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Abstract

Biological molecules can form hydrogen bonds between nearby residues,
leading to helical secondary structures. The associated reduction of con-
figurational entropy leads to a temperature dependence of this effect: the
helix-coil transition. Since the formation of helices implies a dramatic
shortening of the polymer dimensions, an externally imposed end-to-end
distance R affects the equilibrium helical fraction of the polymer and the
resulting force-extension curves show anomalous plateau regimes. In this
article, we investigate the behaviour of a crosslinked network of such he-
licogenic molecules, particularly focusing on the coupling of the (average)
helical content present in a network to the externally imposed strain. We
show that both elongation and compression can lead to an increase in
helical domains under appropriate conditions.

PACS numbers:
78.20.Ek Optical properties of bulk materials and thin films: optical activity
83.80.VaElastomeric polymers
87.15.La Biomolecules: structure and physical properties: mechanical properties

1 Introduction

Recent advances in experimental techniques allow to perform single molecule ex-
periments on polymer chains. Typical experiments, for example with an atomic
force microscope [1, 2, 3, 4], reveal a characteristic force-extension curve of
a molecule. However, theoretical understanding is often limited, if not poor,
due to the complicated nature of interactions between individual parts of the
molecule: the force-extension behaviour strongly depends on the microscopic
configurations of the polymer, which, for complex biological molecules can ex-
hibit a very rich energy landscape with respect to configurational coordinates.
In this case, one expects a strong dependence on the actual pathways of unfold-
ing and folding respectively. Furthermore, the experimental manipulation might
influence the dynamics of the molecule in this energy landscape such that the
ordinary equilibrium statistical mechanics breaks down and the system behaves
non-ergodically.

However, certain homopolypeptides form long strands of helical segments of
regular α-helices under appropriate conditions (see fig. 1), hence the folding
pathways are very simple in this case: on a coarse grained level, the internal

1

http://arxiv.org/abs/cond-mat/0207162v2


hydrogen bonds

1 nm

hydrogen bonds

1 nm

Figure 1: An α-helix of a polymer, showing in a schematic way the van der
Waals radii on the left, the backbone in the center and the hydrogen bonds
between residues on the right, after [12].

states of these molecules are described according to the Zimm-Bragg model
[5]: it assumes that each segment along the polymer backbone has access to
merely two states, a random coil-like, unbound state and a helical state, where
the particular residue forms a hydrogen bond with specific other residues at a
certain distance along the backbone. The state of the polymer can therefore
be described by a simple sequence {hhcchchc . . .}, where c and h stand for the
coil or helical state of each listed segment. The interactions come into play by
the use of an appropriate Hamiltonian, which can be of arbitrary sophistication,
for example taking into account the fact that segments can only form a H-bond
with, for instance, their fourth neighbours [6, 7, 8]. This allows to compute key
properties of a molecule, e.g. the average helical fraction in a chain, by applying
standard methods of statistical mechanics. Experimentally, one can determine
the fraction of monomers in a helical state by measuring the optical activity in
a solution of helix-forming chains. Since, due to the coherent ordering, helical
domains rotate the polarisation of light much more strongly than the individual
chiral monomers in the coil state, the measure of optical activity gives a direct
indication of the fraction of monomers in the helical state [9, 10, 11].

This approach can be extended to deal with the case where the end-to-end
distance R is constrained externally. Recently, two different groups [13, 14,
15] have independently calculated the effects of such a constraint on the force
and the helical fraction, revealing large plateaus in the force-extension curve
and the formation of helical domains upon stretching. In contrast to the end-
to-end distance, which can be controlled experimentally, the helical fraction
cannot be determined for a single molecule. On the other hand, as mentioned
above, the average helical fraction of solutions is perfectly accessible, whereas
now the end-to-end distance of individual molecules is left uncontrolled. In
order to determine the relationship between the helical fraction and the end-
to-end distance, one needs to be able to control the end-to-end distance and to
simultaneously measure the helical content.

We show that a network made of helix-forming polymer molecules can pro-
vide a system which fulfills both requirements: a macroscopic deformation is
experimentally easy to impose and affects the end-to-end distance of network
strands. At the same time, the optical activity can be monitored, provided the
sample is sufficiently transparent.

