating the
parameters governing the law of the log-price process X = logS, where S denotes a univariate
asset price process: recall that for a semimartingale X without continuous local martingale part
it follows from Itô’s formula that

dSt = St−{dXt + (e∆Xt − 1−∆Xt)}
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with some positive initial variable S0, where ∆Xt := Xt −Xt− denotes the jump of X at time t.
We model X as a stochastic integral of a positive process σ independent of the integrator Z, a
skewed stable Lévy process with finite mean. Our model includes the so-called geometric stable
Lévy process, where σ is constant. Undoubtedly, Lévy processes, which form the continuous-
time counterpart of discrete-time random walks, serve as a building block for continuous-time
modelling of financial data. We refer the reader to, among others, Bertoin [5] and Sato [16] for
systematic accounts of Lévy processes. Recently, Miyahara and Moriwaki [15] (see also Fujiwara
and Miyahara [9]) introduced an option-pricing model based on the geometric stable Lévy process
and the minimal entropy martingale measure, and shown its usability to, e.g., reproduce the
volatility smile/smirk properties.

Our estimation procedure utilizes empirical sign statistics and realized multipower variations
(MPV for short), and its implementation is pretty simple and requires no hard numerical opti-
mization, hence preferable in practice. Using MPVs essentially amounts to the classical method
of moments with possibly random targets. Some authors have studied asymptotic behaviors con-
cerning MPVs for estimating integrated-σ quantities: Barndorff-Nielsen and Shephard [4, Section
6] for centered and symmetric stable Z, Woerner [18, 20] for general Z admitting a symmetric
Lévy density near the origin. The independence between σ and Z was crucial in these papers.
On the other hand, Corcuera et al. [7] treated realized power variation for general strictly stable
Z with σ not necessarily independent of Z.

Concerning joint-estimation of the stable Lévy processes based on high-frequency data, Ma-
suda [13] considered a joint estimation of the index, scale, and location parameters in case of
symmetric Lévy density. There it was shown that the sample median based estimator of the
location combined with a variant of the central limit theorem led to full-joint estimators, which
are asymptotically normal with finite and nondegenerate asymptotic covariance matrices. In
particular, the sample median based estimator turned out to be rate-efficient. Our model setup
in this article does not contain the drift parameter (presupposed to be zero), but instead allows
possible skewness.

This article is organized as follows. Our model setup and objectives are described in Section
2. Section 3 presents our estimation procedures. Small simulation results are reported in Section
4. Concluding remarks are given in Section 5.

2 Setup

Let (Ω,F , (Ft)t∈[0,1], P ) be an underlying probability space, which is supposed to be rich enough
to carry all the random variables and processes appearing below, and to make all the random
processes adapted. We denoted by E the expectation operator. For convenience, we start with
describing some basic facts concerning the stable distributions and stable Lévy processes.

Denote by Sα(ρ, σ) the possibly skewed stable distribution without drift, the characteristic
function of which is given by

(1) u 7→ exp

{
− σ|u|α

(
1− isgn(u) tan{απ(ρ− 1/2)}

)}
, u ∈ R.

The dominating parameters α, ρ, and σ correspond to:

• the stable-index parameter α ∈ (1, 2);

• the positivity parameter ρ fulfilling that 1− 1/α < ρ < 1/α; and

• the scale parameter σ > 0.

We here rule out the “infinite-mean” case (i.e. α ∈ (0, 1]), and also the case of “one-sided jumps”
(i.e. either ρ = 1 − 1/α or 1/α) from our scope; in many cases, this restriction is non-fatal for
realistic modelling in finance.
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Let ζ stand for a random variable such that L(ζ) = Sα(ρ, σ). Here and in the sequel, for a
random variable ξ we denote its law by L(ξ). The name of “positivity parameter” of ρ comes
from the fact that P [ζ ≥ 0] = ρ; trivially, the symmetric case corresponds to ρ = 1/2. Note that
the positivity parameter of L(cζ) is again ρ whatever c > 0 is. For future reference, we mention
the closed-form expressions of absolute and signed-absolute moments (cf. Kuruoğlu [11]): for any
r ∈ (−1, α) and r′ ∈ (−2,−1) ∪ (−1, α),

E[|ζ|r] = Γ(1− r/α)

Γ(1− r)

cos(rξ/α)

cos(rπ/2)

σr/α

| cos(ξ)|r/α
,(2)

E[|ζ|r
′
sgn(ζ)] =

Γ(1− r′/α)

Γ(1− r′)

sin(r′ξ/α)

sin(r′π/2)

σr′/α

| cos(ξ)|r′/α
,(3)

where we wrote
ξ = απ(ρ− 1/2)

and the symbol sgn(u) expresses 1, 0,−1 according as u > 0, = 0, < 0, respectively. We write

µr = σ−r/αE[|ζ|r] and νr′ = σ−r′/αE[|ζ|r
′
sgn(ζ)],

the rth absolute and r′th signed-absolute moments associated with Sα(ρ, 1), respectively.
The most familiar parametrization of the stable distribution is, instead of (1),

u 7→ exp

{
− (σ|u|)α

(
1− iβ sgn(u) tan

απ

2

)}
,

where the skewness parameter fulfils β ∈ (−1, 1), the symmetric case corresponding to β = 0; as
such, ρ and β have the one-to-one relation

tan

{
απ

(
ρ− 1

2

)}
= β tan

απ

2
.

Also, regarding as ρ as a function of β (for any fixed α ∈ (1, 2)), it can be seen that ρ is
monotonically decreasing on (−1, 1). Hence ρ − 1/2 and β have opposite signs for α ∈ (1, 2),
which is not the case for α ∈ (0, 1); Figure 1 illustrates this point, where also included just for
comparison is the case of α = 0.8. Interested readers can consult Zolotarev [21] for more details
concerning one-dimensional stable distributions; see also Borak et al. [6].

