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We review recent progress in understanding certain aspects of the thermodynam-
ics of black holes and other horizons. Our discussion centers on various “entropy
bounds” which have been proposed in the literature and on the current understand-
ing of how such bounds are not required for the semi-classical consistency of black
hole thermodynamics. Instead, consistency under certain extreme circumstances
is provided by two effects. The first is simply the exponential enhancement of the
rate at which a macrostate with large entropy is emitted in any thermal process.
The second is a new sense in which the entropy of an “object” depends on the
observer making the measurement, so that observers crossing the horizon measure
a different entropy flux across the horizon than do observers remaining outside.
In addition to the review, some recent criticisms are addressed. In particular,
additional arguments and detailed numerical calculations showing the observer de-
pendence of entropy are presented in a simple model. This observer-dependence
may have further interesting implications for the thermodynamics of black holes.
For the Proceedings of the GR17 conference, Dublin, Ireland, July 2004.

1. Introduction

Most researchers agree that black holes, Hawking radiation, and black hole

entropy are some of our strongest clues in the quest to discover and under-

stand ever deeper layers of fundamental physics. However, somewhat less

agreement has been reached as to the nature of the fundamental physics to

which they will lead. Below, we address only a narrow part of this discus-

sion, reviewing recent work 1,2,3 which exposes loopholes in certain argu-

ments for so-called “entropy bounds”– conjectures4,5,6,7,8,9 such as Beken-

stein’s proposed bound4,

S < αRE/~c, (1)

and the so-called holographic bound5,6,

S < Ac3/4~G, (2)

1
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that would require the entropy of any thermodynamic system to respect a

bound set by the size and, perhaps, the energy of the systema. We also

review an unexpected piece of new physics that forms the basis of one such

loophole: a new dependence3 of entropy on the observer, and in particular a

dependence on the observer of the flux of entropy across a null surface. This

aspect of the review is supplemented below with a detailed new analysis of

a simple example, using both analytic and numerical methods.

To place this review in its proper context, recall that the above con-

jectured entropy bounds were originally motivated by claims that they are

required for the consistency of black hole entropy with the second law of

thermodynamics. These claims have been controversial11,12 since they were

first introduced. However, last year a new class of very general loopholes

was pointed out in Refs. 2,3. We review and comment on these loopholes

below.

While these works still have not quieted all controversy13,14, they have

gone some distance toward doing so. In particular, we will see that the

criticisms of Ref. 13 (which were stated in the context of a certain simple

model) can be refuted in complete detail. This is done twice in section 3.1,

once using analytic arguments and once numerically. The numerical results

are an excellent match to the analytic predictions. On the other hand, as

discussed in section 2.1. the criticisms of Ref. 14 apply only to a special

case. Furthermore, even in that context, Ref. 14 makes an assumption

about the nature of Hawking radiation which appears to conflict with well-

established results15,16,17. Thus, the original loopholes2,3 stand firm.

While the discovery of loopholes does not prove the conjectured en-

tropy bounds of Refs. 4,5,6,7,8 to be falseb it does remove the original

motivation for such bounds. Proponents may still appeal to the AdS/CFT

correspondence18 and in particular to the Susskind-Witten calculation19

aHere we have displayed the fundamental constants explicitly, but below we use geometric
units with kB = ~= c = G = 1. The original version4 of Bekenstein’s bound has α = 2π,
while some subsequent discussions (e.g. Ref. 10) weaken the bound somewhat, enlarging
α by a factor of order ten.
bIn particular, there are certain observational bounds (see, e.g. Ref. 2) which limit the
existence of highly entropic objects in our universe. While the form of such observational
bounds does not obviously match that of (1) or (2) it would be interesting to explore
such observational bounds in more detail. Indeed, Bekenstein stresses that his interest
in the proposal (1) is in the context of our particular universe. In contrast, we are more
interested here possible deep ties between the bounds and quantum gravity; i.e., in the

question of whether (1) and (2) could in principle be violated in some consistent theory
of quantum gravity, which may or may not describe our particular universe. We will
therefore discuss (1) and (2) in this strong sense below.
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for support, as well as the difficulty (see e.g. Refs. 20,21,22) of constructing

counter-examples to the Covariant Entropy Bound conjecture8 within the

particular regime in which it has been formulated. However, the lessons

of these observations may in the end turn out to be more subtle, and it is

clear that no compelling evidence for the bounds is available at this time.

The plan of this review is as follows. We first outline the loopholes in

the arguments of Refs. 4,5,6,10,23. Our treatment (section 2) roughly follows

that of Ref. 2, and more details can be found in that reference. Section 3

then follows Ref. 3 and moves on to consider a related thought experiment,

which one might at first think would require similar restrictions on matter

for the consistency of the second law. However, a careful examination of the

physics in fact leads to a different conclusion, in which the issue is resolved

by the observer-dependence of entropy foreshadowed above.

