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Abstract We develop an approach to the theory of relativis-
tic geometric flows and emergent gravity defined by entropy
functionals and related statistical thermodynamics models.
Nonholonomic deformations of G. Perelman’s functionals
and related entropic values used for deriving relativistic geo-
metric evolution flow equations. For self-similar configu-
rations, such equations describe generalized Ricci solitons
defining modified Einstein equations. We analyse possible
connections between relativistic models of nonholonomic
Ricci flows and emergent modified gravity theories. We prove
that corresponding systems of nonlinear partial differential
equations, PDEs, for entropic flows and modified gravity
posses certain general decoupling and integration proper-
ties. There are constructed new classes of exact and para-
metric solutions for nonstationary configurations and locally
anisotropic cosmological metrics in modified gravity theo-
ries and general relativity. Such solutions describe scenar-
ios of nonlinear geometric evolution and gravitational and
matter field dynamics with pattern-forming and quasiperi-
odic structure and various space quasicrystal and deformed
spacetime crystal models. We analyse new classes of generic
off-diagonal solutions for entropic gravity theories and show
how such solutions can be used for explaining structure for-
mation in modern cosmology. Finally, we speculate why the
approaches with Perelman–Lyapunov type functionals are
more general or complementary to the constructions elabo-
rated using the concept of Bekenstein–Hawking entropy.
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1 Introduction

The most inspiring ideas in recent development of the gravity
theory and cosmology are on the emergent thermodynamic
nature of the spacetime geometry, when the Einstein equa-
tions can be derived using area-entropy formulas for horizons
of black holes, BH, [1–3] and from supposed elastic prop-
erties of gravity [5–7]. A substantial progress includes the
research on the microscopic origin of Bekenstein–Hawking
entropy in string theory [8], the holographic principle [9,10],
BH complementarity [11], and gauge/gravity correspon-
dence [12,13]. Here we note a subsequent development of the
(anti) de Sitter, (A)dS, and conformal field theories, CFTs,
and AdS/CFT, correspondence [14] and formulating laws of
the thermodynamics of ‘apparent’ horizons [15].

Later, it was proposed that gravity theories and gen-
eralized/modified/linearized Einstein equations are conse-
quences of the quantum entanglement connecting nearby
spacetime regions [16–21]. Recent theoretical activities are

devoted to proofs that the entanglement first law and dual
gravity are derived from the CFT and/or reveal a deep con-
nection to ideas on emergence of spacetime and gravity from
general quantum information principles [4,7,22–25]. It was
pointed out that in a model of dual gravity with entangle-
ment is equivalent to the full (nonlinear) equations [26]. An
intriguing conjecture that gravity links to an entropic force
as a spacetime elasticity was proposed by Verlinde [6,7]. It
was based on the idea that gravitational interactions result
from information regarding the positions of material bodies.
Emergent phenomena for gravity were investigated by many
other authors and their efforts involve the holographic princi-
ple in particle physics and the information theory. There were
studied geometric models and possible applications related
to gravity and quantum computers; quantum gravity; cosmo-
logical inflation and acceleration; and dark energy and dark
matter physics etc., see [27–31] and references therein.

In the quest to explore the connection between the mod-
els of emergent gravity and in modified gravity theories,
MGTs, or general relativity, GR, one involve a strict area
law for the BH, (A)dS, or entanglement entropy and fur-
ther developments for holographic models. To derive grav-
itational field equations was considered that a small but
nonzero volume law entropy would compete with, and at
large distances involves, the area law. In certain models this
is due to thermalization, elastic spacetime properties, quan-
tum entanglement, holographic effects etc. It was proposed
that such a phenomenon occurs in the dS space being respon-
sible for the presence of a cosmological horizon. Never-
theless, in this series of two works, see [32] as a partner
paper with complementary results, we deal with quite dif-
ferent issues on geometric flow modifications of gravity and
spacetime thermodynamics. It is just shown that relativis-
tic generalizations with a corresponding choice of evolution
and thermodynamic functionals support the ideas on the ori-
gin of gravity as an effect of the entropic force but with a
new type of geometric thermodynamics entropy. Such an
approach with Perelman–Lyapunov entropy type function-
als was developed in our works on entropic nonholonomic
geometric flow evolution, nonlinear dynamics and thermo-
dynamics for relativistic, noncommutative, fractional, super-
symmetric, Finsler–Lagrange–Hamilton etc. generalizations
of the theory of Ricci flow evolution and applications in mod-
ern gravity and cosmology [33–41].

The goal of this paper is to elaborate on geometric
and physical theories relating relativistic generalizations of
the Poincaré–Thurston conjecture,1 emergent and modified

1 Originally formulated and proved, respectively, due to R. Hamilton
and G. Perelman, for Ricci flows of Riemannian metrics; in certain
sense, this states that our universe has the topology of a three dimen-
sional sphere, which is considered as one of the fundamental results in
modern mathematics.
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gravity constructions, and Verlinde conjecture that gravity
results from an entropic force as a spacetime elasticity which
explain fundamental properties of dark matter, DM, and dark
energy, DE, in modern cosmology [6,7]. On topology and
geometry of Ricci flows, we refer to classical works [42–45]
and reviews of mathematical results in monographs [46–48]).
Here we note that Friedan published a series of works on
nonlinear sigma models, σ -models, in 2 + ε dimensions, see
[49–51] where geometric flow equations were introduced for
the renorm group, RG, theories, see recent results in [52–54].

The other goal of this article is to develop the anholo-
nomic frame deformation method, AFDM, (on early works
see [55–57] and references therein), for constructing exact
and parametric quasiperiodic solutions of geometric entropic
flow and modified gravity equations. For reviews of recent
results on black hole solutions in MGTs [58,59], space and
time like (quasi) crystals, pattern forming and nonlinear grav-
itational wave structures and applications in modern cosmol-
ogy see [60–64] and references therein. We elaborate on new
classes of generic off-diagonal stationary and cosmological
solutions with entropic geometric flows which for self similar
Ricci soliton configurations result in equations considered in
Verlinde works [6,7] and a covariant generalization due to
Hossenfelder [65], see also critics Refs. [66,67].