However, there is a price to pay: random polymer networks are very complex
and poorly understood systems: topological constraints alter the statistics due
to the fact that the end-points of strands are crosslinked to each other and dif-
ferent chain segments cannot intersect. The crosslinked network remembers its
history: its properties depend on the conditions at the moment of its formation.
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Although any network theory faces numerous difficulties, the most simple
approach of the phantom chain network is frequently and successfully used. In
this model, the chains are assumed to interact at their endpoints only, i.e. at the
crosslinks. The model neglects the interaction along the backbone, and therefore
assumes the chains to be transparent to each other and free to intersect. Despite
its simplicity, the model reproduces many aspects of the experimental data [16].

In this article, we unite two approaches, the statistical mechanics of a single
helix-forming molecule and a basic network theory. We base our investigations
on the ideas by Buhot and Halperin [13, 14] for the response of a single helix-
forming molecule to an externally imposed end-to-end extension and on the
phantom chain network approach to therefrom calculate the network properties.

Our approach not only provides a useful extension of the single chain the-
ory, but also offers a way to control the helical content in the network. By
deforming rubber or gel, one indirectly affects the end-to-end distances of the
polymer strands. As they are stretched or compressed, the average helical frac-
tion changes. Hence, in an optically transparent gel network, one can determine
the helical fraction by measuring the optical activity (as in the case of a solu-
tion [9, 10, 11]), and moreover by imposing a macroscopic deformation one can
identify the coupling between mechanical and optical responses, and thus draw
conclusions about the effect of deformation on the helical fraction.

The article is organised as follows: in section 2, we review the classical Zimm-
Bragg model [5] and the solution method proposed by Buhot and Halperin [13].
In section 3, we briefly outline the phantom chain network approach to calculate
network properties on the basis of single molecule parameters. Section 4 links
the approaches of section 2 and 3 together and provides a network theory of
helix-forming molecules. Analytical and numerical results, and their discussion
follow in section 5.

2 Helix-coil transition models

Our aim is to describe a network of polymers which can fold into regular α-
helices, due to the formation of regularly spaced hydrogen bonds. This section
reviews the principles of the helix-coil transition, which are relevant to our
investigations. In the first part, no constraints on the end-to-end distance R
are assumed, whereas the second part investigates the effect of an externally
imposed end-to-end distance R.

Unconstrained end-to-end distance

There are three main consequences if the polymer (or part of it) is found in
a helical state: as the strand winds tightly around a central axis, the effective
polymer length is shortened dramatically by a factor γ, which is about 0.4 for
a typical polypeptide. Secondly, the hydrogen bonds prevent the monomers
from free rotation, hence increase the effective persistence length from about
ac = 1.8 nm in the coil state to ah = 200 nm in the helical state [6, 12].
Thirdly, as the number of available configurations has decreased, the gain ∆h
in potential energy per monomer by forming hydrogen bonds competes with the
associated loss of entropy ∆s. The net balance is established by writing down
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the free energy per monomer:

∆f = ∆h− T∆s, (1)

where T is the temperature. Since ∆h and ∆s are both negative on formation
of hydrogen bonds, we observe that at low temperature the formation of helices
is promoted, whereas at high temperatures the coil state is favoured. Later, we
shall have to distinguish two cases according to the sign of the net free energy
difference ∆f .

At this stage, the model is far from being exhaustive: monomers located at
the ends of helical domains suffer a great entropy reduction, but do not form
hydrogen bonds. Therefore each interfacial monomer between a coil and helical
domain has an increased free energy of

∆ft = −∆h, (2)

compared to a monomer in the helical state. This additional interfacial energy
contribution will suppress domain boundaries, and hence render the helix-coil
transition in this model more cooperative.

In the literature, one normally gives the above model parameters ∆f and
∆ft in terms of the Zimm-Bragg parameters s and σ [5], which are merely the
exponentials of these quantities:

s = exp(−β∆f)

σ = exp(−2β∆ft), (3)

where β = 1/(kBT ) with kB the Boltzmann constant. The factor 2 in eq. (3)
takes into account the fact that a helical domain has two interfaces with the coil
domains, hence two monomers suffer from loss of configurational states, while
they do not gain any additional energy from hydrogen bonds.

