Skip to main content
Log in

Temperature behavior of the Kohlrausch exponent for a series of vinylic polymers modelled by an all-atomistic approach

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

The Kohlrausch-Williams-Watt (KWW) function, or stretched exponential function, is usually employed to reveal the time dependence of the polymer backbone relaxation process, the so-called α relaxation, at different temperatures. In order to gain insight into polymer dynamics at temperatures higher than the glass transition temperature T g , the behavior of the Kohlrausch exponent, which is a component of the KWW function, is studied for a series of vinylic polymers, using an all-atomistic simulation approach. Our data show very good agreement with published experimental results and can be described by existing phenomenological models. The Kohlrausch exponent exhibits a linear dependence with temperature until it reaches a constant value of 0.44, at 1.26T g , revealing the existence of two regimes. These results suggest that, as the temperature increases, the dynamics progressively change until it reaches a plateau. The non-exponential character then describes subdiffusive motion characteristic of polymer melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Donth, The Glass Transition (Springer-Verlag, New York, 2001).

  2. A. Alegría, J. Colmenero, P.O. Mari, I.A. Campbell, Phys. Rev. E 59, 6888 (1999).

    Article  ADS  Google Scholar 

  3. R. Kohlrausch, Ann. Phys. Chem. 91, 179 (1874).

    Google Scholar 

  4. G. Williams, D.C. Watts, Trans. Faraday Soc. 66, 80 (1970).

    Article  Google Scholar 

  5. A. Soldera, N. Metatla, Phys. Rev. E 74, 061803 (2006).

    Article  ADS  Google Scholar 

  6. M.N. Berberan-Santos, E. Bodunov, B. Valeur, Chem. Phys. 315, 171 (2005).

    Article  ADS  Google Scholar 

  7. A. Jurlewicz, K. Weron, J. Non-Cryst. Solids 305, 112 (2002).

    Article  ADS  Google Scholar 

  8. X. Xia, P. Wolynes, Phys. Rev. Lett. 86, 5526 (2001).

    Article  ADS  Google Scholar 

  9. D. Apitz, P.M. Johansen, J. Appl. Phys. 97, 063507 (2005).

    Article  ADS  Google Scholar 

  10. J.C. Phillips, J. Non-Cryst. Solids 172, 98 (1994).

    Article  ADS  Google Scholar 

  11. J.C. Phillips, Rep. Prog. Phys. 59, 1133 (1996).

    Article  ADS  Google Scholar 

  12. K.L. Ngai, J. Phys.: Condens. Matter 12, 6437 (2000).

    Article  ADS  Google Scholar 

  13. K.L. Ngai, S. Capaccioli, J. Phys.: Condens. Matter 19, 200301 (2007).

    Article  Google Scholar 

  14. P.K. Dixon, S.R. Nagel, Phys. Rev. Lett. 61, 341 (1988).

    Article  ADS  Google Scholar 

  15. J. Rault, Physical Aging of Glasses: the VFT Approach, Materials science and technologies series (Nova Science Publishers, New York, 2009).

  16. J. Rault, J. Non-Cryst. Solids 271, 177 (2000).

    Article  ADS  Google Scholar 

  17. J. Rault, J. Non-Cryst. Solids 357, 339 (2011).

    Article  ADS  Google Scholar 

  18. K. Trachenko, M.T. Dove, Phys. Rev. B 70, 132202 (2004).

    Article  ADS  Google Scholar 

  19. S.F. Chekmarev, Phys. Rev, E 78, 066113 (2008).

    Article  ADS  Google Scholar 

  20. D. Boese, F. Kremer, Macromolecules 23, 829 (1990).

    Article  ADS  Google Scholar 

  21. J. Colmenero, A. Arbe, A. Alegria, M. Monkenbusch, D. Richter, J. Phys.: Condens. Matter 11, A363 (1999).

    Article  ADS  Google Scholar 

  22. W. Götze, in Liquides, Cristallisation et Transition Vitreuse/Liquids, Freezing and Glass Transition, edited by J. Hansen, D. Levesques, J. Zinn-Justin (Elsevier Science Publishers, 1991).