Three lines of evidence motivate this article and the part-
ner letter [32]. First, we use our former results and nonholo-
nomic geometric methods [33–41] that generalized/modified
relativistic flow equations and Einstein equations in GR
and MGTs can be derived as systems of PDEs for modi-
fied Ricci solitons for respective nonholonomic modifica-
tions of G. Perelman’s F- and W-entropy functionals. On
modified gravity and applications in modern cosmology and
astrophysics, see reviews [63,68–70]. Second, a number of
recent works invoke ideas on origin of gravity as an emergent
effect of the entropic force, entanglement etc., see [4,6,7,16–
26]. We argue that this can be grounded and explained,
at a deeper level, through modifications of the Poincaré–
Thurston conjecture on geometric flows, when the F- and W-
functionals are generalized for metrics and generalized con-
nections on Lorentz manifolds and/or certain supersymmet-
ric/noncommutative/fractional/stochastic generalizations. In
our approach, the spacetime evolution and gravity are treated
via geometric entropy values which allows to formulate
respective statistical thermodynamics models. Third, new
advanced methods for constructing exact solutions in MGTs
and GR allows us to proceed directly toward definition of
gravitational entropy and thermodynamic values making no
use of holography, area-entropy relation, CFT duality etc.
Due to the competition between area and volume law of gen-
eralized W-entropy, we can characterize thermodynamically
new classes of BH and cosmological solutions with quasi-
periodic structure, locally anisotropic inflation and acceler-

ating scenarios, exhibiting memory effects in the form of an
entropy displacement caused by matter etc.

This article is organized as follows: In Sect. 2, we pro-
vide an introduction to the geometry of double, 2 + 2
and 3 + 1 dimensional, spacetime fibrations defining elas-
tic and quasiperiodic configurations both for gravitational
and (effective) matter fields. Main concepts and most impor-
tant results on nonlinear connection geometry on nonholo-
nomic Lorentz manifolds, hypersurface geometric objects,
and modified emergent/elastic gravity theories are outlined.
There are studied the geometry of distributions, and respec-
tive Lagrange densities and geometric evolution or dynamical
fields defining elastic and quasiperiodic structures.

Section 3 is devoted to the theory of geometric flows
and modified entropic gravity. We postulate canonical non-
holonomic deformations of Perelman’s F- and W-functionals
encoding geometric flow evolution scenarios of entropic
spacetimes with quasiperiodic structure. Such values are
defined in relativistic 4-d form and for 3-d hypersurface
projections. There are derived respective (generalized R.
Hamilton) geometric flow equations for entropic quasiperi-
odic flows. The concept of nonholonomic Ricci solitons as
self-similar configurations is elaborated and related modifi-
cations of the Einstein equations are analyzed. We specu-
late on connection between relativistic generalizations of the
Poincaré–Thurston conjecture for Ricci flows and geometric
proofs of E. Verlinde’s conjecture.

In Sect. 4, we develop and apply the anholonomic frame
deformation method, AFDM, [32,38,40,58,63,64] in order
to prove general decoupling properties and integrability of
nonholonomic geometric flow and Ricci soliton equations
encoding elastic and quasiperiodic spacetime and (effective)
matter fields properties. Such solutions are described by
generic off-diagonal metrics, and generalized connections,
depending on all spacetime coordinates and temperature like
parameters via general classes of generating functions and
(effective) sources of entropic gravity and matter fields.

Then, in Sect. 5, we consider the AFDM for construct-
ing cosmological solutions for entropic quasiperiodic flow
and MGTs. We emphasize that there are certain nonlinear
symmetries relate possible classes of generating functions
and (effective) sources all encoding entropic, quasiperiodic,
pattern forming, space and time quasicrystal, solitonic and
other type structures. There are studied cosmological config-
urations generated by entropic quasiperiodic sources, nonsta-
tionary generating functions, cosmological metrics evolving
in (off-) diagonal elastic and/or quasiperiodic media.

Finally, we conclude our work and discuss certain perspec-
tives of the theory of G. Perelman and E. Verlinde entropic
geometric flow and emergent gravity theories in Sect. 6.
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2 Spacetime 2 + 2 and 3 + 1 fibrations with elastic and
quasiperiodic structures

In this section, we summarize necessary results on the
geometry of Lorentz manifolds enabled with nonholonomic
(i.e. non-integrable, equivalently, anholonomic) distributions
defining double 2 + 2 and 3 + 1 fibrations. There are devel-
oped nonholonomic geometric methods which are important
for elaborating theories of relativistic Ricci flows and possi-
ble applications in modern cosmology and astrophysics, see
details in [38–40]. As explicit examples, we shall consider
nonholonomic distributions modelling elastic and/or quais-
periodic space and time structures (for instance, quasicrys-
tal or solitonic like configurations) [6,7,59,61,62,64,65]. It
should be noted that the 2 + 2 nonholonomic splitting is
important for proofs of general decoupling and integration
properties of the relativistic geometric and entropic flow evo-
lution, nonholonomic Ricci soliton and (entropic modified)
Einstein equations, see Sect. 4. Additional 3 + 1 decompo-
sitions adapted to 2 + 2 splitting will be used for defining
and computing entropic and thermodynamic like values for
various classes of solutions of physically important systems
of nonlinear partial differential equations, PDEs, see Sect. 5.