After identifying the microscopic states of the chain monomers {s1s2 . . . sN},
with si = c or h for the monomer i to be in a coil or helical state, respectively,
and their corresponding energetic contributions (see previous paragraph), rel-
evant quantities of interest, e.g. the average helical fraction of an ensemble of
polymers 〈χ〉, can be determined by the usual statistical-mechanical calculation
involving the partition function

Z =
∑

{s1s2...sN}

e−βF ({s1s2...sN}), (4)

where the sum is performed over all possible states of the variables si, i =
1, . . . , N . The total free energy F , depending on the states {si}, is the sum of
monomer free energy contributions (1) and (2). This procedure will also take a
mixing entropy into account: for a fixed number of coil and helical domains, the
sequence can be changed without energy change, provided that a helical domain
follows a coil domain and vice versa. Therefore, configurations of shorter domain
structure receive a higher statistical weight.

Experimentally, the average helical fraction in a solution of free polymers
is accessible by measuring the net optical rotation of polarised light. However,
experiments [9, 10, 11] deal with polymers in solution in different environmen-
tal conditions: a change in temperature or in another variable (pH value, salt
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Figure 2: An illustration of the diblock approximation: neglecting the entropy
arising from the reordering of short helical segments is equivalent to assuming
that helical and coil domains are separated in two coherent domains.

concentration) affects the free energies ∆f and ∆ft, hence by means of aver-
aging over states, the average helical fraction χ is altered. Qualitatively, one
can observe that at low temperature the optical rotation increases. Hence,
one can conclude that the segments condense into helical domains, whilst at
high temperature thermal fluctuations destroy the order and drive the segments
preferably into the coil state.

Buhot and Halperin [13] pursue the evaluation of the partition function (4)
with great care and demonstrate that a method merely based on a coarse-grained
free energy approach leads to the same result as the transfer matrix method,
the original treatment used by Zimm and Bragg [5], also used for example in
[12, 15].

In a first approximation, however, one can neglect the mixing entropy and
follow a very simple route. We assume in the following that the helical and
coil domains are artificially separated in just two blocks (cf. fig. 2). This
is equivalent to neglecting any form of cooperativity in the system: firstly,
the entropy arising from reordering the domains (maintaining the alternating
succession of coil and helical domains) is neglected, and secondly the interfacial
energy is similarly disregarded.

The detailed investigation by Buhot and Halperin [13] showed that this sim-
plification does not change the outcome qualitatively and only mildly quantita-
tively. Encouraged by their results, we apply a similar strategy here and treat
the strands in a diblock approximation. Since we now neglect the effect of re-
ordering the domains on the statistical weight, the system is microscopically
described by the fraction of helical segments χ (0 ≤ χ ≤ 1).

Fixed end-to-end distance

So far, the end-to-end distance R has been unconstrained. If, however, the chain
has to span an externally imposed distance R between its ends, the system can
only access a subset of configurations, in other words, it will suffer a reduction
of entropy. This argument applies both to the coil and helical part of the chain.
However, the cost of reducing the entropy is much higher for the coil part than
for the helical part since most of the configurational entropy in the helical part
has been reduced anyway by the tight interlocking (bonding) between adjacent
segments. Therefore, the helical segments become aligned between the exter-
nally fixed endpoints and the coil segments are tautened over the distance which
cannot be bridged by the helical segment.

The free energy of the whole chain, under these assumptions, reads as follows:
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Fch = χN∆f + 2∆ft + Fcoil, (5)

where N is the total number of monomers of length a. The free energy term
Fcoil describes a coil polymer with end-to-end distance R minus the amount of
distance which can be bridged by the helical part.

To describe this last term Fcoil, we use the Gaussian approximation of an
ideal random walk. This approximation breaks down at high extensions, but
the practical quantitative deficiencies are not great as the investigations in ref.
[13] have revealed. We therefore have

βFcoil =
3

2

1

(1− χ)Na2
(R− γaNχ)2 , (6)

taking into account the reduction in the contour length available for the coil
and also the reduction of the effective coil end-to-end distance.

Before moving on and introducing the basic techniques for a network the-
ory, we reproduce the findings for this model. The minimisation condition
∂Fch/∂χ = 0 allows us to determine the equilibrium value χ = χ(R). Subse-
quently, by substituting χ(R) back into eqs. (5) and (6), we can obtain the
effective free energy Fch(R). At this point, we have to distinguish several cases.

We first look at the case ∆f > 0. In the relaxed state at R = 0, there is
no spontaneous formation of helical segments, simply because it would require
a positive free energy ∆f > 0 per segment to create a helix.