2. Thermodynamics can hold its own

Below, we turn our attention first to bounds of the form (1), and then to

bounds of the form (2). In each case, the essential ingredient is the well

established15,12,24,16,25,26,27,28 point that the radiation surrounding a black

hole of temperature TBH is thermal in the sense that, in equilibrium, it is

described by an ensemble of the form e−βH , where β = 1/TBH . As a result,

the probability to find a particular macrostate (such as a bound-violating

box) in a thermal ensemble is not e−βE but e−βF , with F = E − TBHS

the free energy of the macrostate at the black hole temperature TBH and

where the phase space factor of eS arises from associating eS microstates

with a single macrostate.

2.1. General Comments

Of interest here will be the somewhat different setting in which a black

hole radiates into empty space. It is more difficult in this context to ar-

rive at detailed results for interacting fields, though for free fields one can

readily show15,17 that the radiation produced by the black hole is just the

outgoing component of the above thermal ensemble. This has been estab-

lished rigorously17 even for the complicated case where the black hole forms

dynamically from the collapse of some object.

Consider now the case of interacting fields. Suppose in particular that

the thermal ensemble can be described as a collection of weakly interacting

particles or quasi-particles. We would again like to claim that the outward

flux of both particles and quasi-particles from a black hole radiating into
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free space is well-modeled by the outgoing component of a thermal ensem-

ble. Let us therefore consider placing our black hole inside spherical box

whose walls are held at a fixed temperature. In this context, the above

results tell us that the black hole will reach eventually reach thermal equi-

librium. Since the particles and quasi-particles interact weakly, to a good

approximation we may regard this ensemble as a combination of its ingoing

and outgoing parts. Since the ingoing parts incident on the black hole are

completely absorbed, equilibrium can only be maintained if the black hole

also radiates a flux of both particles and quasi-particles at a rate given by

the outgoing part of the thermal ensemble. As discussed in the conclu-

sions of Ref. 17, even in the presence of strong interactions one expect that

the outgoing Hawking radiation is determined by properties of the ther-

mal ensemble, though the details in that case will be quite complicated.

Thus, any proposal (such as that of Ref. 14) that Hawking radiation of

quasi-particles be treated differently that of “fundamental” particles, and

which results in interesting cases in an outward flux of quasi-particles sig-

nificantly lower than which arises in equilibrium is in conflict with standard

results15,12,24,16,25,26,27,28.

Because just such a reduced quasi-particle model (in the context of weak

interactions) formed the basisc of a recent criticism14 by Bekenstein of the

work2 to be described below, it is worthwhile to examine this point once

more in great detail. The particular proposal of Ref. 14 was that quasi-

particles cannot be directly Hawking radiated by a black hole, but instead

arise in thermal equilibrium only via additional processes in which they

are created by the interaction of other (so-called “fundamental”) particles.

The case of interest14 is one where kinetics would dictate that such a pro-

cess happens only extremely slowly, on some timescale which we will call

tquasi. But now consider the case of a black hole in Anti-de Sitter (AdS)

space. Here we know16,25,26,27,28 that there is a state (effectively, the Hartle-

Hawking vacuum) in which the black hole is at thermal equilibrium. Yet

if the interactions are weak, any object with zero angular momentum will

fall into the black hole on a timescale tAdS set by the size of the AdS space.

Thus, under the proposal of Ref. 14, one may choose tquasi ≫ tAdS so

that the quasi-particles drain out of the ensemble and into the black hole

far faster than they are created. Thus there could be no thermal equilib-

cWe also note below that quasi-particles are not essential for the loopholes we discuss.
Thus, it is not strictly necessary to refute Bekenstein’s recent comments14. However, we
do so here in order to show that the loopholes are quite general.
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rium, contradicting in particular the theorems of Ref. 16. One can only

conclude that the reduced-quasi-particle proposal14 is untenable, and that

quasi-particles are directly Hawking radiated by the black hole at a rate set

by the outgoing flux of such objects in the thermal ensemble determined

by the black hole’s Hawking temperature.

2.2. The Bekenstein bound

Let us now recall the setting for the argument of Ref. 10 in favor of (1).

One considers an object of size R, energy E, and entropy S which falls into

a Schwarzschild black hole of size RBH from a distance d≫RBH . Following

Ref. 10, we parametrize the problem by ζ = RBH

2R . The parameter ζ is

taken to be large enough that the object readily falls into the black hole

without being torn apart. In other words, we engineer the situation so that

the black hole is, at least classically, a perfect absorber of such objects.