The reason why we have chosen the parametrization (1) is that, as is expected from Figure
1, estimation performance of β based on the empirical sign is destabilized for α close to 2. That
is to say, a “small” change of the empirical-sign quantity (see Section 3.1.1) leads to a “big”
diremption of the estimate of β from the true value; this point can be seen from Figure 1, where
the curve is gentler for α closer to 2.

Denote by Z = (Zt)t∈[0,1] a univariate Lévy process starting from the origin such that

(4) L(Zt) = Sα(ρ, t), t ∈ [0, 1].

The image measure of the process Z is completely characterized by the two parameter α and ρ.
Figure 2 shows two simulated sample paths of Z.

For the stable Lévy processes, the (tail-)index α also corresponds to the Blumenthal-Getoor
activity index (see, e.g., Sato [16, p.362]). In view of (4), we see that the time parameter t directly
serves as the scale in the parametrization (1).

The process Z itself does not accommodate the scale parametrization. Now we introduce
a possibly time-varying scale process. Let σ = (σt)t∈[0,1] be a positive càdlàg process (right-
continuous and having left-hand side limits) independent of Z, such that

(5) P

[ ∫ 1

0

σ2
sds <∞

]
= 1.
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Figure 1: Plots of ρ as a function of β for the values α = 0.8, 1.2, 1.5, and 1.8.
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Figure 2: Two simulated sample paths of Z of (4) for α = 1.5 and 1.8, with β = −0.5 and σt ≡ 1;
although we drew solid and dashed lines for clarity, they are actually of pure-jump in theory.
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Then we consider the process X = (Xt)t∈[0,1] given by

Xt =

∫ t

0

σs−dZs

as a model of a univariate log-price process under physical measure; without loss of generality,
we have set X0 = 0. The condition (5) is sufficient in order to make the stochastic integral well-
defined; see, e.g., Applebaum [1, Section 4.3.3] for a general account of stochastic integration.
Additionally, for a technical reason, we impose the following structure on σα (the αth power of σ)
which is borrowed from Barndorff-Nielsen et al. [3, Hypothesis (H1)] (see also Barndorff-Nielsen
et al. [2]):

σα
t = σα

0 +

∫ t

0

asds+

∫ t

0

bs−dws

+

∫ t

0

∫
h ◦ c(s−, z)(µ− ν)(ds, dz) +

∫ t

0

∫
(c− h ◦ c)(s−, z)µ(ds, dz).

Here the ingredients are as follows: w is a standardWiener process; µ is a Poisson random measure
having the intensity measure ν(ds, dz) = dsF (dz), where F is a σ-finite measure on (0,∞)×R; a
and b are real-valued càdlàg processes; c : Ω×[0,∞)×R → R is a càdlàg process satisfying that (i)
c(s, z) = c(ω; s, z) is Fs ⊗ B(R)-measurable for each s, and that (ii) supω∈Ω,s<Sk(ω) |δ(ω; s, z)| ≤
ψk(z) for some nonrandom functions ψk(z) fulfilling that

∫
R{1∧ψk(z)

2}F (dz) <∞ and stopping
times Sk such that Sk → ∞ a.s.; finally, h is a continuous function on R with compact support
such that h(x) = x near the origin.

Such σs constitute a broad class of the so-called Itô’s semimartingales, including diffusions
with jumps.

Remark 2.1. Extending the present time period [0, 1] to [0,∞), we may equivalently set Xt =

Z∫ t
0
σα
s ds provided that the “clock” process

∫ t

0
σα
s ds → ∞ a.s. for t → ∞. This time-change

representation is known to be inherent in the case of stable-Lévy integrators among general Lévy
ones; see Kallsen and Shiryaev [10] for details.

Remark 2.2. We have set the target period is [0, 1] from the very beginning. However, this point

is a matter of no importance: enlarging the length of the period is reflected in making
∫ 1

0
σα
s ds

larger through σ.

Suppose that we have a discrete-time data with sampling mesh 1/n over the target period
[0, 1], where n denotes the sample size; namely, we observe the sequence of log prices

X1/n, X2/n, . . . , X(n−1)/n, X1.

The log-price model described above is governed by the parameter (ρ, α, σ·) unknown to observers.
Nevertheless, note that (ρ, α, σ·) is possibly infinite-dimensional. Hopefully we will be able to
estimate σt for each t ∈ [0, 1], but this is beyond the scope of this article; to the best of author’s
knowledge, no such result has been obtained in the non-Gaussian stable driven case. Instead, we
are going to confine our objective to the following:

(A) estimation of (ρ, α, σ) when σt ≡ σ for a positive constant σ.

(B) estimation of (ρ, α,
∫ 1

0
σα
s ds) when σ· is actually time-varying (possibly random).

Our goal is to provide an explicit recipe of interval estimation based on the available high-
frequency data (i.e., for n→ ∞). To this end we are going to derive asymptotic (mixed) normality
with specific asymptotic covariance matrix as well as rate of convergence.

Of course the case (A) is formally included in the case (B), however, we need a separate
argument to consider the latter. In both cases, we first construct a simple estimator of (α, ρ)
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with leaving σ· unknown. Then, using the estimates, we provide a estimator of σ or
∫ 1

0
σα
s ds.