By pulling the end points apart, i.e. by increasing R, one reduces the entropy
of the coil, hence raises the free energy of the whole system. At a certain
extension R1, the increase in the free energy due to stretching matches the free
energy required to transfer a monomer into a helical state. If the extension R
is increased beyond R1, then the molecule starts to form helical domains, at a
constant force (see fig. 3).

However, if the penalty for forming helical segments ∆f is high, above a
certain critical value ∆fcrit (to be given below), this effect does not occur and the
molecule stays in a coil state permanently, irrespective of the imposed stretching.

We are left to consider the case ∆f < 0. At the statistically optimal R = 0,
the molecule goes spontaneously into the helical state, driven by the net free
energy gain. The end-to-end distance R can be increased without a big energy
cost by aligning the helical segments. However, at an extension of R2 = γaN ,
the tight helical segments are torn apart and some stretched coil domains are
created.

It is best to summarise the results in diagrams (Figs. 3 and 4), supplemented
by analytical expressions. We show in two pairs of two diagrams the helical
fraction χ vs. end-to-end distance R and the force extension curve, obtained
from ∂Fch/∂R.

It is useful to define the following auxiliary quantities:

∆R = aγN

√

1− ∆f

∆fcrit
∆fcrit =

3

2
γ2kBT

We then can determine the three regime boundaries in the extension coor-
dinate R:

R1 = R2 −∆R R2 = γaN R3 = R2 +∆R (7)
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Figure 3: This pair of diagrams shows the helical fraction χ (a) and the force (b),
in units of kBT/a, vs. the end-to-end distance R. The parameters are as follows:
number of monomers N=1000, free energy of a helical state β∆f=0.1, factor
of shortening γ=0.4. The dashed line shows the purely Gaussian behaviour
of a free random walk. According to eqs. (7), R1 = 94.5a, R2 = 400a and
R3 = 705.5a.
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Figure 4: The analogous plot as in fig. 3, but with an attractive interaction
between helical monomers, meaning a negative free energy: β∆f = −0.2. All
other parameters are the same as in fig. 3. Again, the dashed line indicates
simple Gaussian behaviour of a model random walk.
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The function χ = χ(R) is defined in the obvious way (see Figs. 3 and 4).
For the force in response to the imposed extension R, one obtains the following
expressions for the two cases, i.e. for the repulsive (∆f > 0) and attractive
(∆f < 0) case respectively:

force|∆f>0 = kBT



















3
Na2R for 0 ≤ R < R1

3
Na2R1 for R1 ≤ R < R2

3
Na2R3 for R2 ≤ R < R3

3
Na2R for R ≥ R3

force|∆f<0 = kBT











0 for 0 ≤ R < R2

3
Na2R3 for R2 ≤ R < R3

3
Na2R for R ≥ R3

From these equations for the force, one obtains expressions for the free energy
F (R) by integrating over R. These expressions involve, besides some constants,
linear and quadratic terms in R.

The model is based on the Gaussian approximation, used to describe the
random walk part of the chain. It assumes that the end-to-end distance of
the coil part is much shorter than the coil’s contour length. Therefore, the
approximation breaks down at high extensions: the true force diverges [16],
however, the force derived using the Gaussian model remains finite (see figs.
3 and 4). This artefact of the simplified model will later be compensated by
the fact that, nevertheless, the Gaussian model correctly predicts a very low
probability of finding a chain at such large extensions. To illustrate this effect,
we refer to figs. 3 and 8: the abrupt surge in the force at R2 implies that the free
energy F (R) increases at a much higher rate for R ≥ R2, hence the probability
of finding a polymer with R ≥ R2 decays very rapidly. A more realistic model
with a divergent force and free energy would only increase this effect.

3 Network theory

The fact that the polymer chains cannot intersect each other, implies that topo-
logical constraints and entanglements play a crucial role and alter the statistics
significantly. However, a very simple theory can reproduce many basic experi-
mental findings: the phantom chain network approach [16].

This model assumes that the polymer strands actually do not interact along
their backbones, but only at their end points where they are linked to each
other. Hence, the strands are effectively transparent to each other and are
allowed to fluctuate freely, with only the end-to-end distance R constrained.
This assumption is not as naive as it might appear: there are deep physical
reasons why one can neglect self-interactions in a dense polymer system, and
why lateral (tube-like) constraints do not matter until a topological knot is tied
around the chain [16, 17].

