Skip to main content
Log in

Stability and interatomic potentials for M-doped TiV alloys (M=H, He, C, O) by first-principles simulations

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

TiV alloy is an important candidate structural material of hydrogen storage and fusion reactor systems. It will be inevitably invaded by impurity atoms such as H, He, C, and O in service. The first-principles simulations were performed to study stability and interatomic potentials for M-doped TiV alloys (M=H, He, C, O). The results showed that He has a positive binding energy, while H, C, and O have negative ones, which means that H, C, and O are doped into TiV alloys more easily than He. For H, He, C, and O atoms, on the other hand, the tetrahedral sites have lower binding energy and smaller lattice distortion than the octahedral interstitial sites, so they can be embedded in the tetrahedral sites more stably. The modified embedded atom method potential was used for characterizing V–Ti interaction and Lennard-Jones potential for V–M and Ti–M interactions. All the potential parameters were determined according to the first-principles simulations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.G. Du, X.Y. Sun, G. Jiang, Eur. Phys. J. D 55, 111 (2009)

    Article  ADS  Google Scholar 

  2. T. Takahashi, Y. Minamino, H. Hirasawa, T. Ouchi, Mater. Trans. 55, 290 (2014)

    Article  Google Scholar 

  3. P.B. Zhang, J.J. Zhao, Y. Qin, B. Wen, Nucl. Instrum. Methods Phys. Res. Sect. B 269, 1735 (2011)

    Article  ADS  Google Scholar 

  4. J.M. Chen, S.Y. Qiu, L. Yang, Z.Y. Xu, Y. Deng, Y. Xu, J. Nucl. Mater. 302, 135 (2002)

    Article  ADS  Google Scholar 

  5. K. Edalati, H. Shao, H. Emami, H. Iwaoka, E. Akiba, Z. Horita, Int. J. Hydrogen Energy 41, 8917 (2016)

    Article  Google Scholar 

  6. M. Balcerzak, Int. J. Hydrogen Energy 42, 23698 (2017)

    Article  Google Scholar 

  7. J.R. DiStefano, J.H. DeVan, J. Nucl. Mater. 249, 150 (1997)

    Article  ADS  Google Scholar 

  8. J. Hua, Y.L. Liu, H.S. Li, M.W. Zhao, X.D. Liu, Int. J. Mod. Phys. B 28, 13 (2014)

    Article  Google Scholar 

  9. J. Hua, Y.L. Liu, H.S. Li, M.W. Zhao, X.D. Liu, Comput. Condens. Matter 3, 1 (2015)

    Article  Google Scholar 

  10. J. Hua, Y.L. Liu, H.S. Li, M.W. Zhao, X.D. Liu, Chin. Phys. B 25, 8 (2016)

    Google Scholar 

  11. P.B. Zhang, J.J. Zhao, Y. Qin, B. Wen, J. Nucl. Mater. 413, 90 (2011)

    Article  ADS  Google Scholar 

  12. C.X. Li, H.B. Luo, Q.M. Hu, R. Yang, F.X. Yin, O. Umezawa, L. Vitos, Solid State Commun. 159, 70 (2013)

    Article  ADS  Google Scholar 

  13. P.B. Zhang, J.J. Zhao, B. Wen, J. Phys. Condens. Matter 24, 11 (2012)

    Google Scholar 

  14. V.M. Chernov, V.A. Romanov, A.O. Krutskikh, J. Nucl. Mater. 271, 274 (1999)

    Article  ADS  Google Scholar 

  15. X.Q. Li, J.J. Zhao, Comput. Mater. Sci. 53, 101 (2012)

    Article  Google Scholar 

  16. J.P. Perdew, K. Burke, Y. Wang, Phys. Rev. B 54, 16533 (1996)

    Article  ADS  Google Scholar 

  17. P. Hohenberg, W. Kohn, Phys. Rev. B 136, B864 (1964)

    Article  ADS  Google Scholar 

  18. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Article  ADS  Google Scholar 

  19. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  20. M.S. Daw, M.I. Baskes, Phys. Rev. B 29, 6443 (1984)

    Article  ADS  Google Scholar 

  21. M.I. Baskes, Phys. Rev. B 46, 2727 (1992)

    Article  ADS  Google Scholar 

  22. B.J. Lee, M.I. Baskes, Phys. Rev. B 62, 8564 (2000)

    Article  ADS  Google Scholar 

  23. B.J. Lee, M.I. Baskes, H. Kim, Y.K. Cho, Phys. Rev. B 64, 11 (2001)

    Google Scholar 

  24. B.J. Lee, J.H. Shim, M.I. Baskes, Phys. Rev. B 68, 11 (2003)

    Google Scholar 

  25. X.B. Duan, B.L. He, M.M. Guo, Z.T. Liu, Y.W. Wen, B. Shan, Comput. Mater. Sci. 150, 418 (2018)

    Article  Google Scholar 

  26. Y.M. Kim, B.J. Lee, M.I. Baskes, Phys. Rev. B 74, 12 (2006)

    Google Scholar 

  27. H.K. Kim, W.S. Jung, B.J. Lee, Acta Mater. 57, 3140 (2009)

    Article  Google Scholar 

  28. B.J. Lee, W.S. Ko, H.K. Kim, E.H. Kim, Calphad 34, 510 (2010)

    Article  Google Scholar 

  29. J.S. Kim, D. Seol, J. Ji, H.S. Jang, Y. Kim, B.J. Lee, Calphad 59, 131 (2017)

    Article  Google Scholar 

  30. J.R.M. Cotterill, M. Doyama, in Lattice defects and their interactions, edited by R.R. Hasiguti (Gordon and Breach Science Publishers Inc., New York, NY, 1967), Vol. 1, pp. 62–75

    Google Scholar 

  31. P. Selvamani, G. Vaitheeswaran, V. Kanchana, M. Rajagopalan, Physica C 370, 108 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenkai Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Hu, J. & Jiang, W. Stability and interatomic potentials for M-doped TiV alloys (M=H, He, C, O) by first-principles simulations. Eur. Phys. J. D 73, 238 (2019). https://doi.org/10.1140/epjd/e2019-100387-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2019-100387-9

Keywords

Navigation