Skip to main content
Log in

Complex protein patterns formation via salt-induced self-assembly and droplet evaporation

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Complex and elegant protein patterns in rosette, scallop, Chinese arrow and dendrite shapes at macroscopic length scales were prepared using salt-induced molecular self-assembly and droplet evaporation methods. The direct visual observation method using fluorescence microscopy was adopted to characterize the formation of these protein patterns in situ. Further studies from an optical interferometric profiler have shown that both rosette and scalloped protein patterns are hierarchical structures of concentric rings consisting of many prism-like columnar stacks, with each of the stack having thousands of protein molecules. Systematic experimental studies were performed to investigate the influence of salt concentration, protein concentration and evaporation rate on the morphologies of protein patterns. Upon the analysis of the representative fluorescent microscope images some theoretical explanations, based on Deegan’s theory on the “coffee ring” effect and the dynamic self-assembly mechanism, were proposed to illustrate the dynamics for the formation of different protein patterns. Two different evaporation modes have been found: edge-enhanced evaporation for low salt concentration solutions, i.e., the higher evaporation rate exists at the edge of the droplet; center-enhanced evaporation for high salt concentration solutions, in which faster evaporation occurs at the droplet center consisting of a lot of crystallized salts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Lopez, Adv. Mater. 15, 1679 (2003)

    Article  Google Scholar 

  2. J.H. Holtz, S.A. Asher, Nature 389, 829 (1997)

    Article  ADS  Google Scholar 

  3. Y. Huang, X. Duan, Q. Wei, C.M. Lieber, Science 291, 630 (2001)

    Article  ADS  Google Scholar 

  4. X. Gao, H. Matsui, Adv. Mater. 17, 2037 (2005)

    Article  Google Scholar 

  5. T.P. Bigioni, X.-M. Lin, T.T. Nguyen, E.I. Corwin, T.A. Witten, H.M. Jaeger, Nat. Mater. 5, 265 (2006)

    Article  ADS  Google Scholar 

  6. M.O. Blunt, C.P. Martin, M. Ahola-Tuomi, E. Pauliac-Vaujour, P. Sharp, P. Nativo, M. Brust, P.J. Moriarty, Nat. Nanotechnol. 2, 167 (2007)