Estimation of integrated quantities such as
∫ 1

0
σα
s ds is already known to be possible in the light

of recently developed theory of MPV for pure-jump processes; see Woerner [20] and references
therein. However, to implement the procedure, as a matter of fact we need estimates of α and ρ
beforehand. We can avoid this inconvenience since, in our estimation procedure, an estimator of
(ρ, α) is first provided without using information of σ. This is a great advantage of our estimation
procedure.

According to the scaling property of the strictly stable distributions and the independence
between σ and Z, we have

(6) L(X1|σ) = Sα

(
ρ,

∫ 1

0

σα
s ds

)
in the case (B). It seems natural to target at the integrated scale

∫ 1

0
σα
s ds; the major estimation

target in the familiar Brownian semimartingale framework (e.g., Barndorff-Nielsen et al. [2, 3] as

well as their references) is the integrated volatility
∫ 1

0
σ2
sds. The author expects that the pricing

strategy of Miyahara and Moriwaki [15] for the geometric stable Lévy process remains valid even
for the cases of time-varying scale, as long as the option in question is of European type, in which
only an expectation of the “terminal” variable (namely, X1 in our framework) is concerned: this
is just because, as specified in (6), the L(X1|σ·) is exactly stable.

3 Description of estimation procedure

3.1 Preliminaries

Write the increments of successive observations as

∆iX = Xi/n −X(i−1)/n, i ≤ n.

Conditional on the process σ, the random variables ∆iX are mutually independent and for each
n ∈ N and i ≤ n

L(∆iX|σ) = Sα

(
ρ,

∫ i/n

(i−1)/n

σα
s ds

)
.

Before proceeding let us remind two fundamental facts, which are several times used in the sequel
without notice.

• Since we are concerned here with the weak property, we may set

∆iX = (σ̄i/n)
1/αζi a.s.,

where σ̄i := n
∫ i/n

(i−1)/n
σα
s ds and (ζi) is an i.i.d. sequence with common law Sα(ρ, 1).

• Let Λn be a sequence of essentially bounded functionals on the product space of the
path spaces of Z and σ, and let λn(σ) :=

∫
Λn(σ, z)P

Z(dz), where P ξ denotes the im-
age measure of a variable ξ. Suppose λn(σ) →p λ0(σ) for some functional λ0 on the
path spaces of σ, where →p denotes the convergence in probability. In view of the in-
dependence between Z and σ, a disintegration argument gives λn(σ) = E[Λn(σ,Z)|σ]
a.s., moreover, the boundedness of {λn(σ)}n∈N yields convergence of moments, namely,
E[Λn(σ,Z)] =

∫
λn(σ)P

σ(dσ) →
∫
λ0(σ)P

σ(dσ). That is to say, we may actually treat σ
a nonrandom process in the process of deriving weak limit theorems. In particular, if some
functionals Sn(σ0, Z) with fixed σ0 are asymptotically centered normal with covariance
matrix V (σ0), then it automatically follows that the limit distribution of Sn(σ,Z) has the
characteristic function u 7→

∫
exp{−u⊤V (σ)u/2}Pσ(dσ), a mixed normal if σ is random.
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These are trivial, but crucial in our study.1

As mentioned before, first we construct concrete estimators of ρ and α in this order without
any further knowledge of the scale process σ· (Section 3.2), and then, using the estimates of ρ and

α so obtained, we give estimators of the remaining σ or
∫ 1

0
σα
s ds according as the cases (A) or

(B) (Sections 3.3 and 3.4). For later use, in the rest of this subsection we give some background
information on the empirical-sign statistics and MPVs.

3.1.1 Expression of empirical-sign statistics

Let Hn := n−1
∑n

i=1 sgn(∆iX), then Hn = 1
n

∑n
i=1 sgn(ζi) →p E[sgn(ζ1)] = 2ρ− 1. Hence

(7) ρ̂n :=
1

2
(Hn + 1)

serves as a consistent estimator of ρ. Since

(8)
√
n(ρ̂n − ρ) =

n∑
i=1

1

2
√
n
{sgn(ζi)− (2ρ− 1)},

we easily deduce the asymptotic normality
√
n(ρn−ρ) →d N1(0, ρ(1−ρ)), where the symbol →d

stands for the weak convergence. It is nice that the asymptotic variance only depends on ρ as
it directly enables us to provide a confidence interval of ρ̂n. Despite of its simplicity, it exhibits
unexpectedly good finite-sample performances; see Section 4.

Perhaps the simplest possible estimator of ρ is not (7) but n−1
∑n

i=1 I(∆iX ≥ 0), where I(A)
denotes the indicator function of an event A. The reason why we chose (7) is that, thanks to (3),
it leads to an explicit asymptotic covariance between the estimator of the remaining parameters.
Moreover, the asymptotic variance of n−1

∑n
i=1 I(∆iX ≥ 0) is ρ(1−ρ), which is the same as that

of (7). See Section 3.2 for details.

Remark 3.1. There are other possible ways to construct an estimate of ρ, for example, the
method of moments based on E[|ζ|q] together with E[ζ⟨q⟩], where L(ζ) = Sα(ρ, 1) (see Kuruoğlu
[11]). However, in this case the asymptotic variance of the resulting estimator must depend on
the true value of α.

Remark 3.2. It may be expected that there is no other Lévy process than the stable one, for which
we can consistently estimate the “degree of skewness” in such a simple way. For instance, the
familiar generalized hyperbolic Lévy process has the skewness parameter, but it can be consistently
estimated only when we target at long-term asymptotics; see, e.g., Woerner [19].

3.1.2 Expression of normalized MPV

Fix an m ∈ N, and let r = (rl)
m
l=1 be such that rl ≥ 0, r+ :=

∑m
l=1 rl > 0, and maxl≤m rl < α/2.

