Skip to main content
Log in

Three-body potential for simulating bond swaps in molecular dynamics

  • Tips and Tricks
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Novel soft matter materials join the resistance of a permanent mesh of strong inter-particle bonds with the self-healing and restructuring properties allowed by bond-swapping processes. Theoretical and numerical studies of the dynamics of coarse-grained models of covalent adaptable networks and vitrimers require effective algorithms for modelling the corresponding evolution of the network topology. Here I propose a simple trick for performing molecular dynamics simulations of bond-swapping network systems with particle-level description. The method is based on the addition of a computationally non-expensive three-body repulsive potential that encodes for the single-bond per particle condition and establishes a flat potential energy surface for the bond swap.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Damien Montarnal, Mathieu Capelot, François Tournilhac, Ludwik Leibler, Science 334, 965 (2011)

    Article  Google Scholar 

  2. Mathieu Capelot, Miriam M. Unterlass, François Tournilhac, Ludwik Leibler, ACS Macro Lett. 1, 789 (2012)

    Article  Google Scholar 

  3. Yi-Xuan Lu, François Tournilhac, Ludwik Leibler, Zhibin Guan, J. Am. Chem. Soc. 134, 8424 (2012)

    Article  Google Scholar 

  4. Frank Snijkers, Rossana Pasquino, Alfonso Maffezzoli, Soft Matter 13, 258 (2017)

    Article  Google Scholar 

  5. Frank Smallenburg, Ludwik Leibler, Francesco Sciortino, Phys. Rev. Lett. 111, 188002 (2013)

    Article  Google Scholar 

  6. Guohua Deng, Chuanmei Tang, Fuya Li, Huanfeng Jiang, Yongming Chen, Macromolecules 43, 1191 (2010)

    Article  Google Scholar 

  7. Keiichi Imato, Masamichi Nishihara, Takeshi Kanehara, Yoshifumi Amamoto, Atsushi Takahara, Hideyuki Otsuka, Angew. Chem. Int. Ed. 51, 1138 (2012)

    Article  Google Scholar 

  8. Christophe B. Minkenberg, Wouter E. Hendriksen, Feng Li, Eduardo Mendes, Rienk Eelkema, Jan H. van Esch, Chem. Commun. 48, 9837 (2012)

    Article  Google Scholar 

  9. C.A. Angell, Science 267, 1924 (1995)

    Article  ADS  Google Scholar 

  10. Nadrian C. Seeman, Nature 421, 427 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  11. Young Hoon Roh, Roanna C.H. Ruiz, Songming Peng, Jong Bum Lee, Dan Luo, Chem. Soc. Rev. 40, 5730 (2011)

    Article  Google Scholar 

  12. Flavio Romano, Francesco Sciortino, Phys. Rev. Lett. 114, 078104 (2015)

    Article  ADS  Google Scholar 

  13. Niranjan Srinivas, Thomas E. Ouldridge, Petr Sulc, Joseph M. Schaeffer, Bernard Yurke, Ard A. Louis, Jonathan P.K. Doye, Erik Winfree, Nucl. Acids Res. 41, 10641 (2013)

    Article  Google Scholar 

  14. Francisco J. Martinez-Veracoechea, Bortolo M. Mognetti, Stefano Angioletti-Uberti, Patrick Varilly, Daan Frenkel, Jure Dobnikar, Soft Matter 10, 3463 (2014)

    Article  ADS  Google Scholar 

  15. Francesca Bomboi et al., Nat. Commun. 7, 13191 (2016)

    Article  ADS  Google Scholar 

  16. Francesco Sciortino, Alfons Geiger, H. Eugene Stanley, Nature 354, 218 (1991)

    Article  ADS  Google Scholar 

  17. G. Kresse, J. Hafner, Phys. Rev. B 49, 14251 (1994)

    Article  ADS  Google Scholar 

  18. Mark Tuckerman, Kari Laasonen, Michiel Sprik, Michele Parrinello, J. Chem. Phys. 99, 5749 (1995)

    Article  Google Scholar 

  19. J.P. Wittmer, H. Xu, J. Baschnagel, Phys. Rev. E 91, 022107 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  20. Frank H. Stillinger, Thomas A. Weber, Phys. Rev. B 31, 5262 (1985)

    Article  ADS  Google Scholar 

  21. G.A. Vliegenthart, J.F.M. Lodge, H.N.W. Lekkerkerker, Physica A: Stat. Mech. Appl. 263, 378 (1999)

    Article  ADS  Google Scholar 

  22. Stefano Mossa, Francesco Sciortino, Piero Tartaglia, Emanuela Zaccarelli, Langmuir 20, 10756 (2004)

    Article  Google Scholar 

  23. Emanuela Del Gado, Annalisa Fierro, Lucilla de Arcangelis, Antonio Coniglio, Phys. Rev. E 69, 051103 (2004)

    Article  Google Scholar 

  24. Ivan Saika-Voivod, Emanuela Zaccarelli, Francesco Sciortino, Sergey V. Buldyrev, Piero Tartaglia, Phys. Rev. E 70, 041401 (2004)

    Article  ADS  Google Scholar 

  25. Nicoletta Gnan, Emanuela Zaccarelli, Francesco Sciortino, Nat. Commun. 5, 3267 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Sciortino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sciortino, F. Three-body potential for simulating bond swaps in molecular dynamics. Eur. Phys. J. E 40, 3 (2017). https://doi.org/10.1140/epje/i2017-11496-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2017-11496-5

Keywords

Navigation