2.1 Nonlinear connections with 2 + 2 splitting of Lorentz
manifolds

Let us consider a four dimensional, 4-d, Lorentzian mani-
fold V, dim V = 4, with local pseudo-Euclidean signature
(+ + +−) for a metric field g = (hg, vg). The conventional
horizontal, h, and vertical, v, nonholonomic decomposition
is defined by a nonlinear connection, N-connection, struc-
ture N. Such a geometric object can be always introduced as
a Whitney sum

N : TV = hV ⊕ vV, (1)

where TV is the tangent bundle on V. The concept of non-
holonomic manifold is used for a manifold enabled with
a nonholonomic distribution. In this work, this refers to a
Lorentz spacetimeV := (V,N) enabled with a N-connection
structure of type (1). In local coordinates, N = Na

i (u)dx
i ⊗

∂a, where Na
i are N-connection coefficients.2 Any set {Na

i }
defines subclasses of N-linear (co) frames which allows N-

2 We can parameterize the local coordinates in the form uμ = (xi , ya),
(in brief, u = (x, y)), where indices respectively take values i, j, . . . =
1, 2 and a, b, . . . = 3, 4, considering that u4 = y4 = t is the time
like coordinate. The Einstein convention on summation on “up-low”
repeating indices will be applied if contrary will not be stated for some
special cases. We use boldface symbols for spaces and geometric objects
adapted to a N-connection splitting.

adapted diadic decompositions of geometric and physical
objects.3

On any nonholonomic manifold V, we can consider
covariant derivatives determined by affine (linear) connec-
tions which are, or not, adapted to a N-connection structure.
A distinguished connection, d-connection, is a linear connec-
tion D = (hD, vD) which preserves under parallel transport
a h–v-decomposition (1).4 For any d-connection D, we can
define and compute in standard form the d-torsion, T, the
nonmetricity, Q, and the d-curvature, R, tensors

T(X,Y) := DXY − DYX − [X,Y],Q(X)
:= DXg, R(X,Y) := DXDY − DYDX − D[X,Y],

where X and Y are vector fields (i.e. d-vectors) on TV.5

Any metric tensor g = (hg, vg), on a nonholonomic V
can be written as a distinguished tensor, d-tensor (d-metric),
with respective splitting into h- and v-indices,

g = gα(u)eα ⊗ eβ = gi (x)dx
i ⊗ dxi

+ga(x, y)ea ⊗ ea, (2)

where the nonholonomic dual frame structure eα is cho-
sen in a form when the matrix of metric coefficients gαβ
is considered in diagonal form for gα := gαα, gi := gii and
ga := gaa .With respect to a dual local coordinate basis duα

the same metric field is expressed

g = g
αβ
duα ⊗ duβ,

where g
αβ

=
[
gi j + Na

i N
b
j gab Ne

j gae
Ne
i gbe gab

]
. (3)

3 Such N-adapted local bases, eν = (ei , ea), and cobases, eμ =
(ei , ea), are defined by formulas

ei = ∂/∂xi − Na
i (u)∂/∂y

a, ea = ∂a, and

ei = dxi , ea = dya + Na
i (u)dx

i

and their arbitrary frame/coordinate transforms. The term nonholo-
nomic used for a Lorentz manifold V comes from the fact that a basis
(tetrad, equivalently, vierbeind) eν = (ei , ea) satisfies certain relations
[eα, eβ ] = eαeβ − eβeα = W γ

αβeγ , with nontrivial anholonomy coef-

ficients Wb
ia = ∂a Nb

i ,W
a
ji = 	a

i j = e j
(
Na
i

) − ei (Na
j ). Holonomic

(integrable) configurations are obtained if and only if W γ
αβ = 0.

4 In general, a linear connection D is not adapted to a prescribed N-
connection structure, i.e. it is not a d-connection. In such a case, one
should be not used a boldface symbols for respective geometric objects
determined by D.
5 We can compute in N-adapted form the coefficients of any d-
connection D = {
γαβ = (Li

jk , L
a
bk ,C

i
jc,C

a
bc)}. The coeffi-

cients of torsion, nonmetricity and curvature d-tensors are param-
eterized by h- and v-indices, respectively, T = {Tγαβ =
(T i

jk , T
i
ja, T

a
ji , T

a
bi , T

a
bc)}, Q = {Qγαβ },R = {Rαβγ δ =

(Ri
hjk , R

a
bjk , R

i
hja, R

c
bja, R

i
hba, R

c
bea)}, when the coefficients for-

mulas for such values determined by using �
γ
αβ and their partial deriva-

tives.
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Using frame transforms (in general, not N-adapted), we can
transform any metric into a d-metric (2) an off-diagonal form
with N-coefficients. For nontrivial anholonomy coefficients,
such a metric is generic off-diagonal.

For our geometric constructions, there are two important
linear connections determined by the same metric structure:

g →
{∇ : ∇g = 0; ∇T = 0, the Levi-Civita, LC, connection;
D : D g = 0; hT = 0, vT = 0. the canonical d-connection.

(4)

Here we note that if we prescribe a N-connection structureN,
we can define a canonical d-connection D and compute cer-
tain nontrivial torsion coefficients hvT completely defined
by certain off-diagonal coefficients containing Na

i (u) in (3)
and/or nontrivial anholonomy coefficients W γ

αβ, see foot-
note 3. Of course, we can introduce an infinite number of
metric compatible d-connections but not all such connections
allow to decouple physically important systems of nonlinear
PDEs (in our case, for nonholonomic geometric flows and
modified, or Einstein, gravity). A D (4) allows us to prove
the decoupling and integration properties of such equations
in Sect. 4.

The LC-connection ∇ (4) can be defined uniquely by a
metric g without any N-connection structure but ∇ can be
distorted always to a necessary type d-connection allowing
a general decoupling and integrability of certain important
physically important systems of nonlinear PDEs. In our pre-
vious works [38–40] (see there necessary geometric details
and [59,61,62,64] for applications of the AFDM), we used a
“hat” symbol (like D̂) for the canonical d-connection in (4).
In this paper, we shall work only with ∇ and D = D̂ and
omit “hats” on respective geometric objects. We note that all
constructions performed for ∇ and D are related by a distor-
tion relation, D[g,N] = ∇[g,N] + Z[g,N], where Z is the
distortion tensor determined in standard algebraic form by
the torsion tensor T; all values are completely defined by the
metric tensor g adapted to N.6

The Ricci tensors of D and ∇ are defined and computed
in standard forms for different linear connection structures
but defined by the same metric tensor by contracting respec-
tive indices. We denote them, respectively, Ric = {R αβ :=
Rγαβγ } and Ric = {R αβ := Rγαβγ }. Any (pseudo) Rieman-
nian geometry can be equivalently described by both geomet-
ric data (g,∇) and (g,N,D), when the canonical distortion
relations R = ∇R + ∇Z and Ric = Ric + Zic, with
respective distortion d-tensors ∇Z and Zic, are computed
for the canonical distortion relations D = ∇ +Z, see details

6 The values hT and vT are respective torsion components which vanish
on conventional h- and v-subspaces, but there are nontrivial components
hvT defined by certain anholonomy (equivalently, nonholonomic/non-
integrable) relations. Such a d-torsion is induced by nonholonomic con-
figurations.

in [35,38–40,63] (in those works, there are used different
systems of notations).