Then we define the rth MPV as

(9) Mn(r) :=
1

n

n−m+1∑
i=1

m∏
l=1

|n1/α∆i+l−1X|rl .

(We should note that this quantity does depend on the unknown α if r+ = α.) By the equiv-
alent expression of (∆iX), we may replace “|n1/α∆i+l−1X|rl” in the right-hand side of (9) by

“σ̄
rl/α
i+l−1|ζi+l−1|rl”. Let

σ∗
q :=

∫ 1

0

σq
sds

1Moreover, if necessary in the proof, we may suppose that (σt)t∈[0,1] is bounded from above and bounded away
from zero without loss of generality: this follows from the localization arguments as in Barndorff-Nielsen et al. [3,
Section 3].
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for q > 0 and µ(r) :=
∏m

l=1 µrl . Here we prepare a first-order stochastic expansion useful for our
goal.

Observe that
√
n
{
Mn(r)− µ(r)σ∗

r+

}
=

n−m+1∑
i=1

1√
n
χ′
ni(r) +Rn(r),

where

χ′
ni(r) :=

( m∏
l=1

σ̄
rl/α
i+l−1

)( m∏
l=1

|ζi+l−1|rl − µ(r)

)
,

Rn(r) := µ(r)

{ n−m+1∑
i=1

1√
n

( m∏
l=1

σ̄
rl/α
i+l−1 − σ

r+
(i−1)/n

)

+

n−m+1∑
i=1

√
n

∫ i/n

(i−1)/n

(σ
r+
(i−1)/n − σr+

s )ds

}
+O

(
1√
n

)
.

From the same argument as in Woerner [20] together with Barndorff-Nielsen et al. [3] (see also
Masuda [14]), we can deduce that Rn(r) →p 0. Similarly, straightforward but rather messy
computations lead to

n−m+1∑
i=1

1√
n
χ′
ni(r) =

n∑
i=m

1√
n
χni(r) + op(1),

where

χni(r) :=

( m∏
l=1

σ̄
rl/α
i−m+l

) m∑
q=1

( q−1∏
l=1

|ζi+l−q|rl
)( m∏

l=q+1

µrl

)
(|ζi|rq − µrq ).

In summary, we have

(10)
√
n
{
Mn(r)− µ(r)σ∗

r+

}
=

n∑
i=m

1√
n
χni(r) + op(1).

3.1.3 A basic limit result

Building on the arguments above, we now derive a basic distributional result.
Let r = (rl)

m
l=1 be as before, and also let r′ = (r′l)

m
l=1 be another vector fulfilling the same

conditions as r. In what follows we set

(11) r+ = r′+ = p

for some p > 0; this setting is enough for both (A) and (B). We here derive the limit distribution
(normal conditional on σ) of the random vectors

Sn(r, r
′) :=

√
n

 Hn − (2ρ− 1)
Mn(r) − µ(r)σ∗

p

Mn(r
′) − µ(r′)σ∗

p

 ,

which serves as a basic tool for our purpose.
In view of (8) and (10), it follows that Sn(r, r

′) admits the stochastic expansion

Sn(r, r
′) =

n∑
i=m

1√
n

 sgn(ζi)− (2ρ− 1)
χni(r)
χni(r

′)

+ op(1) =:
n∑

i=m

1√
n
γni + op(1).

For the leading term
∑n

i=m
1√
n
γni, we can apply a central limit theorem either for finite-order

dependent arrays or for martingale difference arrays. Here we formally use the latter, where the
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underlying filtration may be taken as {Gni}i≤n with Gni := σ(ζj : j ≤ i); recall that we are now
regarding σ a nonrandom process. The Lindeberg condition readily follows from the condition

max
l≤m

(rl ∨ r′l) <
α

2
,

hence it suffices to compute the quadratic variation. Therefore we are left to finding the limits in
probability of n−1

∑n
i=mE[γniγ

⊤
ni|Gn,i−1]. After lengthy computation, it turns out that, under

the regularity conditions imposed on σ,

1

n

n∑
i=m

E
[
γniγ

⊤
ni

∣∣Gn,i−1

]
→p Σ(ρ, α, σ·) :=

 4ρ(1− ρ) A(r)σ∗
r+ A(r′)σ∗

r′+

B(r, r)σ∗
2r+ B(r, r′)σ∗

r++r′+

sym. B(r′, r′)σ∗
2r′+

 ,

where we conveniently wrote

A(r) =

m∑
q=1

( ∏
1≤l≤m,l ̸=q

µrl

)
{νrq − (2ρ− 1)µrq},

B(r, r′) =

m∏
1=1

µrl+r′l
− (2m− 1)

m∏
1=1

µrlµr′l

+
m−1∑
q=1

{(m−q∏
l=1

µr′l

)( m∏
l=m−q+1

µr′l+rl−m+q

)( m∏
l=q+1

µrl

)

+

(m−q∏
l=1

µrl

)( m∏
l=m−q+1

µrl+r′l−m+q

)( m∏
l=q+1

µr′l

)}
,

with obvious analogues A(r′) and B(r, r), and B(r′, r′). Thus we arrive at

(12) Sn(r, r
′) →d N3

(
0,Σ(ρ, α, σ·)

)
,

which implies that the limit distribution of Sn(r, r
′) is a normal scale mixture conditional on

σ with conditional covariance matrix Σ(ρ, α, σ·). Here we note that Σ(ρ, α, σ·) depends on the
process σ· only through the integrated quantities σ∗

r+ , σ
∗
r′+
, σ∗

2r+ , σ
∗
2r′+

, and σ∗
r++r′+

.