    Article  ADS  Google Scholar 

  7. M. Byun, S.W. Hong, L. Zhu, Z. Lin, Langmuir 24, 3525 (2008)

    Article  Google Scholar 

  8. N.D. Denkov, O.D. Velev, P.A. Kralchevsky, I.B. Ivanov, Nature 361, 26 (1993)

    Article  ADS  Google Scholar 

  9. J. Huang, A.R. Tao, S. Connor, R. He, P. Yang, Nanolett. 6, 524 (2006)

    ADS  Google Scholar 

  10. B.A. Korgel, D. Fitzmaurice, Phys. Rev. Lett. 80, 3531 (1998)

    Article  ADS  Google Scholar 

  11. Z. Lin, S. Granick, J. Am. Chem. Soc. 127, 2816 (2005)

    Article  Google Scholar 

  12. S. Liu, T. Zhu, R. Hu, Z. Liu, Phys. Chem. Chem. Phys. 4, 6059 (2002)

    Article  Google Scholar 

  13. E. Rabani, D.R. Reichman, P.L. Geissler, L.E. Brus, Nature 426, 271 (2003)

    Article  ADS  Google Scholar 

  14. M. Rycenga, P.H.C. Camargo, Y. Xia, Soft Matter 5, 1129 (2009)

    Article  Google Scholar 

  15. E.V. Shevchenko, D.V. Talapin, N.A. Kotov, S. O’Brien, C.B. Murray, Nature 439, 55 (2006)

    Article  ADS  Google Scholar 

  16. J.S. Beck et al., J. Am. Chem. Soc. 114, 10834 (1992)

    Article  Google Scholar 

  17. B.A. Grzybowski, C.E. Wilmer, J. Kim, K.P. Browne, K.J.M. Bishop, Soft Matter 5, 1120 (2009)

    Google Scholar 

  18. J.D. Hartgerink, E. Beniash, S.I. Stupp, Science 294, 1684 (2001)

    Article  ADS  Google Scholar 

  19. R. Klajn, K.J.M. Bishop, B.A. Grzybowski, Proc. Natl. Acad. Sci. U.S.A. 104, 10305 (2007)

    Article  ADS  Google Scholar 

  20. A. Marsh, M. Silvestri, J.-M. Lehn, Chem. Commun. 13, 1527 (1996)

    Article  Google Scholar 

  21. S.Y. Park, A.K.R. Lytton-Jean, B. Lee, S. Weigand, G.C. Schatz, C.A. Mirkin, Nature 451, 553 (2008)

    Article  ADS  Google Scholar 

  22. Y. Wu, G. Cheng, K. Katsov, S.W. Sides, J. Wang, J. Tang, G.H. Fredrickson, M. Moskovits, G.D. Stucky, Nat. Mater. 3, 816 (2004)

    Article  ADS  Google Scholar 

  23. W. Wang, M.H. Hecht, Proc. Natl. Acad. Sci. U.S.A. 99, 2760 (2002)

    Article  ADS  Google Scholar 

  24. G.A. Silva, C. Czeisler, K.L. Niece, E. Beniash, D.A. Harrington, J.A. Kessler, S.I. Stupp, Science 303, 1352 (2004)

    Article  ADS  Google Scholar 

  25. E.I. Agorogiannis, G.I. Agorogiannis, A. Papadimitriou, G.M. Hadjigeorgiou, Neuropath. Appl. Neuro. 30, 215 (2004)

    Article  Google Scholar 

  26. T. Yakhno, J. Colloid Interface Sci. 318, 225 (2008)

    Article  Google Scholar 

  27. V.N. Shabalin, S.N. Shatokhina, Morphology of Biological Fluids (Khrisostom, Moscow, 2001) p. 304

  28. E. Rapis, J. Tech. Phys. 72, 139 (2002)

    Google Scholar 

  29. T. Yakhno, A. Sanin, V. Yakhno, A. Pelyushenko, N.A. Egorova, I.G. Terentiev, S.V. Smetanina, O.V. Korochkina, E.V. Yashukova, IEEE EMB 24, 96 (2005)

    Google Scholar 

  30. R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Nature 389, 827 (1997)

    Article  ADS  Google Scholar 

  31. R.D. Deegan, Phys. Rev. E 61, 475 (2000)

    Article  ADS  Google Scholar 

  32. S. Maheshwari, L. Zhang, Y. Zhu, H.-C. Chang, Phys. Rev. Lett. 100, 044503 (2008)

    Article  ADS  Google Scholar 

  33. M. Fialkowski, K.J.M. Bishop, R. Klajn, S.K. Smoukov, C.J. Campbell, B.A. Grzybowski, J. Phys. Chem. B 110, 2482 (2006)

    Article  Google Scholar 

  34. B.A. Grzybowski, C.J. Campbell, Chem. Eng. Sci. 59, 1667 (2004)

    Article  Google Scholar 

  35. M.L. Ferrer, R. Duchowicz, B. Carrasco, J. Garcia de la Torre, A.U. Acuna, Biophys. J. 80, 2422 (2001)

    Article  Google Scholar 

  36. T. Wei, S. Kaewtathip, K. Shing, J. Phys. Chem. C 113, 2053 (2009)

    Article  Google Scholar 

  37. J.L. Trompette, M. Meireles, J. Colloid Interface Sci. 263, 522 (2003)

    Article  Google Scholar 

  38. L. Pauchard, F. Parisse, C. Allain, Phys. Rev. E 59, 3737 (1999)

    Article  ADS  Google Scholar 

  39. E.J.W. Verwey, J.T. Overbeek, Theory of the Stability of Lyophobic Colloids (Dover Publications, New York, 1948)

  40. B.J. Fischer, Langmuir 18, 60 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Electronic supplementary material

This is the supplementary material.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, G., J. Mohamed, G. Complex protein patterns formation via salt-induced self-assembly and droplet evaporation. Eur. Phys. J. E 33, 19–26 (2010). https://doi.org/10.1140/epje/i2010-10649-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2010-10649-4

Keywords

Navigation