It is also assumed that the Hawking radiation emitted during the infall of

our object is dominated by the familiar massless fields. Assuming that the

number of such fields is not overly large, the effects of Hawking radiation

are negligible during the infall. Under these assumptions, Ref. 10 shows

that the second law is satisfied only if

S < 8πνζRE, (3)

where ν is a numerical factor in the range ν = 1.35− 1.64. Here the energy

E has been assumed to be much smaller than the mass MBH of the black

hole and, up to the factor ν, the above bound is obtained by considering

the increase in entropy of the black hole, dSBH = dEBH/TBH . Notice here

that the black hole was in particular assumed not to readily emit copies of

our object as part of its Hawking radiation.

However, let us now suppose that a “highly entropic object” can exist

with S > 8πνζRE. Then, according to Ref. 10, this will lead to a con-

tradiction with the second law in a process involving the particular black

hole on which we have chosen to focus. We wish to consider the possibility

that, because this entropy is very large, such objects will be readily emitted

by the black hole so that the Hawking radiation will not be dominated by

massless fields. In particular, if they are emitted sufficiently rapidly, the

black hole will emit such objects faster than we have proposed to drop them

in and, as a result, it is clear that the second law will be satisfied. It is nat-

ural to consider such highly entropic objects as being built of many parts

and thus, in some sense, “composite” so that they may best be described as
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long-lived quasi-particle excitations of some fundamental theory. However,

for clarity we point out that such complications are unnecessary, and the

reader is encouraged to keep in mind the concrete example of a system with

eS species of fundamental massive scalar field, all having of mass E. In this

example, the entropy arises if one takes the fields to have sufficiently similar

interactions such that it is reasonable to coarse-grain over the species label.

To study the production rate, we follow the path set out in section

2.1 above and compute the free energy of our object at the black hole

temperature TBH = (4πRBH)−1 = (8πζR)−1. We have

F = E − S

4πRBH
< E − νE < 0. (4)

Thus, we expect an exponentially large rate of Hawking emission of these

objects from this black hole.

In fact, in a naive model the resulting thermal ensemble contains a

sum over states with arbitrary numbers n of such highly entropic objects,

weighted by factors of e−nF > 1. Such an ensemble clearly diverges and

is physically inadmissible. Thus, some effect must intervene to cut off the

divergence and to stabilize the system. If no other effect intervenes first,

this cut-off can be supplied by the quantum statistics of the highly entropic

objects. To see this, we note that the above naive model treats the objects

as distinguishable. In contrast, the partition function for N species of either

boson or fermion converges at any temperature no matter how large N may

be. Thus, if our “object” were a collection of N = eS free Bose or Fermi

fields, the associated partition function would converge. The divergence

of the naive model simply indicates that the true equilibrium ensemble

contains so many boxes that they cannot be treated as distinguishable and

non-interacting objects! So long as there is no strong barrier that prevents

the Hawking radiation from escaping, the outgoing radiation will also be

correspondingly dense, at least in the region near the black hole.

On the other hand, suppose that the boxes interact in such a way that

the thermal atmosphere of the black hole largely blocks the passage of

outward-moving boxes. Let us assume that it also blocks the passage of the

CPT conjugate objects, since these will carry equal entropy. This might

happen because the thermal atmosphere already contains many densely

packed copies of our object, or alternatively because our objects are blocked

by other components of the atmosphere. However, (due to CPT invariance),

such an atmosphere will also provide a barrier hindering our ability to drop

in a new object from far away. If we attempt to drop in such an object,

then with correspondingly large probability it must bounce off the thermal
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atmosphere or be otherwise prevented from entering the black hole! Again,

one expects that the black hole radiates at least one object for every highly

entropic object which is successfully sent inward through the atmosphere

from outside.

The argument above was stated in terms of the particular scenario sug-

gested in Ref. 10. However, one might expect that it can be formulated

much more generally. This is indeed possible, as may be seen by considering

any process in which a given object (“box” above) with entropy S is hidden

inside the black hole, with the black hole receiving its energy E and its en-

tropy S otherwise disappearing from the universe. Note that this includes

both processes of the original form4 where the object is slowly lowered into

the black hole, as well as the more recent version10 discussed above where

the object falls freely. As before, we suppose that this represents a small

change, with E being small in comparison to the total energy of the black

hole. From the ordinary second law we have

∆Stotal ≥ ∆SBH − S, (5)

but the first law of black hole thermodynamics tells us that this is just

∆Stotal ≥
E

TBH
− S =

F

TBH
, (6)

where F is the free energy of the object at the Hawking temperature TBH .

In particular, since TBH > 0, the sign of ∆Stotal must match that of F .

Thus absorption of an object by a black hole violates the second law only

if F < 0, in which case any of the above mechanisms may either prevent

the process from occurring or sufficiently alter the final state so that the

second law is satisfied.