Having the basic convergence (12) in hand, we now turn to our main objectives, (A) and (B)
mentioned in Section 2.

3.2 Joint asymptotic normality

Given a p > 0 and (r, r′) (remind that we are assuming (11)), we write θ̂n := (ρ̂n, α̂p,n, σ̂
∗
p,n) for

the random root of

(13)

 Hn − (2ρ− 1)
Mn(r) − µ(r)σ∗

p

Mn(r
′) − µ(r′)σ∗

p

 =

 0
0
0

 .

For a moment we suppose that such a θ̂n indeed exists. We introduce the function

F (ρ, α, s) :=

 2ρ− 1
µ(r)s
µ(r′)s

 .

Now let us recall (2) with σ = 1. As we are assuming that α ∈ (1, 2) and 1− 1/α < ρ < 1/α, we
have ξ ∈ (−π/2, π/2), so that cos(ξ) > 0. Hence the quantities µ(r) and µ(r′) are continuously
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differentiable with respect to (ρ, α). LetDρ(r) :=
∂
∂ρµ(r) andDα(r) :=

∂
∂αµ(r): here, the variable

s is supposed to be independent of (ρ, α). Trivially,

∇F (ρ, α, s) =

 2 0 0
sDρ(r) sDα(r) µ(r)
sDρ(r

′) sDα(r
′) µ(r′)

 ,

which is nonsingular for each s > 0 as soon as

(14) µ(r′)Dα(r) ̸= µ(r)Dα(r
′).

Again let us recall that we may proceed as if σ is nonrandom. The classical delta method (e.g.,
van der Vaart [17]) yields that, if (14) holds true, then

(15)
√
n

 ρ̂n − ρ
α̂p,n − α
σ̂∗
p,n − σ∗

p

 →d N3(0, V (ρ, α, σ·)),

where
V (ρ, α, σ·) := {∇F (ρ, α, σ∗

p)}−1Σ(ρ, α, σ·){∇F (ρ, α, σ∗
p)}−1,⊤.

We see that Σ(ρ, α, σ·) here depends on σ only through σ∗
p and σ∗

2p; hence, more specifically
we may write Σ(ρ, α, σ·) = Σ(ρ, α, σ∗

p , σ
∗
2p), and accordingly, V (ρ, α, σ·) = V (ρ, α, σ∗

p , σ
∗
2p). We

should note that the function V (ρ, α, σ∗
p , σ

∗
2p) is fully explicit as a function of its four arguments.

Now we set m = 2 and consider r = (2q, 0) and r′ = (q, q) for a q > 0 (hence p = 2q). In
order to make (12) valid, we need q < α/4: as we are assuming that α ∈ (1, 2), a naive choice is
q = 1/4 (see Remark 3.3 below).

Let us mention the computation of the solution to (13). We already have a closed-form
solution ρ̂n in (7). As for α̂n, we can conveniently utilize the second and third arguments of
(13): write µ̂(·) for the µ(·) with (ρ, α) replaced by (ρ̂n, α̂p,n), and then consider the estimating
equation Mn(q, q)/Mn(2q, 0) = µ̂(q, q)/µ̂(2q), which can be rewritten as

(16)

∑n−1
i=1 |∆iX|q|∆i+1X|q∑n

i=1 |∆iX|2q
= C1(q)C2(q, ρ̂n)

{Γ(1− q/α̂p,n)}2

Γ(1− 2q/α̂p,n)
,

where, having ρ̂n beforehand, we can regard

C1(q) :=
Γ(1− 2q) cos(qπ)

{Γ(1− q) cos(qπ/2)}2
and C2(q, ρ̂n) :=

[cos{qπ(ρ̂n − 1/2)}]2

cos{2qπ(ρ̂n − 1/2)}

as constants. Since the function

(17) α 7→ {Γ(1− q/α)}2

Γ(1− 2q/α)

is strictly monotone on (1, 2), it is easy to search the root α̂p,n. Clearly, the root does uniquely
exists with probability tending to one.

Remark 3.3. We see that the range of the function (17) becomes narrower for smaller q, so
that the root α̂p,n becomes too sensitive for a small change of the sample quantity in the left-hand
side of (16). This implies that the law of large numbers for the sample quantity should be in force
with high degree of accuracy for smaller q.

Thus, given a p = 2q > 0, we could get the estimates ρ̂n and α̂p,n without special knowledge
of σ, which may be time-varying and random as long as the regularity conditions on σ imposed
on Section 2 hold true. It is important here that we have used the bipower variation in part; the
procedure using the first and second empirical moments as in Masuda [13] is valid only when σ
is constant.

10



The present asymptotic covariance matrix is V (ρ, α, σ∗
2q, σ

∗
4q), for which we want to provide

a consistent estimator. We only need to give consistent estimators of σ∗
2q and σ∗

4q; recall that we
need

4q < α

in order to make the distributional result (15) with p = 2q valid. For instance, we can proceed
as follows. First, (15) with p = 2q implies that Mn(2p, 0) →p µ(2q, 0)σ∗

2q. Using the estimates
(ρ̂n, α̂p,n) and the continuous mapping theorem, we deduce thatMn(2q, 0)/µ̂(2q, 0) is a consistent
estimator of σ∗

2q. We should notice the dependence of Mn(2q, 0) on α (recall (9)): Mn(2q, 0) =

n2q/α−1
∑n

i=1 |∆iX|2q. Nevertheless, as in Masuda [13, Remark 8], we see that the α can be
replaced by α̂p,n since we already know that

√
n(α̂p,n − α) = Op(1). Therefore,

(18) σ̂∗
2q,n :=

n2q/α̂p,n−1

µ̂(2q, 0)

n∑
i=1

|∆iX|2q →p σ∗
2q.