Using N-adapted coefficients of the canonical Ricci d-
tensor,

Rαβ = {Ri j := Rk
i jk, Ria := −Rk

ika,

Rai := Rb
aib, Rab := Rc

abc}, (5)

we can compute the scalar of canonical d-curvature, sR :=
gαβRαβ = gi jRi j + gabRab. This geometric object is differ-
ent from the scalar curvature of the LC-connection, R :=
gαβ Rαβ.

Using ∇, the Einstein equations in GR are written in stan-
dard form,

Rαβ − 1

2
gαβR = �mTαβ. (6)

In these formulas, mTαβ is the energy–momentum tensor
of matter fields Aϕ determined by a general Lagrangian
mL(g,∇, Aϕ),where � is the gravitational coupling constant
for GR.7

We can define nonholonomic gravitational field equations
using the Ricci d-tensor (5) for a canonical d-connection D

Rαβ = ϒαβ. (7)

Such equations are equivalent to (6) if there are imposed
additional nonholonomic constraints, or found some smooth
limits, for extracting LC-configurations, D|T̂ =0 = ∇, for
instance, of type

Tγαβ = 0. (8)

In (7), a matter fields source ϒμν can be constructed using
a N-adapted variational calculus for mL(g,D̂, Aϕ), when
ϒμν = �(mTμν − 1

2gμν
mT) → �(mTμν − 1

2gμν
mT ) for

[coefficients of D] → [coefficients of ∇] even, in general,
D �= ∇. In such formulas, we consider mT = gμνmTμν for

mTαβ := − 2√|gμν |
δ(
√|gμν |mL)
δgαβ

. (9)

We note that any (pseudo) Riemannian geometry and
gravity theory, and various metric-affine modifications (for
instance, F(R)-modified theories [63,68]), can be formu-
lated equivalently using geometric data (g,∇) and/or (g,D).
There is an important motivation to use nonholonomic vari-
ables of type (g,D) because that they allow to decouple
and integrate in general form various modified and standard
Einstein equation. Such solutions can be with generic off-
diagonal metrics and coefficients depending on all spacetime
coordinates [55–57]. A recent review of the so-called anholo-
nomic frame deformation method, AFDM, of constructing

7 We use abstract left labels A and m in order to distinguish the values
from similar notations of pure geometric objects, for instance, Tγαβ .
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exact solutions in GR and MGTs, geometric flow theory, and
applications in modern cosmology and astrophysics can be
found in [63]. In this work, we shall develop the AFDM for
constructing exact solutions in entropic geometric flow and
gravity theories.

2.2 Nonholonomic 3 + 1 splitting adapted to 2 + 2
structures

We outline some basic concepts on the geometry of 3+1 foli-
ations of a nonholonomic Lorentzian manifold (V, g,N) of
signature (+ + +−) into a family of non-intersecting space
like 3-d hypersurfaces �t parameterized by a “time func-
tion”, t (uα), stated as a scalar field as described as follows.
Such spacetime decompositions are useful for elaborating
various thermodynamic, locally anisotropic kinetic [71] and
geometric evolution or hydrodynamic flow models [38] when
a conventional splitting into time and space like coordinates
is necessary. This allows definition of physical important val-
ues (for instance, entropy, effective energy etc.) and deriving
fundamental geometric evolution equations. In our approach,
we generalize the well-known geometric 3 + 1 formalism in
GR (see, for instance, [72]) to the case of nonholonomic
manifolds [38–40].

For a 3-d manifold ��, we consider an one-to-one image
to a hypersurface � = ζ(��) ⊂ V constructed as an home-
omorphism with both continuous maps ζ and ζ−1, when �
does not intersect itself. Left “up” or “low” labels by a ver-
tical bar “� ” will be used in order to emphasize that certain
geometric objects refer to 3-d manifolds/hypersurfaces. Such
a 3-d space is supposed to be locally defined as a set of points
for which a scalar field t on V is constant (for instance, i.e.
t (p) = 0 for any point p ∈ �). It is assumed also that t spans
the real line R and that any � is a connected submanifold of
V with the topology of R3.8

It should be noted that any 2 + 2 splitting by a non-
holonomic distribution N (1) induces a N-connection struc-
ture for a hypersurface �, i.e. an induced N-connections

�N : T �� = h�� ⊕ v��. Using the coefficients of such an
induced N-connection, any induced 3-metric tensor q can be

8 We can label local coordinates for a 3 + 1 splitting in uα = (x ı̀ , t),
where indices α, β, . . . = 1, 2, 3, 4 and ı̀, j̀, . . . = 1, 2, 3 are related
to a 2 + 2 splitting as in previous subsection (in brief, we shall write
u = (ŭ, t)). The continuous maps ζ can be parameterized to “carry
along” curves/vectors in �� to curves/vectors in V, for ζ : (x ı̀ ) −→
(x ı̀ , 0). This way, it is possible to define and relate respective local
bases ∂ı̀ := ∂/∂x ı̀ ∈ T (��) and ∂α := ∂/∂uα ∈ TV. The coefficients
of 3-vectors and 4-vectors are expressed correspondingly, �a = aı̀∂ı̀
and a = aα∂α (we shall use also capital letters, for instance, �A = Aı̀∂ı̀
and A = Aα∂α). Similar formulas are considered for dual forms to
vectors, 1-forms, when the dual bases dx ı̀ ∈ T ∗( ��) and duα ∈ T ∗V.
The 1-forms will be parameterized for respective 3 and 4 dimensions,
�Ã = Aı̀dx ı̀ and Ã = Aαduα.We shall omit the left/up label by a tilde
∼ (writing �A and A) if that will not result in ambiguities.