2.3. The holographic bound

We now turn to the “holographic bound” (2) and consider the analogous

arguments of Refs. 5,6. These works suggest that one compare a (spherical,

uncharged) object with S ≥ A/4 with a Schwarzschild black hole of equal

area A = 4πR2
BH . Since the highly entropic object is not itself a black hole,

its energy E must be less than the massMBH of the black hole. One is then

asked to drop the bound-violating object into a black hole of massMBH−E

or otherwise transform it into a black hole of mass MBH . For arguments

which drop the object into a pre-existing black hole, one typicallyd (though

not always) assumes E ≪ MBH .

dSee, e.g., the weakly gravitating case described in Ref. 23.
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Let us suppose for the moment that E ≪ MBH . Then we may estimate

the emission rate of such ‘highly entropic objects’ from a black hole of mass

MBH by considering the free energy F = E − TS of our object at the

Hawking temperature TBH = (4πRBH)−1. We have

F = E − TBHS < E − A/4

4πRBH
= E −MBH/2 < 0. (7)

Thus, we again see that our object is likely to be emitted readily in Hawking

radiation. As a result, one may also expect significant radiation during the

formation of the black hole so that no violation of the 2nd law need occur.

And what if E and MBH are comparable? Then back-reaction will be

significant during the emission of one of our objects from the black hole

and reliable information cannot be obtained by considering an equilibrium

thermal ensemble at fixed temperature. In fact, we are now outside the

domain of validity of Hawking’s calculation15. However, Refs. 29,30 suggest

how an emission rate may be estimated in this regime. These works find

that the emission rate for a microstate is proportional to exp(∆SBH), where

∆SBH is the change in black hole entropy when the particle is emitted. Note

that this change is caused by the loss of energy by the black hole and is

typically negative. Following this conclusion allows us to proceed in much

the same way as in section 2.2: Forming a black hole from our object would

violate the second law only if S > SBH , but since ∆SBH > −SBH we have

∆Stotal = ∆SBH + S > 0 for the corresponding emission process. Thus,

Refs. 29,30 predict an exponentially large emission rate for our object. We

conclude that the combined process of collapse and emission would actually

result in a net increase in the total entropy.

3. The Observer Dependence of Entropy

In section 2 above we described loopholes in certain arguments4,5,6,23,10

which appeared to suggest that (1) and (2) might be required if the 2nd law

is to be satisfied in general processes involving black holes. In particular,

we argued that during the time it takes to insert an object violating (1)

into a black hole of the appropriate size, the black hole will in fact radiate

many similar objects. The result with then be a net production of entropy.

It turns out to be instructive to carry this analysis one step further.

Following Ref. 3, let us therefore consider a related thought experiment in

which we first place our black hole in a reflecting cavity (or, perhaps, in a

small anti-de Sitter space) and allow it to reach thermal equilibrium. Note

that in equilibrium the rate at which highly entropic objects are absorbed
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by the black hole exactly balances the emission rate. But what happens if

we now alter the state of the system by adding yet one more highly entropic

object, say, violating (1) and travelling inward toward the black hole?

To simplify the problem, we take the limit of a large black hole. We

may then describe the region near the horizon by Rindler space. Recall32

that an object crossing a Rindler horizon is associated with a corresponding

increase in the Bekenstein-Hawking entropy of this horizon by at least ∆S ≥
Eacc/T where Eacc (the energy of the object as measured by the accelerated

observer) is the Killing energy associated with the boost symmetry ξ (i.e.,

the Rindler time translation) and the associated temperature is given by

κ/2π where κ is the surface gravity of ξ. As usual, the normalization of ξ

cancels so that Eacc/T is independent of this choice. Thus, in this setting

the interesting highly entropic objects are those with entropy S > Eacc/T .

Might these lead to a failure of the 2nd law for the associated observers

when such an object falls across the horizon? Note that because uniformly

accelerated observers perceive the Minkowski vacuum as a state of thermal

equilibrium at temperature T 6= 0, this setting is analogous to the query

from the previous paragraph involving black holes.

We now proceed to analyze this situation following Ref. 3. Let us first

review the inertial description of this process, for which the state with no

objects present is the Minkowski vacuum |0M 〉. The presence of an object

is then described as an excitation of this vacuum. If there are n possible

microstates |1M ; i〉 (i ∈ {1, ..., n}) for one such object, then an object in an

undetermined microstate is described by the density matrix

ρM =
1

n

n
∑

i=1

|1M ; i〉〈1M ; i|. (8)

The entropy assigned to the object by the inertial observer is then as usual

SM = −TrρM ln ρM = lnn. (9)

Of course, the inertial observer can still access the object (and its en-

tropy) after the object crosses the horizon so that there is no possibility

of a 2nd law violation from the interital point of view. Thus, the interest-

ing question is what entropy a Rindler observer assigns to this object. In

particular, we wish to compute the change in the amount of entropy acces-

sible to the Rindler observer when the object falls across the horizon. This

is just the difference between the entropies of the appropriate two states

given by the Rindler descriptions of ρM and |0M 〉. An important point is

that, since |0M 〉 is seen as a thermal state, it already carries a non-zero
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entropy that must be subtracted. Similarly Eacc = δE is the corresponding

difference in Killing energies. We will work in the approximation where

gravitational back reaction is neglected and, in particular, in which the

horizon is unchanged by the passage of our object.