Once again, let us remind that µ̂(2q, 0) can be easily computed in view of (2) with σ = 1. By the
same token, we could deduce that (still under 4q < α, of course)

σ̂∗
4q,n :=

n4q/α̂p,n−1

µ̂(2q, 2q)

n−1∑
i=1

|∆iX|2q|∆i+1X|2q →p σ∗
4q.

After all, V (ρ̂n, α̂p,n, σ̂
∗
2q,n, σ̂

∗
4q,n) can serve as a desired consistent estimator.

Now we are in position to complete our main objectives (A) and (B).

3.3 Case (A): geometric skewed stable Lévy process

When σt ≡ σ > 0, our model reduces to the geometric skewed stable Lévy process. In this case
we can perform a full-joint interval estimation concerning the dominating (three-dimensional)
parameter (ρ, α, σ) at rate

√
n.

We keep using the framework of the last subsection. It directly follows from (15) that

(19)
√
n

 ρ̂n − ρ
α̂p,n − α

(σ̂p,n)
p − σp

 →d N3(0, V (ρ, α, σ)),

where V (ρ, α, σ) explicitly depends on the three-dimensional parameter (ρ, α, σ); recall that p =
2q < α/2. Applying the delta method to (19) in order to convert (σ̂p,n)

p to σ̂p,n in (19), we
readily get the asymptotic normality of

√
n(ρ̂n − ρ, α̂p,n − α, σ̂p,n − σ); we omit the details. Our

first objective (A) is thus achieved.
In summary, we may proceed with the choice q = 1/4 (so p = 1/2) as follows.

1. Compute the estimate ρ̂n of ρ by (7).

2. Using the ρ̂n, find the root α̂1/2,n of (16).

3. Using (ρ̂n, α̂1/2,n) thus obtained, an estimate of σ is provided by, e.g. (recall (18)),

σ̂1/2,n :=

{
n1/(2α̂p,n)−1

µ̂(1/2, 0)

n∑
i=1

√
|∆iX|

}2

.

3.4 Case (B): time-varying scale process

Now we turn to the case (B). Again by means of the argument give in Section 3.2, it remains to

construct an estimator of σ∗
α =

∫ 1

0
σα
s ds. The point here is that, different from the case (A), a

direct use of (15) is sufficient to deduce the distributional result concerning estimating σ∗
α because

11



the dependence of (r, r′) on α is not allowed there. In order to utilize Mn(r) with r depending
on α, we need some additional arguments.

Extracting the second row of (12), we have

(20)
√
n{Mn(r)− µ(r)σ∗

r+} →d N1

(
0, B(r, r)σ∗

2r+

)
.

In view of the condition maxl≤m rl < α/2, we need (at least) a tripower variation for setting
r+ = α. For simplicity, we set m = 3 and

r = r(α) =

(
α

3
,
α

3
,
α

3

)
.

With this choice, we are going to provide an estimator of σ∗
α with specifying its rate of convergence

and limiting distribution.
Let M∗

n(α) :=Mn(α/3, α/3, α/3). In this case the normalizing factor is nr+/α−1 ≡ 1, so that

M∗
n(α) =

n−2∑
i=1

3∏
l=1

|∆i+l−1X|α/3,

which is computable as soon as we have an estimate of α. We have already obtained the estimator
α̂p,n, hence want to use M∗

n(α̂p,n). For this, we have to look at the asymptotic behavior of the
gap √

n{M∗
n(r(α))− µ(r(α))σ∗

α} −
√
n{M∗

n(α̂p,n)− µ(r(α̂p,n))σ
∗
α},

namely, the effect of “plugging in α̂p,n”.
By means of Taylor’s formula

ax = ay + (log a)y(x− y) + (log a)2
∫ 1

0

(1− u)ay+u(x−y)du(x− y)2

applied to the function x 7→ ax (x, y, a > 0), we get

√
n

{
M∗

n(α̂p,n)− µ

(
α

3
,
α

3
,
α

3

)
σ∗
α

}
=

√
n

{
M∗

n(α)− µ

(
α

3
,
α

3
,
α

3

)
σ∗
α

}
+

1

3

√
n(α̂p,n − α)

n−2∑
i=1

x
α/3
i log xi

+

{
1

3

√
n(α̂p,n − α)

}2
1√
n

n−2∑
i=1

(log xi)
2

∫ 1

0

(1− u)x
{α+u(α̂p,n−α)}/3
i du,(21)

where we wrote xi =
∏3

l=1 |∆i+l−1X|. We look at the right-hand side of (21) termwise. Let

yi :=
∏3

l=1 |n1/α∆i+l−1X|.

• The first term is Op(1), as is evident from (20).

• Concerning the second term, we have

n−2∑
i=1

x
α/3
i log xi =

1

n

n−2∑
i=1

y
α/3
i log yj −

3

α
(log n)

1

n

n−2∑
i=1

y
α/3
i

= Op(1)− (log n)
3

α

{
µ

(
α

3
,
α

3
,
α

3

)
σ∗
α +Op

(
1√
n

)}
= Op(1)− (log n)

3

α
µ

(
α

3
,
α

3
,
α

3

)
.
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• Write the third term as {
√
n(α̂p,n − α)/3}2Tn, and let us show that Tn = op(1). Fix any

ϵ > 0 and ϵ0 ∈ (0, α/2) in the sequel. Then

P [|Tn| > ϵ] ≤ P [|α̂p,n − α| > ϵ0] + P
[
|Tn| > ϵ, |α̂p,n − α| ≤ ϵ0

]
=: p′n + p′′n.