Within the Gaussian model of a random walk, the probability distribution
of the end-to-end distance reads as usual [17]:

P (R) ∝ exp

(

− 3

2Na2
R

2

)

, (8)
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assuming that |R| ≪ aN , the chain contour length.
Accordingly, the free energy of a chain is quadratic in R for small extensions:

βF = −lnP (R) =
3

2Na2
R

2, (9)

which implies a simple Hookian behaviour in response to stretching.
The distinctive feature of a network consists in memorising the initial end-

to-end distance distribution of chains as they are crosslinked at their end-points.
In a simple network theory, one assumes that the polymers obey the equilibrium
melt statistics when they are crosslinked. Hence, the statistical distribution of
crosslinked network spans R obeys the Gaussian form (8). Since it turns out
that for the overwhelming number of chains the condition |R| ≪ aN is satisfied,
the quadratic form for the free energy per chain (9) is well justified and can be
used in the network calculation. This leads immediately to the average total
free energy per chain in a random network:

F =

∫

dR F (R) P (R). (10)

Any external manipulation only affects the term F (R) in eq. (10), whereas
the distribution P (R) is left unchanged, it is said to be topologically quenched.
For example, an affine macroscopic deformation λ of the whole body, which
can serve as a good representation of the microscopic affine deformation of the
network strands R, only enters in the free energy, but leaves the distribution
P (R) unchanged. The elastic energy therefore becomes:

Felast

(

λ
)

=

∫

dR F (λR) P (R),

with P (R) ≡ e−βF (R)

∫

dR e−βF (R)
. (11)

In general, the free energy F (R) does not need to be quadratic (9), leading to
non-Gaussian distribution P (R).

An analogous reasoning will lead to the average helical content 〈χ〉 of a
network, which gives the total fraction of monomers in a helical state. Under
the assumption that the end-to-end distance distribution at crosslinking obeys
the equilibrium distribution P (R) and is conserved in the crosslinked network,
an imposed deformation λ leaves the distribution P (R) unaffected, but does
enter χ(|R|). Thus, the dependence of the helical content χ on the deformation
λ reads:

〈χ〉(λ) =
∫

dR χ
(∣

∣λR
∣

∣

)

P (R). (12)

4 Network of helix-forming polymers

We now combine the theory for single molecules with the quenched averaging to
calculate network properties. We will mainly focus on the total helical content
described by eq. (12). Since the helical fraction χ depends on the end-to-end
distance R, we can expect that in a network, the average helical content 〈χ〉
would depend on the deformation λ, giving an opto-mechanical coupling.
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Figure 5: The elongation and compression η of chains depends on the polar angle
ϑ (cf. eq. (14)). The scaling factor η becomes unity if arctanϑ =

√

λ(λ+ 1).
Here, we have chosen λ = 3.

To evaluate the integral in eq. (12), note that all the functions, i.e. F (R)
and χ(R) uniquely depend on R, but are only analytically defined piecewise
(e.g. see eq. (17)) between the limits R = 0, R1, R2, R3 and Na (see appendix
A). On the other hand, any incompressible deformation λ, which we assume
here, acts differently on different strands: some strands are expanded, whereas
others are compressed, depending on the direction of the end-to-end vector R

of a given strand.
We simplify the problem further by looking at uniaxial deformations along

the z-axis only:

λ =





1/
√
λ 0 0

0 1/
√
λ 0

0 0 λ



 . (13)

The end-to-end distance of a strand which is initially aligned at an angle ϑ
with the z-axis is therefore scaled by the factor η:

R′ =
∣

∣λR
∣

∣ = ηR

with η(λ, ϑ) =

√

λ2 cos2 ϑ+
1

λ
sin2 ϑ. (14)

As a result, the uniaxial deformation, as in eq. (13), affects the end-to-end
distance R differently according to the angle ϑ between the initial end-to-end
distance R and the z-axis of the imposed deformation. For example, if λ > 1,
this is tantamount to an extension by a factor λ along the axis of deformation
(ϑ = 0) and to compression by 1/

√
λ perpendicular to the axis (ϑ = π/2), see

fig. 5.
Clearly, one can see in fig. 5 that at two polar angles, for which tanϑ =

√

λ(λ + 1), the end-to-end distance of the chains is not affected by the defor-
mation. In other words, the set of vectors R invariant under the deformation λ

lies on a cone, see fig. 6.
The boundaries between which the function χ

(∣

∣λR
∣

∣

)