Following Ref. 3, let us consider then the thermal density matrix ρR0

which results from tracing the Minkowski vacuum, |0M 〉〈0M |, over the in-

visiblee Rindler wedge:

ρR0 = Trinvisible|0M 〉〈0M |. (10)

This describes all information that the Rindler observer can access in the

Minkowski vacuum state. We wish to compare ρR0 with another density

matrix ρR1 which provides the Rindler description of the state ρM above:

ρR1 = TrinvisibleρM = Trinvisible
1

n

n
∑

i=1

|1M ; i〉〈1M ; i|. (11)

We would like to compute the difference in energy

δE = Tr[H(ρR1 − ρR0)], (12)

and in entropy

δS = −Tr[ρR1 ln ρR1 − ρR0 ln ρR0], (13)

where H is the Hamiltonian of the system and, in both cases, the sign has

been chosen so that the change is positive when ρR1 has the greater value

of energy or entropy.

Now, the entropy of each state separately is well known to be

divergent33. However, Ref. 3 points out that the change δS will still be

well-defined. In particular, suppose the object has some moderately well-

defined energy Einertial as described by the inertial observer and where the

object is well localized. Then the energy measured by the Rindler observer

will also be reasonably well-defined and the difference ρR1 ln ρR1−ρR0 ln ρR0

will have negligibly small diagonal entries at high energy. Thus, the above

trace will exist. In other words, we may compute δS by first imposing a cut-

off Λ, computing the entropy (S0, S1) and energy (E0, E1) of the two states

(ρR0, ρR1) separately, subtracting the results, and removing the cutoff.

Now, the case which is most interesting for the second law is where

lnn ≫ Eacc/T so that the presumed violation of the second law is very

eThe terms ”visible” and ”invisible” Rindler wedge will always be used in the context
of what is in causal contact with our chosen Rindler observer. Of course, the entire
spacetime is visible to the inertial observer.
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large. Note that in this regime the expected number of similar objects in

the thermal ensemble ρR0 is already large; in particular, for Eacc ≫ T it is

of order ne−Eacc/T . The physical insight of Ref. 3 is that, in such a case, the

difference between ρR1 and ρR0 is roughly that of adding onef object to a

collection of ne−Eacc/T similar objects. Thus, one should be able to describe

δρ = ρR1 − ρR0 as a small perturbation. One may therefore approximate

δS through a first-order Taylor expansion around ρR0:

δS ≈ −Tr

[

δρ
δ(ρ ln ρ)

δρ

∣

∣

∣

ρ=ρR0

]

= −Tr[δρ(1 + ln ρR0)] = −Tr[δρ ln ρR0],

(14)

where in the last step we use the fact that TrρR1 = TrρR0. Now recall that

the initial density matrix is thermal, ρR0 = e−H/T /(Tre−H/T ). Thus, we

have

δS ≈ −Tr[δρ(−H/T )] =
Tr[H(ρR1 − ρR0)]

T
=

δE

T
, (15)

where we have again used Tr(δρ) = 0. As noted in Ref. 3, this key result

is independent of any cut-off.

The above result can also be understood on the basis of classical ther-

modynamic reasoning. The initial configuration ρR0 represents a thermal

equilibrium. We wish to calculate the change in entropy during a process

which increases the energy by an amount δE. Whatever the nature of the

object that we add, this cannot increase the entropy by more than it would

have increased had we added this energy as heat. Since we consider a small

change in the configuration, the first law yields

δS ≤ δSmax =
δE

T
. (16)

We see that the process of adding a small object saturates this bound, at

least to first order in small quantities. If on the other hand we considered

finite changes, we would still expect the resulting δS to satisfy the bound

(16), though it would no longer be saturated.

At this point the reader may wish to see more carefully how the above

effect arises in an explicit example. In particular, the reader may question

the step in which δρ is treated as a small perturbation, which has so far

been argued only on physical grounds and without mathematical rigorg. As

fActually, a number δ which depends on Einertial and T but is, at least in simple cases,
independent of n; see, e.g., eq. (31) below and the surrounding discussion.
gOne can do a bit better: An argument (due to Mark Srednicki) for this result was given
in the appendix of Ref. 3 using a standard trick of statistical mechanics. However, this
trick has also not been rigorously justified.
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a result, it was recently claimed13 that careful consideration of this issue

would find large corrections over the analysis of Ref. 3 and invalidate the

result. To study possible corrections in detail, we now turn in section 3.1

to a concrete example in the context of free bosons where all quantities of

interest may be computed explicitly. We will find certain errors in Ref. 13,

and show instead that the linear approximation is indeed highly accurate.