  23. G. Dicker, M.P. de Haas, D.M. de Leeuw, L.D.A. Siebbeles, Chem. Phys. Lett. 402, 370 (2005).

    Article  ADS  Google Scholar 

  24. A. Soldera, Y. Grohens, Polymer 45, 1307 (2004).

    Article  Google Scholar 

  25. A. Soldera, N. Metatla, Composites Part A: Appl. Sci. Manufact. 36, 521 (2005).

    Article  Google Scholar 

  26. S. Sastry, P. Debenedetti, F. Stillinger, Nature 393, 554 (1998).

    Article  ADS  Google Scholar 

  27. Y. Jin, R.H. Boyd, J. Chem. Phys. 108, 9912 (1998).

    Article  ADS  Google Scholar 

  28. W. Paul, G.D. Smith, Rep. Prog. Phys. 67, 1117 (2004).

    Article  ADS  Google Scholar 

  29. N. Metatla, A. Soldera, Macromolecules 40, 9680 (2007).

    Article  ADS  Google Scholar 

  30. S. Antoniadis, C. Samara, D. Theodorou, Macromolecules 31, 7944 (1998).

    Article  ADS  Google Scholar 

  31. A. Soldera, Y. Grohens, Macromolecules 35, 722 (2002).

    Article  ADS  Google Scholar 

  32. A. Soldera, Macromol. Symp. 133, 21 (1998).

    Article  Google Scholar 

  33. N. Metatla, A. Soldera, Mol. Simul. 32, 1187 (2006).

    Article  Google Scholar 

  34. N. Metatla, A. Soldera, Macromol. Theory Simul. 20, 266 (2011).

    Article  Google Scholar 

  35. R. Roe, J. Non-Cryst. Solids 235-237, 308 (1998).

    Article  ADS  Google Scholar 

  36. W. Smith, T.R. Forrester, J. Molec. Graph. 14, 136 (1996).

    Article  Google Scholar 

  37. J. Haile, Molecular Dynamics Simulation (John Wiley & Sons, New York, 1992).

  38. H.J.C. Berendsen, J.P.M. Postma, W.F. Van Gunsteren, A. Dinola, J.R. Haak, J. Chem. Phys. 81, 3684 (1984).

    Article  ADS  Google Scholar 

  39. M. Allen, D. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987).

  40. A. Soldera, Polymer 43, 4269 (2002).

    Article  Google Scholar 

  41. A. Soldera, N. Metatla, A. Beaudoin, S. Said, Y. Grohens, Polymer 51, 2106 (2010).

    Article  Google Scholar 

  42. W. Götze, L. Sjogren, Rep. Prog. Phys. 55, 241 (1992).

    Article  ADS  Google Scholar 

  43. J. Baschnagel, C. Bennemann, W. Paul, K. Binder, J. Phys.: Condens. Matter 12, 6365 (2000).

    Article  ADS  Google Scholar 

  44. L. Sperling, Introduction to Physical Polymer Science (John Wiley & Sons, New York, 1992).

  45. D. Cangialosi, A. Alegría, J. Colmenero, Europhys. Lett. 70, 614 (2005).

    Article  ADS  Google Scholar 

  46. B. Schiener, R. Böhmer, A. Loidl, R.V. Chamberlin, Science 274, 752 (1996).

    Article  ADS  Google Scholar 

  47. C. Bennemann, J. Baschnagel, W. Paul, K. Binder, Comput. Theor. Polym. Sci. 9, 217 (1999).

    Article  Google Scholar 

  48. A. Saiter, L. Delbreilh, H. Couderc, K. Arabeche, A. Schönhals, J.M. Saiter, Phys. Rev. E 81, 041805 (2010).

    Article  ADS  Google Scholar 

  49. F.W. Starr, J.F. Douglas, Phys. Rev. Lett. 106, 115702 (2011).

    Article  ADS  Google Scholar 

  50. C. Crauste-Thibierge, C. Brun, F. Ladieu, D. L’Hôte, G. Biroli, J.P. Bouchaud, J. Non-Cryst. Solids 357, 279 (2011).

    Article  ADS  Google Scholar 

  51. L. Berthier, G. Biroli, J.P. Bouchaud, L. Cipelletti, D. El Masri, D. L’Hôte, F. Ladieu, M. Pierno, Science 310, 1797 (2005).

    Article  ADS  Google Scholar 

  52. R.G. Palmer, D.L. Stein, E. Abrahams, P.W. Anderson, Phys. Rev. Lett. 53, 958 (1984).

    Article  ADS  Google Scholar 

  53. F.H. Stillinger, Science 267, 1935 (1995).

    Article  ADS  Google Scholar 

  54. F. Sciortino, J. Stat. Mech.: Theory Exp. 5, P050515 (2005).

    Google Scholar 

  55. A. Widmer-Cooper, P. Harrowell, Phys. Rev. Lett. 96, 185701 (2006).

    Article  ADS  Google Scholar 

  56. S.U. Boyd, R.H. Boyd, Macromolecules 34, 7219 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Soldera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palato, S., Metatla, N. & Soldera, A. Temperature behavior of the Kohlrausch exponent for a series of vinylic polymers modelled by an all-atomistic approach. Eur. Phys. J. E 34, 90 (2011). https://doi.org/10.1140/epje/i2011-11090-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2011-11090-y

Keywords

Navigation