Clearly p′n → 0 by the
√
n-consistency of α̂p,n. As for p′′n, we first note that

inf
u∈[0,1]

1

α
{α+ u(α̂p,n − α)} ≥ 1− ϵ0

α
> 0

on the event {|α̂p,n − α| ≤ ϵ0}. We estimate p′′n as follows:

p′′n = P

[
|α̂p,n − α| ≤ ϵ0,

1√
n

n−2∑
i=1

(log xi)
2

∫ 1

0

(1− u)y
{α+u(α̂p,n−α)}/3
i n−{α+u(α̂p,n−α)}/αdu > ϵ

]

≤ P

[
|α̂p,n − α| ≤ ϵ0, n

ϵ0/α−1/2 1

n

n−2∑
i=1

(log xi)
2

∫ 1

0

(1− u)y
{α+u(α̂p,n−α)}/3
i du > ϵ

]

≤ P

[
nϵ0/α−1/2 1

n

n−2∑
i=1

{(log n)2 + (log yi)
2}(1 + yi)

(α+ϵ0)/3 > Cϵ

]
≤ 1

Cϵ
nϵ0/α−1/2(log n)2 → 0

for some constant C > 0. Here we used Markov’s inequality in the last inequality; note
that (α+ ϵ0)/3 < α/2, hence the moment does exist.

Piecing together these three items and (21), we arrive at the asymptotic relation:

(22)

√
n

log n

{
M∗

n(α̂p,n)− µ

(
α

3
,
α

3
,
α

3

)
σ∗
α

}
= − 1

α
µ

(
α

3
,
α

3
,
α

3

)
σ∗
α

√
n(α̂p,n − α) +Op

(
1

log n

)
.

Now, recalling (2) we note that the quantity µ(α/3, α/3, α/3) is a continuously differentiable
function of (ρ, α). Write µ̄(ρ, α) = µ(α/3, α/3, α/3). In view of the

√
n-consistency of (ρ̂n, α̂p,n)

and the delta method, we obtain

(23) µ̄(ρ, α) = µ̄(ρ̂n, α̂p,n) +Op

(
1√
n

)
.

Substituting (23) in (22) we end up with

(24)

√
n

log n

{
M∗

n(α̂p,n)

µ̄(ρ̂n, α̂p,n)
− σ∗

α

}
= − 1

α
σ∗
α

√
n(α̂p,n − α) +Op

(
1

log n

)
,

which implies that

(25) σ̂∗
α,n :=

M∗
n(α̂p,n)

µ̄(ρ̂n, α̂p,n)

serves as (
√
n/ log n)-consistent estimator of σ∗

α. Its asymptotic distribution is the centered
normal scale mixture with limiting (possibly random) variance being

v(ρ, α, σ∗
α, σ

∗
p , σ

∗
2p) :=

(
σ∗
α

α

)2

V22(ρ, α, σ
∗
p , σ

∗
2p),

where V22 denotes the (2, 2)th entry of V ; recall that p is a parameter-free constant (see Section
3.2). A consistent estimator of v(ρ, α, σ∗

α, σ
∗
p , σ

∗
2p) can be constructed by plugging in the estimators

of its arguments.
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The stochastic expansion (24) indicates an asymptotic linear dependence of
√
n(α̂p,n−α) and

(
√
n/ log n)(σ̂∗

α,n − σ∗
α), Of course, this occurs even for constant σ, if we try to estimate (α, σα)

instead of (α, σ). The point is that, plugging in a
√
n-consistent estimator of α into the index r

of the MPV Mn(r) slows down estimation of σ∗
α from

√
n to

√
n/(log n). It is beyond the scope

of this article to explore a better alternative estimator of σ∗
α.

4 Simulation experiments

Based on the discussion above, let us briefly observe finite-sample performance of our estimators.
For simplicity, we here focus on nonrandom σ.

4.1 Case (A)

First, let σ is a positive constant, so that X is the geometric skewed stable Lévy process and the
parameter to be estimated is (ρ, α, σ).

As a simulation design, we set α = 1.3, 1.5, 1.7, and 1.9 with common β = −0.5 and σ = 1;
hence (α, ρ) = (1.2, 0.7638), (1.5, 0.5984), (1.7, 0.5467), and (1.9, 0.5132). The sample size are
taken as n = 500, 1000, 2000, and 5000. In all cases, the tuning parameter q is set to be 1/4,
and 1000 independent sample paths of X are generated. Empirical means and empirical s.d.’s
are given with the 1000 independent estimates obtained. The results are reported in Table 1.
We see that estimation of (ρ, α) is, despite of its its simplicity, quite reliable. On the other hand,
estimation variance of σ is relatively large compared with those of ρ and α. Nevertheless, it is
clear that the bias is small. Moreover, as α gets close to 2, the performance of σ̂n becomes better,
while that of (ρ̂n, α̂p,n) is seemingly unchanged.

In the unreported simulation results, we have observed that a change of q within its admissible
region does not lead to a drastic change unless it is too small (see Remark 3.3).

4.2 Case (B)

Next we observe a case of time-varying but nonrandom scale. We set

(26) σα
t =

2

5

{
cos(2πt) +

3

2

}
,

so that σ∗
α = 0.6.

With the same choices of (ρ, α), q, and n as in the previous case, we obtain the result in Tables
2; the estimator of σ∗

α here is based on (25). There we can observe a quite similar tendency as in
the previous case.