written in N-adapted frames as a d-tensor (d-metric) in the
form

q = (hq, vq) = qı̀ (u)e
ı̀ ⊗ eı̀ = qi (x

k)dxi ⊗ dxi

+q3(x
k, y3)�e3 ⊗ �e3,

for �e3 = du3 + �N
3
i (u)dx

i ,

where �N 3
i (u) can be identified with N 3

i (u) choosing com-
mon frame and coordinate systems for� ⊂ V. We can extend
naturally such a 3-d metric q to a 4-d d-metric g (2) re-
parameterized in a form adapted both to 2 + 2 and 3 + 1
nonholonomic splitting,

g = (hg, vg) = ğı̀ j̀e
ı̀ ⊗ e j̀ + g4e4 ⊗ e4

= qı̀ (u)e
ı̀ ⊗ eı̀ − N̆ 2e4 ⊗ e4, (10)

e3 = �e3 = du3 +� N
3
i (u)dx

i ,

e4 = δt = dt + N 4
i (u)dx

i .

For g (10), the lapse function N̆ (u) > 0 is defined as a
positive scalar field which ensues that the d-vector n is a unite
one. An “inverse hat” symbol is used in order to distinguish
such a symbol from N is used traditionally in literature on GR
[72]. Here we note that in another turn, the symbol Na

i is used
traditionally for the N-connection and this also motivates a
new symbol N̆ .

We note that for any quadratic line element ds2 =
gαβduαduβ of a metric tensor g there are such frame trans-

forms to parameterizations when ğı̀ j̀ = qı̀ j̀ = gαβeαı̀ e
β

j̀
is

just the induced metric on �t . In result, the determinants of
4-d and 3-d metrics are computed

√|g| = N̆
√|ğ| = N̆

√|q|.
Using certain coordinates (xı̀ , t) being N-adapted on respec-
tive hypersurfaces, the time partial derivatives are computed
£t q = ∂t q = q∗ and the spacial derivatives are computed
q,ı̀ := eαı̀ q,α.

There are two types of induced linear connections com-
pletely determined by an induced 3-d hypersurface metric
q,

q →
{

�∇ : �∇q = 0; ∇
�
T = 0, LC-connection

�D : �D q = 0; h�T = 0, v�T = 0, canonical d-connection.

(11)

Such formulas are related to 4-d similar ones (4). Both lin-
ear connections, �∇ and �D, are subjected also to a distortion
relation �D[q, �N] = �∇[q] + �Z[�T (q, �N)].

For 3-d configurations, we can compute the N-adapted
coefficient formulas for nonholonomically induced torsion
structure �T = {�Tı̀

j̀ k̀
}, determined by �D, and for the Rie-

mannian tensors �R = {�Rı̀
j̀ k̀l̀

} and �R = {�Rı̀
j̀ k̀l̀

}, deter-

mined respectively by �∇ and �D. Using 3-d subsects of
coefficient formulas, we can compute respective N-adapted
hypersurface coefficients of the Ricci d-tensor, �R j̀ k̀, and
the Einstein d-tensor, �E j̀ k̀ . Contracting indices, we obtain
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the Gaussian curvature, �R = q j̀ k̀
�R j̀k̀ , and the Gaussian

canonical curvature, s
�
R = q j̀ k̀

�R j̀ k̀, of (�,q, �N). It should
be noted that all this types of N-adapted and not N-adapted
geometric objects can be defined in abstract form which do
not depend on the type of embedding of a nonholonomic 3-d
manifold (�,q, �N) into a 4-d one (V, g,N).

2.3 Quasiperiodic space and time QC configurations

Let us consider two examples of space and time quasiperi-
odic structures defined in a curved spacetime following our
works on quasicrystal, QC, models in modern cosmology
[61,63,64] (alternative models are studied in [73]). Our
approach was elaborated following Wilczek and co-authors
works in condensed matter physics [74–77]. As a toy model,
we consider one dimensional, 1-d, time quasicrystals, TQCs
with time structure equations generalizing those introduced
in [77]). Then we introduce some important formulas on three
dimensional, 3-d, QC structures – in general, such configu-
rations are called space-time quasicrystal structures, STQC,
and studied in [64]. In this work we use a different system of
notation for partial derivatives when, for instance, ∂q/∂xi =
∂i q, ∂q/∂y3 = ∂3q = q∗, and ∂q/∂y4 = ∂4q = ∂t q = q�,
for a function q(xi , y3, t).

2.3.1 1-d relativistic time QC structures

We consider a scalar fieldς(xi , ya) on a space-time (V, g,N)
and respective Lagrange density

Ĺ(ς) = 1

48
(gαβ(eας)(eβς))2

−1

4
gαβ(eας)(eβς)− V́ (ς). (12)

In this formula, V́ (ς) is a nonlinear potential and eα are N-
adapted partial derivatives. Corresponding N-adapted varia-
tional motion equations are [ 1

2g
αβ(eας)(eβς)−1](DγDγ ς)

= 2 ∂ V́
∂ς

. The field ς defines a 1-d time QC structure, 1-TQC,

if it is a solution of these motion equations.9

2.3.2 3-d QC structures on curved spaces

QC structures and analogous dynamic phase field crystal
models can be elaborated as flow evolution theories on real
parameter τ (in next section, this parameter will be identi-
fied with a geometric flows one). Such a QC structure can be

9 For non-relativistic limits with gαβ = [1, 1, 1,−1] and ς → ς(t),

Ĺ → 1
12 (ς

•)4− 1
2 (ς

•)2−V́ (ς),which leads to an effective energy E =
1
4 [(ς•)2 −1]2 + V́ (ς)− 1

4 and motion equations [(ς•)2 −1]ς•• = − ∂ V́
∂ς

introduced in [77]. The Lagrange density (12) provides a generalization
for 1-TQCs modeled on a curved spacetime which can be also modeled
in entropic gravity theories.