3.1. An explicit example: Free Bosons

Consider then a system of n free boson fields. Our “objects” will be merely

the particles of such fields, with the understanding that the flavor of the

particle is treated as unobservable. That is, each 1-particle state will cor-

respond to a microstate of our object, but any two such states which dif-

fer only by change in the flavor of particles will correspond to the same

macrostate of our object. Thus, we wish to calculate the entropy of “ob-

jects” described, from the inertial point of view, by a single-particle density

matrix uniformly distributed over the different fields. The inertial observer

therefore assigns the object an entropy Sinertial = lnn. This example was

briefly considered in Ref. 3, though only under the assumption that δρ

could be treated perturbatively. An attempt was then made in Ref. 13

to analyze this key assumption in more detail by computing the result ex-

actly. The claim of that work was that discrepancies were found that were

sufficient to invalidate the conclusions of Ref. 3. However, we will repeat

this analysis below and, after correcting some elementary mistakes in the

equations of Ref. 13, we will in fact find support for the above observer-

dependence of entropy and in particular for the accuracy of the linearized

treatment used above.

Our notation and set up essentially follow that of Ref. 3. To begin, we

write the Minkowski vacuum for a system of n free bosonic fields in terms

of the Rindler Fock space. The result is34:

|0M 〉 =
n
∏

i=1

∏

j

(1− e−
ωj
T )

1

2 e−
ωj
2T a†

ijLa†

ijR |0Rindler〉. (17)

Here i labels the different fields, j labels a complete set of modes ujL, ujR

of positive Rindler frequency ωj for each field, and the labels R and L refer

respectively to the right and left Rindler wedges. Each mode uiL, ujR of the

ith field has an associated annihilation operator aiL, aiR which annihilates

the Rindler vacuum |0Rindler〉 and satisfies a standard commutation relation

of the form aa†−a†a = 1. The temperature T associated with the uniformly
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accelerating observer of interest is given by T = a
2π = κ

2π where a is the

observer’s proper acceleration and κ is the surface gravity of the boost

Killing field ξ normalized on our observer’s worldline.

Similarly, the annihilation operator aiM for a Minkowski mode uM of

the ith field can on general principles34 be expressed in the form:

aiM =
∑

j

[

(uM , ujR)(aijR − e−
ωj
2T a†ijL)

+ (uM , ujL)(aijL − e−
ωj
2T a†ijR)

]

, (18)

where (u, v) is the Klein-Gordon inner product. For simplicity we might

suppose that we choose a mode uM with no support on the invisible Rindler

wedge (say, the left one) and for which (uM , ujR) is well modelled by a

delta-function; we will return to the general case later in the subsection.

In particular, this simplification means that the Rindler frequency ω of

uM is reasonably well definedh. For such a case the above Bogoliubov

transformation becomes

aiM =
1

√

1− e−
ω
T

(aiR − e−
ω
2T a†iL), (19)

where the normalization of aiM is fixed by the commutation relation. Here

the Rindler operators refer to the one relevant pair of Rindler modes (and

i continues to label flavors of fields). Note that since the we consider a free

field, all other modes are decoupled and can be dropped from the problem.

Thus, we simplify the discussion below by considering only the part of the

Rindler Fock space associated with this pair of modes. Tracing over the

invisible wedge yields

ρR0 = (1− e−ω/T )ne−Nω/T , (20)

where N =
∑

i a
†
iRaiR is the operator associate with the total number of

particles without regard to flavor.

Since aiM acts in the Hilbert space describing only the ith field, it is con-

venient to describe the action of aiM on the vacuum |0iM 〉 for this particular
field alone. One sees that the properly normalized Minkowski one-particle

state is given in terms of an infinite number of Rindler excitations

a†iM |0iM 〉 = (1− e−
ω
T )

∑

k

e−
kω
2T

√
k + 1|k, k + 1〉i, (21)

hIf the object is well localized and located near our Rindler observer at some time, then
ω is also the frequency measured by the inertial observer.
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where |k, k + 1〉i denotes the state of field i having k Rindler excitations

in the right wedge and k + 1 Rindler excitations in the left wedge. Here

we consider only the factor in the Hilbert space that describes the modes

appearing in (19).