= χ(ηR) is analytically
defined, are similarly scaled to R1/η, R2/η, or R3/η, respectively. For a specific
value η, one has to break up the radial R integration in

〈χ〉(λ) =
∫

dΩ

∫

[piecewise]

dR R2 χ(ηR) P (R) ≡
∫

dΩ I(η) (15)
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Figure 6: The locus of strands which are invariant under the uniaxial defor-
mation λ (13). The cone has an opening angle of ϑ = arctan

√

λ(λ+ 1). For
λ > 0, the arrows indicate the approximate deformation of chains.

not only at the values R = R1, R2 and R3, but also at the values R = R1/η,
R2/η and R3/η.

Depending on the value of η, the breakup values adopt a particular order
among themselves. At critical values

η1 =
R3

R2
η2 =

R2

R1
η3 =

R3

R1

some limits coincide, and as η crosses these values, the order of breakup limits
is changed. We refer to the appendix A for an explicit determination of regimes.

For any particular value of η, the R-integration can be carried out giving
analytical expressions in η involving Error functions. But for varying η, the
integration regimes change, hence also the integrals. Therefore, the function
I(η) selects among a set of functions I±i (η), depending on the value of η (see
appendix B).

〈χ〉(λ) =
∫

dϕ

∫

dϑ sin(ϑ) Iselect(η(λ, ϑ)),

where Iselect(η) selects the appropriate expression for I±i (η) depending on the
value of η.

In the last step, the integration over the two angles ϕ and ϑ is carried out: the
system is rotationally invariant, hence the integration over the azimuthal angle
ϕ is trivial. The integration over the polar angle ϑ is carried out numerically.

5 Results and discussion

We demonstrate the effect of network averaging by going through a particular
example. We choose the following parameters: N=1000 and γ=0.4, and first
examine the case of β∆f=0.1, that is when helix formation is unfavourable in
equilibrium. Note that, for convenience, we give all quantities in dimensionless
units, expressing lengths in units of the basic persistence length a.

On the one hand, the helical fraction χ of a single molecule with these
parameters is peaked around R2 = 400a and the flanks end at R1 = 94.5a and
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Figure 7: The probability density eq. (16), labelled by a triangle (left axis), and
the helical fraction, labelled by a square (right axis). The former is peaked at
about R = 30.8a, the latter at R = γaN = 400, leading to a very low helical
content in the network (see dotted line in fig. 9). The parameters are those of
fig. 3.

R3 = 705.5a (see fig. 3). On the other hand, the probability density distribution

P (R) = R2 exp(−βF (R)), (16)

which is valid for the single molecule statistics and also for the network calcu-
lation, is peaked at a value R∗ = 30.8a (see fig. 7). Therefore, the network
average 〈χ〉 for the undistorted network (λ = 1) will yield a very low helical
content, as there are only very few chains present where χ(R) 6= 0.

However, if a uniaxial extension, parametrised by λ (see eq. (13)) is applied,
then some chains are stretched and some are compressed (fig. 6). As we have
seen from eq. (16), most of the chains are clustered near the shell of radius
R∗. In pictorial terms, the uniaxial deformation now takes chains which are
both near this shell and close to the axis of the deformation (i.e. around the
poles of the R∗ shell) to a deformed state: the chains will be clustered around
two points on the axis at a distance λR∗ from the origin. As the parameter
λ becomes sufficiently large, the uniaxial deformation takes some increasing
population of chains into a region where the helical fraction χ(λR) becomes
nonzero.

Taking this reasoning to an extreme, we can think of large values for λ,
where actually the chains are stretched to such a degree that they are transferred
beyond the peak of χ(R) (cf. fig. 7), that is, λR∗ ≥ R2 ≡ γaN .

Moreover, the end-to-end distance of chains with R perpendicular to the
axis is scaled by the factor 1/

√
λ. Hence, for λ > 1, these chains are shrunken

and thus, in our example, taken to a region where the helical fraction χ(R) is
still zero.