defined by a generating function q = q(xi , y3, τ ) subjected
to the condition that it is a solution of an evolution equation
with conserved dynamics,

∂b

∂τ
= ��̂

[
δF

δb

]
= − ��̂(�b + Qb

2 − b
3
). (13)

Such evolution is considered on 3-d spacelike hypersurface
�t when the canonically nonholonomically deformed hyper-

surface Laplace operator ��̂ := (�D)2 = qı̀ j̀ �Dı̀ �D j̀ , where

indices rung values ı̀, j̀, . . . 1, 2, 3. This operator is a distor-
tion of �� := (�∇)2 constructed in 3-d Riemannian geometry,
see previous subsection. The functional F in (13) is charac-
terized by an effective free energy

F[q] =
∫ [

−1

2
b�b − Q

3
b

3 + 1

4
b

4
]√

qdx1dx2δy3,

where q = det |qı̀ j̀ |, δy3 = e3 and the operators� and Q are
defined and explained in [63,64]. Such nonlinear interactions
are stabilized by the cubic term with Q and the second order
resonant interactions are varied by setting observable values
of such constants (they are different for cosmological models,
in astrophysics or condensed matter physics). The average
value 〈b〉 is conserved for any fixed time variable t and/or
evolution parameter τ0.We can fix 〈b〉|τ=τ0 = 0 when other
values are accommodated by redefining values � and Q.

2.4 Distributions defining spacetime elastic configurations

In letter [32], we shown that models of entropic gravity
can be derived from nonholonomic modifications of the W-
functional when the (modified) Einstein equations are equiv-
alent to certain nonholonomic Ricci soliton equations. Here,
we shall study the conditions when entropic elastic scenarios
can be modelled as nonholonomic Ricci solitons in Sect. 3.3.
We shall consider certain examples of nonholonomic distri-
butions and related Lagrange densities on a Lorentz manifold
V which are used in entropic gravity theories [6,7,32,65].
Using such geometric constructions, we shall elaborate in
next section on elastic flow evolution models and their self-
similar nonholonomic Ricci soliton configurations. There are
three important values:

εαβ = Dαuβ − Dβuα - the elastic strain tensor;
φ = u/

√|�| - a dimensionless scalar;
χ = α(Dμuμ)(Dνuν)+ β(Dμuν)(Dμuν)

+γ (Dμuν)(Dνuμ) - a general kinetic term for uμ.

These geometric/physical objects are determined by a con-
ventional displacement vector field uα, cosmological con-
stant� and some constants α, β, γ ; there are used short hand
notations: u := √|uαuα|, ε = εββ , and nα := uα/u.
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On V, there are considered nonholonomic distributions
for corresponding total, effective gravitational, usual matter,
interaction and kinetic terms of Lagrangians postulated in
the form

totL = gL + mL + intL + χL,
for gL = M2

P F(
s R), intL = −√|�|mTμνuμuν/u,

χL = M2
P |�|(χ3/2 + |�||u[ς, b]|2z). (14)

In these formulas, the Plank gravitational mass is denoted
MP and the gravitational Lagrangian gL is taken as in mod-
ified gravity [63,68–70]. We can fix z = 1 if we search for
compatibility with [65], or z = 2 if we search for a limit to the
standard de Sitter space solution [66,67] (as we use in [32]).
To model STQC structures in entropic gravity and related
geometric flow theories we can consider that the displace-
ment vector field uα[ς, b] is a functional of functions ς, b
subjected to certain conditions of type (12) and/or (13) [in
principle, we can consider functionals for pattern forming,
nonlinear wave soliton structures, fractional and diffusion
processes etc.].

The energy–momentum tensors considered in above for-
mulas and/or derived from respective Lagrangians in (14)
and computed using variations on gμν similarly to mTμν (9)
(in N-adapted form, details of such computations are pro-
vided in [39,58,59,63]). For the full system, the effective
energy–momentum tensor is computed

totTμν =
(
∂F

∂s R

)−1
mTμν + FTμν + intTμν + χTμν,

where FTβγ =
[

1

2

(
F − ∂F

∂s R

)
gβγ

− (gβγDαDα − DβDγ
) ∂F
∂s R

](
∂F

∂s R

)−1

.

We can model “pure” elastic spacetime modifications of the
Einstein gravity if we fix F(s R) = s R and consider restric-
tions to the Levi-Civita connection D = ∇. For such con-
ditions, we obtain respective formulas for intTμν and χTμν
which are similar to formulas (10)–(13) in [66].10

In this work, the generalized (effective) source for MGT
(7) splits into four components,

totϒμν := �

(
totTμν − 1

2
gμν totT

)

=
(
∂F

∂s R

)−1
mϒμν + Fϒμν

+intϒμν + χϒμν, (15)

where � is determined in standard form by the Newton grav-
itational constant G. We need additional terms and parame-

10 We use a system of notations which is similar (but without “hats”) to
[35,38–40,63]; such notations are different from those used in [65–67].

terizations in order to describe structure formation in modern
cosmology and to model dark energy and dark matter prop-
erties.

3 Relativistic geometric flows and modified entropic
gravity

Grigory Perelman’s proof of the Poincaré conjecture [45] on
geometric flow evolution of 3-d Riemannian metrics [42–
44] provided fundamental results in geometric analysis and
topology. There were also studied possible applications in
modern mathematical and particle physics. We cite [46–48]
for reviews of rigorous mathematical results. For early appli-
cations, we refer to D. Friedan works [49–51] (he consid-
ered geometric evolution equations related to renorm group
equations before the Hamilton–Poincaré theory was elab-
orated). Further developments and applications were per-
formed in [52–54] and a series of works [33–41], see also
references therein. In those works on theories of nonholo-
nomic/noncommutative/supersymmetrics, fractional, diffu-
sion etc. geometric flows, there were studied statistical and
thermodynamic evolution models derived from certain Lya-
punov type functionals. Such F- and W-entropy function-
als are called in literature the Perelman functionals. The W-
entropy has properties of “minus entropy” of statistical ther-
modynamics systems. In [32], we elaborate on the idea that
such a W-entropy can be considered for formulating Verlinde
type entropic gravity theories [6,7]. We study self-similar
configurations of nonholonomic geometric flows resulting
in entropic Ricci solitons (see Sect. 3.3).