Thus, if we return to our Minkowski density matrix

ρM =
1

n

n
∑

i=1

|1M ; i〉〈1M ; i|

=
1

n

n
∑

i=1

(a†iM |0M 〉〈0M |aiM ), (22)

tracing over the invisible Rindler wedge will give the desired result. As in

Ref. 3, a short calculation gives

ρR1 =
1

n

∑

i

(1−e−ω/T )n
∑

k1,...,kn

e−(ω/T )
∑

j kj (eω/T−1)ki|k1 . . . kn〉〈k1 . . . kn|,

(23)

where again only the part of the state associated with the Rindler mode of

interest has been displayed. Here the notation |k1 . . . kn〉 denotes the state

with kj particles of type j in this mode of Rindler energy ω in the visible

Rindler wedge. One can write this result in terms of the matrix elements

between a complete set of modes as

ρR1 =
∑

~k

(ρR1)~k,~k|k1 . . . kn〉〈k1 . . . kn|, (24)

where

(ρR1)~k,~k =

[

(eω/T − 1)
1

n

n
∑

i=1

ki

]

(ρR0)~k,~k, . (25)

and ~k = {k1, . . . , kn}. As a result, one sees that

ρR1 =
eω/T − 1

n
NρR0. (26)

This expression is the one given in Ref. 3. However, in Ref. 13
∑

i ki has

been replaced by ki in what appears to be a typographic mistake (as the

left hand side is clearly independent of the choice of any particular field i).

Note that ρR1 is diagonal in the standard basis. One can check explicitly

that ρR1 is properly normalized so that its trace is 1.

The change in the density matrix is thus δρ = ρR1 − ρR0. For non-

interacting particles, the Hamiltonian is H = ωN , so the average change in
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energy is

Eacc := δE = ωTr(Nδρ) =
ω

1− e−
ω
T
. (27)

Note that (27) requires no approximation that δρ is in any sense “small.”

As remarked in Ref. 3, this result is already of interest. Note that for

ω ≫ T and under the conditions of footnote (h), one finds δE = Einertial ≈
ω. On the other hand, for ω ≪ T the background of objects in the thermal

bath leads to an amplification reminiscent of the effect of stimulated emis-

sion. In particular, for ω ≪ T we have added (on average) far more than

one object (in fact, 1
1−e−ω/T objects) to the thermal bath in constructing

ρR1 from ρR0.

However, the quantity of real interest is δS = Tr(δρR0 ln ρR0) −
Tr(δρR1 ln ρR1). Let us therefore calculate the entropies SR0 and SR1 of

ρR0 and ρR1. Here we follow the calculation of Ref, 13, but correcting the

mistake mentioned above. The entropy of ρR0 is

SR0 = −TrρR0 ln ρR0 = n

(

ω/T

eω/T − 1
− ln(1 − e−ω/T )

)

, (28)

since ρR0 is just a thermal ensemble of n Harmonic oscillators. On the

other hand, we have

SR1 = −Tr ρR1 ln ρR1

= Tr

[

ρR1

(

ln
n

(eω/T − 1)(1− e−ω/T )n
+

ω

T
N − lnN

)]

= SR0 + ln
n

eω/T − 1
+

ω/T

1− e−ω/T

− (1− e−ω/T )n
eω/T − 1

n

∞
∑

k1,...,kn=0

(

n
∑

i=1

ki)e
−(

∑n
j=1

kj)ω/T ln(

n
∑

m=1

km), (29)

where the final expression has been computed using (26). The last term in

the final expression is merely the last term in the second line written out in

complete detail. This allows the reader to compare with and correct Ref.
13.

This last term is difficult to evaluate explicitly, but one may estimate

the result based on the fact that it is the expectation value of − lnN in

the state ρR1. Now, the expectation value of N in the thermal state ρR0

under these conditions is 〈N〉R0 = n
eω/T−1

≫ 1. But ρR1 differs from ρR0

only by adding one object (using a Minkowski creation operator). Since a

Minkowski creation operator is a combination of a Rindler creation operator
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and a Rindler annihilation operator, the expectation value of N in ρR1 will

then lie in the range

n

eω/T − 1
− δ < 〈N〉R1 <

n

eω/T − 1
+ δ, (30)

where δ is an unknown function of ω/T which measures the number of

Rindler quanta created by the action of a Minkowski creation operator.

Based on eq. (27), it is natural to expect that δ contains a similar “stimu-

lated emission” effect, so that

δ =
α

1− e−ω/T
, (31)

with α independent of ω/T . We will find further evidence for this form

from numerical calculations below.

Furthermore, at large n the distribution of N will be sharply peaked

about the mean 〈N〉, while we may approximate

ln(〈N〉R0 + δ) ≈ ln〈N〉R0 +
δ

〈N〉R0
= ln

(

n

eω/T − 1

)

+ α
eω/T

n
. (32)

Thus, one should be able to replace −Tr[ρR1 lnN ] with ln
(

n
eω/T−1

)

up to

a term of order 1
ne−ω/T . Performing this substitution yields

SR1 − SR0 =
ω/T

eω/T − 1
+O(

1

ne−ω/T
). (33)

Note that (33) is indeed Eacc/T = 〈H〉R0−〈H〉R1

T to leading order, as pre-

dicted by the linearized calculation. In particular, for large n the Rindler

observer assigns a much smaller entropy than does the inertial observer.