5 Concluding remarks

We have studied some statistical aspects in the calibration problem of a geometric skewed stable
asset price models. Estimation of stable asset price models with possibly time-varying scale
can be done easily by means of the simple empirical sign statistics and MPVs. Especially, we
could estimate integrated scale, which is a natural quantity as in the integrate variance in the
framework of Brownian semimartingales, with multistep estimating procedure: we estimate ρ, α,
and σ (or σ∗

α) one by one in this order. Our simulation results say that finite-sample performance
of our estimators are unexpectedly good despite of their simplicity, except for a relatively bigger
variance in estimating σ (or σ∗

α).

We close with mentioning some possible future issues.

• Throughout we supposed the independence between the scale process σ and the driving
skewed stable Lévy process Z. This may be disappointing as it excludes accommodating
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α = 1.2
n ρ α σ
500 0.7627 (0.0186) 1.2026 (0.0790) 1.1021 (0.8717)
1000 0.7634 (0.0137) 1.2031 (0.0575) 1.0450 (0.4643)
2000 0.7645 (0.0096) 1.2031 (0.0437) 1.0253 (0.5102)
5000 0.7636 (0.0061) 1.2023 (0.0313) 1.0123 (0.2854)
α = 1.5
n ρ α σ
500 0.5988 (0.0222) 1.4929 (0.1030) 1.0751 (0.4066)
1000 0.5981 (0.0162) 1.5010 (0.0757) 1.0289 (0.2549)
2000 0.5986 (0.0106) 1.4986 (0.0564) 1.0284 (0.2355)
5000 0.5984 (0.0073) 1.4983 (0.0364) 1.0169 (0.1516)
α = 1.7
n ρ α σ
500 0.5476 (0.0219) 1.6810 (0.1103) 1.0633 (0.2359)
1000 0.5474 (0.0158) 1.6830 (0.0823) 1.0567 (0.1948)
2000 0.5472 (0.0113) 1.6930 (0.0625) 1.0308 (0.1611)
5000 0.5466 (0.0070) 1.6977 (0.0375) 1.0126 (0.1022)
α = 1.9
n ρ α σ
500 0.5129 (0.0224) 1.8553 (0.1026) 1.0821 (0.1767)
1000 0.5133 (0.0164) 1.8767 (0.0808) 1.0535 (0.1568)
2000 0.5131 (0.0109) 1.8870 (0.0579) 1.0330 (0.1111)
5000 0.5128 (0.0073) 1.8971 (0.0401) 1.0097 (0.0809)

Table 1: Estimation results for the true parameters (ρ, α, σ) = (0.7638, 1.2, 1), (0.5984, 1.5, 1),
(0.5467, 1.7, 1), and (0.5132, 1.9, 1) with the geometric stable Lévy processes. In each case, the
empirical mean and standard deviation (in parenthesis) is given.
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Figure 3: The plot of the function t 7→ σα
t given by (26).
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α = 1.2
n ρ α σ∗

α

500 0.7632 (0.0179) 1.1951 (0.0794) 0.6730 (0.3857)
1000 0.7636 (0.0139) 1.2042 (0.0619) 0.6274 (0.3094)
2000 0.7638 (0.0098) 1.2044 (0.0472) 0.6105 (0.2323)
5000 0.7641 (0.0059) 1.2025 (0.0305) 0.6029 (0.1521)
α = 1.5
n ρ α σ∗

α

500 0.5978 (0.0220) 1.4877 (0.1023) 0.6697 (0.3031)
1000 0.5981 (0.0159) 1.4908 (0.0733) 0.6551 (0.2488)
2000 0.5985 (0.0111) 1.4960 (0.0573) 0.6349 (0.2033)
5000 0.5987 (0.0069) 1.4990 (0.0376) 0.6151 (0.1414)
α = 1.7
n ρ α σ∗

α

500 0.5460 (0.0216) 1.6727 (0.1038) 0.6832 (0.2465)
1000 0.5465 (0.0160) 1.6801 (0.0820) 0.6714 (0.2280)
2000 0.5468 (0.0113) 1.6931 (0.0600) 0.6318 (0.1607)
5000 0.5465 (0.0071) 1.6988 (0.0393) 0.6116 (0.1135)
α = 1.9
n ρ α σ∗

α

500 0.5130 (0.0229) 1.8440 (0.1039) 0.7196 (0.2233)
1000 0.5131 (0.0159) 1.8703 (0.0823) 0.6762 (0.1897)
2000 0.5138 (0.0114) 1.8851 (0.0588) 0.6412 (0.1349)
5000 0.5135 (0.0068) 1.8956 (0.0411) 0.6168 (0.0998)

Table 2: Estimation results for the true parameters (ρ, α, σ) = (0.7638, 1.2, 0.6), (ρ, α, σ) =
(0.5984, 1.5, 0.6), (ρ, α, σ) = (0.5467, 1.7, 0.6), and (ρ, α, σ) = (0.5132, 1.9, 0.6) with (26). In each
case, the empirical mean and standard deviation (in parenthesis) is given.
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the leverage effect, however, the simple constructions of our estimators (especially, ρ̂n)
break down if they are allowed to be dependent. We may be able to deal with correlated σ
and Z if we have an extension of the power-variation results obtained in Corcuera et al. [7]
to the MPV version. To the best of author’s knowledge, such an extension does not seem
to have been explicitly mentioned as yet.

• Assuming that σ is indeed time-varying and possibly random, estimation of “spot” scales
σt is an open problem. Needless to say, this is much more difficult and delicate to deal with
than the integrated scale. We know several results for Brownian-semimartingale cases (see,
among others, Fan and Wang [8] and Malliavin and Mancino [12]), however, yet no general
result for the case of pure-jump Z.

• Finally, it might be interesting to derive an option-pricing formula for the case of time-
varying scale, which seems more realistic than the mere geometric skewed stable Lévy
processes.
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