On the other hand, if we consider a deformation with λ < 1, i.e. a compres-
sion along the z-axis with a simultaneous elongation in the plane perpendicular
to the z-axis, then the roles are interchanged: for an appropriate λ, chains with
R approximately of length R∗ perpendicular to the axis are deformed to such a
degree that the helical content χ(λR) becomes nonzero, whilst chains with R

approximately along the axis are taken to regions where χ(λR) = 0.
Therefore, in the example considered (figs. 3 and 7), compression and elon-

gation both lead to an increase in the helical content, the latter however only at
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Figure 8: The analogous plot to fig. 7, but now for much smaller β∆f = 0.005.
There is a sufficiently high overlap of the probability distribution function and
the helical fraction to generate a helical content in the network (see dashed line
in fig. 9). The inset shows the expanded region of the transition at R2.

very high compression rates, hardly achievable in practice. The averaged helical
content of this example is plotted in fig. 9 (dotted line).

Another choice of parameter values gives a completely different behaviour.
For an illustration of this, we refer the reader to fig. 8, which shows the be-
haviour of a chain with β∆f = 0.005, a much lower free energy penalty for
the spontaneous helix formation. Now, the peak of the probability distribution
is around R∗ = 159.2a, whereas the helical fraction reaches the maximum at
R = 400a. As these two function now show a much larger overlap, the average
helical content in a network is much bigger, and furthermore, it can be increased
by both compression and elongation, see the dashed line in fig. 9.

Note that the probability distribution in fig. 8 justifies the Gaussian approx-
imation used earlier in eq. (6): for extensions above R2, the free energy has an
increased slope, therefore, the probability distribution shows a fast decay. In
other words, chains at such high extensions correctly contribute very little to
the quenched averaging, eqs. (11) and (12).

Fig. 9 shows the different responses of the average helical content in a
network for various positive values of the free energy β∆f . For negative values
of the free energy, that is for polymers spontaneously folding into helices at
given conditions, fig. 10 gives an analogous set of results. Note that in the limit
β∆f → 0, both cases converge to a qualitatively similar curve, although our
model does not treat this case properly. In the limit of vanishing free energy
penalty, the two cases give a different behaviour for the helical fraction of one
single molecule. As β∆f → 0+, the helical fraction χ looks similar to 3a, where-
as for β∆f → 0−, χ resembles fig. 4a. This is the upshot of the fact that, in
our model, there is a discontinuous jump in the helical fraction as ∆f changes
sign.

Moreover, the results inferred for the case of a negative free energy β∆f
have to be taken with some caution: the network theory, outlined in section 3,
assumes that the network consists of random coils, allowing one to use Gaussian
statistics. However, for a negative free energy β∆f , the polymers spontaneously
form helical, semiflexible chains, which will obey different statistics than flexible
coil chains. Only for very long semiflexible chains, the Gaussian statistics are
again recovered.

To summarise, we have calculated the average helical content in a network
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Figure 9: The helical content in a network for different parameters. The free
energy β∆f takes the following values: 0.001 (solid line), 0.005 (dashed line),
0.01 (dot-dashed line), 0.05 (long-dashed line) and 0.1 (dotted line); the other
parameters (N = 1000, a = 1) are kept constant.
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Figure 10: The helical content in a network for different values of the free
energy: β∆f = −0.01 (solid line), −0.1 (dashed line), −1 (dot-dashed line),
and −5 (long-dashed line); the other parameters (N = 1000, a = 1) are kept
constant.
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based on helicogenic polymer molecules described by a simple coarse-grained
model. We found that a macroscopic deformation can have opposite effects on
the helical content of the network: in the case of positive free energy β∆f ,
i.e. the formation of helical bonds leads to an overall increase of free energy
(high temperature regime), both an elongation and a compression can increase
the overall helical content. The extent of this effect depends greatly on the
parameters chosen for the polymer molecules. In the case where the formation
of helical bonds is favoured by a free energy gain, the undeformed network
exhibits a maximal helical content, and any deformation, either compression or
elongation, decreases the helical content of the network.

We expect that these findings are relevant for investigations on biological
polymer networks by optical measurement, for example gelatin. In this material
however, the helices are formed by three strands which, on cooling, bind to each
other to act as effective crosslinks. Therefore, our model cannot be applied
straightforwardly. We have however demonstrated that microscopic effects of
macroscopic deformation can be observed in a network.
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A Regimes

The integration domains of the R-integral in eq. (15) are broken up in several
regimes. Here we show how these regimes are determined and the integration
carried out. We only investigate the R-integration, although we keep in mind
that the factor η can assume a range of values, namely between λ and 1/λ (cf.
eq. (14):

〈χ〉R(η) =
∫

[piecewise]

dR R2 χ(ηR) e−βF (R)

Note that the dependence on λ and ϑ is hidden inside in the variable η.
The comprehensive enumeration of all possible integrals is very lengthy, thus

we illustrate the general process by focusing on a particular example: we choose
the repulsive case (β∆f > 0) in the second η-regime with η1 < η < η2 (see
regime ii in fig. 3).