We note that Perelman suggested in his first preprint [45]
that the geometric flow theory may have certain implica-
tions in black hole physics and string theory. Nevertheless,
the original theory of Ricci flows was formulated in a non-
relativistic form. To consider further generalizations and
applications in modern physics and cosmology we elabo-
rated on relativistic models of geometric flow theories [38–
40]. Such constructions can be re-defined for nonholonomic
configurations modeling elastic and quasiperiodic spacetime
structure as in Sect. 2.4 and allows rigorous geometric moti-
vations for emergent entropic theories of type [6,7,32,65].

The goal of this section is to study generalizations of the
hypersurface 3-d and relativistic 4-d F- and W-functionals
and elaborate on respective geometric evolution scenarios
supporting the Verlinde entropic gravity conjecture [6,7].
Such constructions can be considered in the framework of s
a modified relativistic variant of the Poincaré–Thurston con-
jecture which was proven only for certain classes of Rieman-
nian and Kähler metrics, see details in [45–48]. For relativis-
tic configurations, we can only elaborate on geometric evo-
lution of certain 3-d hypersurface configurations subjected
to the conditions that such 3-metrics can be extended to cer-
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tain classes of 4-d metric and (non) linear connection struc-
tures derived as exact/parametric solutions of certain non-
holonomic/entropic geometric flow equations. There will be
considered also generalizations of the Hamilton equations
for the entropic flow theory. The conditions for generating
entropic modified Einstein equations as nonholonomic Ricci
solitons will be also analysed. We emphasize that in the main
part of this article there are studied relativistic geometric flow
models with a temperature like evolution parameter.

3.1 Modified spacetime and hypersurface Perelman’s
functionals

Let us consider families of nonholonomic 4-d manifolds
V(τ ) parameterized by a positive parameter τ, 0 ≤ τ ≤ τ0
(it can be considered as a temperature like parameter) and
enabled with a double nonholonomic 2 + 2 and 3 + 1 split-
ting [38–40]. Such manifolds are determined by respec-
tive families of metrics g(τ ) = g(τ, u) and N-connections
N(τ ) = N(τ, u) (we shall write only the parametric depen-
dence if that will not result in ambiguities) for which canon-
ically corresponding d-connection structures can be con-
structed D(τ ) = D(τ, u). We also suppose that on V(τ )
there are defined corresponding families of Lagrange den-
sities gL(τ ), for gravitational fields in a MGT or GR, and
totL(τ ), as total Lagrangians for effective and matter fields
(14). For a double 2 + 2 and 3 + 1 splitting, we can consider
local coordinates labeled asuα = (xi , ya) = (x ı̀ , u4 = t) for
i, j, k, . . . = 1, 2; a, b, c, . . . = 3, 4; and ı̀, j̀, k̀ = 1, 2, 3.
The nonholonomic distributions for N-connections can be
parameterized always in such forms that any open region
U ⊂V is covered by a family of 3-d spacelike hypersurfaces
�t parameterized by a time like parameter t.

3.1.1 Generalized Perelman functionals for entropic
geometric flows and MGTs

For this class of theories, we postulate the modified Perel-
man’s functionals in the form

F(τ ) =
∫ t2

t1

∫
�t

e− f
√|g|d4u

× [F(s R)+ totL + |D f |2] and (16)

W(τ ) =
∫ t2

t1

∫
�t

(4πτ)−3 e− f
√|g|d4u

×
[
τ
(
F(s R)+ totL + |hD f | + |vD f |)2 + f − 8

]
.

(17)

The condition
∫ t2
t1

∫
�t
(4πτ)−3 e− f √|g|d4u = 1 is imposed

on the normalizing function f (τ, u). For topological con-
siderations, such a normalisation is not important. Neverthe-
less, it imposes certain nonholonomic constraints on geo-

metric objects which do not allow to solve derived geomet-
ric flow evolution equations in explicit form. For applica-
tions to entropic gravity and associated thermodynamic mod-
els, we can consider f as an undetermined scalar function
which can be related to possible conformal transforms or
re-parameterizations. In result, we can prove certain general
decoupling and integration properties of corresponding sys-
tems of nonlinear PDEs. Fixing a class of solutions, we can
chose such integration functions and constants which repro-
duce/predict certain experimental and/or observational data.
Corresponding values of f depend on systems of reference
and coordinates.

Let us explain and motivate the difference of (16) and (17),
introduced in the first partner work [32], from the original
Grisha Perelman F- and W-functionals [45] postulated for the
Ricci flows of 3-d Riemannian metrics, see details in mono-
graphs [46–48]. In this work, we study geometric entropic
flows of canonical geometric data (g(τ ),N(τ ),D(τ )) for
nonholonomic Lorentz manifolds and various generaliza-
tions for MGTs following the program elaborated in [35,38–
40,63], where possible connections to emergent gravity were
not analyzed. In formulas (16) and (17), we consider the
gravitational Lagrangian gL = F(s R) as a functional of
the scalar curvature for D, or gL = R[∇] for consider-
ing as particular cases models of geometric evolution of
exact solutions in GR. The key difference from previous
works is that in such relativistic functionals the term totL
is introduced, which is responsible for geometric evolution
of configurations with elasticity and quasiperiodicity. Those
functionals can be generalized on a temperature like param-
eter τ and used as certain alternative geometric function-
als, for instance, for W-entropy. Nevertheless, only nonholo-
nomic elastic quasiperiodic functionals of type (16) and (17)
result for self-similar configurations (see next subsections)
in entropic gravity equations of Verlinde type [6,7,32,65]
and/or with quasiperiodic structure [61,63,64].