Lest the reader have some remaining doubt as to the accuracy of this

approximation, some simple numerical calculations (performed using Math-

ematica) are included below. Figs. (1,2) each include two plots showing

numerical computations of the error term ∆ = SR1 − SR0 −Eacc/T , which

gives the discrepancy between the exact result and the linearized approx-

imation. These computations are done by truncating the infinite sum in

(29) at a fixed total number (N) of objects. In Figs. (1,2), this “trunca-

tion level” was taken to be N = 250. Fig. (3) shows the result of varying

this truncation level and indicates that, for the parameters relevant to Figs.

(1,2), the value of ∆ has indeed stabilized by the time one reaches N = 250.

On the left side of Fig. (1), ∆ has been plotted against the number of

objects n for the case ω/T = 2. One can see that it rapidly approaches

zero from below, indicating not only that δS = Eacc/T in the limit n → ∞,
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but also that Eacc/T provides an upper bound on δS as is required for

more general preservation of the second law. On the right in Fig. (1), an

attempt has been made to gain better control over this residual error ∆.

Since from (32) one expects the error to scale with 1
ne−ω/T , we have plotted

the ratio of ∆ to this factor; i.e., the product ∆ne−ω/T . This product

does indeed appear to approach a constant in Fig. (1). In particular, it

appears to approach the value −1/2, corresponding to α = +1/2 in (31).

For comparison, Fig. (2) shows the corresponding plot for ω/T = 4 which

shows similar results (and again suggests α = 1/2).

200 400 600 800 1000
n

-0.5

-0.4

-0.3

-0.2

-0.1

D

200 400 600 800 1000
n

-0.495

-0.505

-0.51

D n expH-Ω�TL

Figure 1. ω/T = 2. On the left we plot ∆ vs. the number of fields n up to n = 1000,
so that ne−ω/T ranges up to roughly 135. The result appears to converge to zero from
below. On the right, ∆ has been scaled by ne−ω/T . The product appears to converge
to −1/2, further supporting the claim that ∆ is O([ne−ω/T ]−1).

200 400 600 800 1000
n
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-0.3

-0.2

-0.1
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200 400 600 800 1000
n

-0.495

-0.505

-0.51

D n expH-Ω�TL

Figure 2. ω/T = 4. On the left we plot ∆ vs. the number of fields n up to n = 1000,
so that ne−ω/T ranges up to roughly 18. The result appears to converge to zero from
below. On the right, ∆ has been scaled by ne−ω/T . The product appears to converge
to −1/2, further supporting the claim that ∆ is O([ne−ω/T ]−1).
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Figure 3. The accuracy of truncating the sum in (29) at a finite level is illustrated by
plotting ∆ against a range of truncation levels. The figure on the right shows an expanded
view of the region between truncation levels 200 and 250. Note that a truncation level
of 250 was used to generate Figs. (1) and (2).

4. Discussion

We have reviewed recent results pointing out loopholes in arguments which

had appeared to indicate that novel entropy bounds of the rough form of

Eqs. (1) or (2) were required for consistency of the generalized second law

of thermodynamics. Several mechanisms were identified that can protect

the second law without (1) or (2). The primary such mechanisms are A) the

high probability that a macrostate associated with a large entropy S will

be produced by thermal fluctuations, and thus in Hawking radiation and

B) the realization that observers remaining outside a black hole associate a

different (and, at least in interesting cases, smaller) flux of entropy across

the horizon with a given physical process than do observers who themselves

cross the horizon during the process. In particular, this second mechanism

was explored using both analytic and numerical techniques in a simple toy

model. We note that similar effects have been reported35 for calculations

involving quantum teleportation experiments in non-inertial frames. Our

observations are also in accord with general remarks36,37 that, in analogy

with energy, entropy should be a subtle concept in General Relativity.

We have concentrated here on this new observer-dependence in the con-

cept of entropy. It is tempting to speculate that this observation will have

further interesting implications for the thermodynamics of black holes. For

example, the point here that the two classes of observers assign different

values to the entropy flux across the horizon seems to be in tune with the

point of view (see, e.g., Refs. 38,39,40,41,42) that the Bekenstein-Hawking en-

tropy of a black hole does not count the number of black hole microstates,

but rather refers to some property of these states relative to observers who
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remain outside the black hole. Perhaps the observations above will play

some role in fleshing out this point of view?

In contrast, suppose that one remains a believer in, say, the Covariant

Entropy Bound8, which purports to bound the flux of entropy across a null

surface. Since we have seen that this flux can depend on the choice of

an observer, one may ask if this bound should apply to the entropy flux

described by all observers, or only to one particular class of observers. We

look forward to discussions of these, and other such points, in the future.
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