The functions χ(ηR) and e−βF (R) both can be expressed analytically only
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in piecewise regimes:

χ(ηR) =



















0 for 0 ≤ R < R1/η

1 + 1
∆R

(ηR−R2) for R1/η ≤ R < R2/η

1− 1
∆R

(ηR−R2) for R2/η ≤ R < R3/η

0 for R ≥ R3/η

(17)

βF (R) =



















3
2Na2R

2 for 0 ≤ R < R1

3
2Na2R

2
1 +

3R1

Na2 (R−R1) for R1 ≤ R < R2

3
2Na2R

2
3 +

3R3

Na2 (R−R3) for R2 ≤ R < R3

3
2Na2R

2 for R ≥ R3

(18)

B Integrals

The restrictions on the right hand side of the eqs. (18) give the integration limits
of the piecewise integrations. For our particular choice of η (η1 < η < η2), the
integration path can be most easily determined by looking at fig. 11, where a
typical integration path is highlighted together with the limits.
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Figure 11: The integration regimes, parameters as in figure 3: number of
monomers N=1000 of length a=1, net free energy difference for a monomer
to be in a helical state β∆f=0.1, factor of shortening γ=0.4. These parameters
imply: 1/η1=0.57, 1/η2=0.25 and 1/η3=0.14.

In this way, we are able to determine the appropriate limits of the integrals,
e.g:

I+21(η) =

∫

R1

η

0

dR R2 χ(ηR) exp(−βF (R))

I+22(η) =

∫ R1

R1

η

dR R2 χ(ηR) exp(−βF (R))

...

I+27(η) =

∫ ∞

R3

dR R2 χ(ηR) exp(−βF (R)) (19)
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We then put the piecewise integrations together again to obtain:

I+2 (η) =
7

∑

i=1

I+2i(η). (20)

Note that in the case of a net repulsive interaction (β∆f < 0), χ(ηR) is zero
for values R < R1 and R > R3. Therefore, the integrals in eqs. (19) vanish in
these regimes, and the sum in (20) reduces to three terms only.

For a different values of η > 1, the procedure is exactly the same, giving
I+1 (η), I+2 (η), etc. and analogously for values η < 1, we obtain I−2 (η), etc.

References

[1] S. B. Smith, L. Finzi and C. Bustamante, Science 258, 1122 (1992).

[2] M. Rief et al., Science 275, 1295 (1997).

[3] F. Oesterhelt, M. Rief, and H. E. Gaub, New J. Phys. 1, 6.1 (1999).

[4] M. Rief and H. Grubmuller, Chemphyschem 3, 255 (2002).

[5] B. H. Zimm and J. K. Bragg, J. Chem. Phys. 11, 526 (1959).

[6] D. Poland and H. A. Scheraga, Theory of helix-coil transitions in biopoly-

mers (Academic Press, New York, 1970).

[7] H. A. Saroff and J. E. Kiefer, Biopolymers 49, 425 (1999).

[8] V. A. Bloomfield, Am. J. Phys. 67, 1212 (1999).

[9] A. Teramoto, Prog. Polym. Sci. 26, 667 (2001).

[10] S. Yue, G. C. Berry, and M. M. Green, Macromolecules 29, 6175 (1996).

[11] P. Doty, J. A. Bradbury, and A. M. Holtzer, J. Am. Chem. Soc. 78, 947
(1956).

[12] A. Y. Grosberg and A. R. Khokhlov, Statistical physics of macromolecules

(AIP Press, New York, 1994).

[13] A. Buhot and A. Halperin, Macromolecules 35, 3238 (2002).

[14] A. Buhot and A. Halperin, Phys. Rev. Lett. 84, 2160 (2000).

[15] M. N. Tamashiro and P. Pincus, Phys. Rev. E 63, 021909 (2001).

[16] L. R. G. Treloar, The physics of rubber elasticity (Clarendon Press, Oxford,
1975).

[17] M. Doi and S. F. Edwards, Theory of Polymer Dynamics (Clarendon Press,
Oxford, 1986).

17