In this and partner [32] papers, we work with general-
ized geometric flow and entropy functionals determined by
F(s R)+ totL and D, respectively, instead of the Riemannian
values R and ∇ used in the former mathematical works. In
our nonholonomic approaches, above F- and W-functionals
characterize relativistic thermodynamic models with analo-
gous nonlinear hydrodynamic flows of families of entropic
values, metrics and generalized connections, encoding inter-
actions of gravitational and matter fields as it is motivated
in [38–40]. In general, it is possible to work with any class
of normalizing functions f (τ, u) which can be redefined in
order to include geometric and matter Lagrange terms and
certain constant values and parameters. In many cases, such
a function is chosen in a non-explicit form. This allows us
to study non-normalized geometric flows but with nonholo-
nomic constraints. For such conditions, there found various
general decoupling and integration properties of respective

123



81 Page 10 of 25 Eur. Phys. J. C (2021) 81 :81

physically important systems of nonlinear PDEs. In result,
generic off-diagonal solutions can be constructed in explicit
form as in [32,35,38–40,63], but with entropic and quasiperi-
odic modifications. The existence of such solutions validates
our nonholonomic geometric flow entropic approach, involv-
ing metrics with pseudo-Euclidean signature even analogs
of the Poincaré–Thurston conjecture have not been formu-
lated and proven for the Lorentzian spacetimes. Neverthe-
less, explicit constructions of exact solutions with elastic
and quasiperiodic gravitational metrics and effective mat-
ter sources, which will be provided in Sects. 4–6, support E.
Velinde conjecture on entropic gravity which in our works is
proven for modified Poincaré functionals.

3.1.2 Nonholonomic 3-d space like hypersurface F- and
W-functionals

We can redefine and compute relativistic entropies (16) and
(17) for any 3 + 1 splitting with 3-d closed hypersurface
fibrations �̂t as we described above in Sect. 2.2.

Let us denote by �D = D|�̂t
the canonical d-connection

D defined on a 3-d hypersurface �̂t , when all values depend
on a temperature like parameter τ(τ ′) with possible scale
re-definitions for another parameter τ ′ etc. We define also
s
�
R := s R|�̂t

. Using qı̀ (τ ) = [qi (τ ), q3(τ )] in a family of
d-metrics (10), the Perelman’s functionals parameterized in
N-adapted form are constructed in the form:

�F =
∫
�̂t

e−� f
√

|qı̀ j̀ |dx̀3

× [(�F(s� R)+ tot
�

L+|�D� f |2)
]
, and (18)

�W =
∫
�̂t

�μ
√

|qı̀ j̀ |dx̀3

×
[
τ
(
(�F(

s
�
R)+ tot

�
L + |h

�
D f | + |v

�
D� f |

)2 + � f − 6

]
.

(19)

These functionals are derived respectively from the previous
4-d elastic ones when the values �F(s� R) and tot

�
L are com-

puted as projections on a 3-d hypersurface for a redefined
normalization function � f.Using frame/coordinate transform
and re-definition of the temperature like parameter, we can
always chose a necessary type scaling function � f which

satisfies normalization conditions
∫
�̂t �μ

√
|qı̀ j̀ |dx̀3 = 1 for

�μ = (4πτ)−3 e−� f .

The functionals (18) and (19) transform into standard
Perelman functionals [45] for 3-d Riemannian metrics on
�̂t if �D → �∇, �F(s� R) = s

�
R and tot

�
L = 0. In order

to describe possible contributions on 3-d hypersurfaces of
spacetime elasticity and quasiperiodic structure in entropic
gravity, it is necessary to analyze physical effects of such
nonholonomic deformations.

3.2 Geometric flow equations for modified gravitational
and matter fields

Applying a variational procedure for a corresponding F-
functional for geometric flows of 3-d Riemannian metrics,
Perelman [45] provided a proof for R. Hamilton’s equations
[42–44]. For self-consistent configurations with a fixed flow
parameter τ0, one obtains 3-d Ricci soliton equations which
are equivalent to the vacuum Einstein equations for ∇ with an
effective cosmological constant. In similar forms to rigorous
mathematical proofs in [45–48] but elaborating on N-adapted
variational procedures, for instance, for the functional F(τ )
(16) with a canonical D used instead of ∇ (see details in
[32,38–40]), we obtain a system of nonlinear PDEs general-
izing the R. Hamilton equations for entropic and quasiperi-
odic geometric flow evolution determined by canonical data
(g = {gμν = [gi j , gab]},N = {Na

i },D, totL),

∂τ gi j = −2(Ri j − totϒi j );
∂τ gab = −2(Rab − totϒab);
Ria = Rai = 0; Ri j = R j i ; Rab = Rba;
∂τ f = −�̂ f + |D f |2 − s R + totϒαα ). (20)

In these formulas, �̂(τ ) = Dα(τ )Dα(τ ) and totϒαβ(τ) is
chosen for geometric flows of (effective) sources of entropic
gravity (15) (if we fix any τ = τ0). We note that the depen-
dence on a flow parameter τ for such (effective) matter
sources is determined by certain evolutions of g(τ ) andD(τ ).
In such theories, we do not consider nonholonomic deforma-
tions and evolution of classical matter fields. For instance, we
do not consider geometric flow evolution equations for the
electromagnetic potentialAα(τ )with evolution terms of type
∂τAα even such theories were studied in our previous works
[33–41], see references therein.

The conditions Ria = 0 and Rai = 0 for the Ricci tensor
Ric[D] = {Rαβ = [Ri j ,Ria,Rai ,Rab]} are necessary if we
want to keep the metric g(τ ) to be symmetric under non-
holonomic Ricci flow evolution determined by (20). Geo-
metric flow evolution and nonholonomic gravity of theories
with nonsymmetric metrics were studied in [56], see refer-
ences therein. In principle, we can work with any type nor-
malization function f which allows a general decoupling
and integration of such systems of nonlinear PDEs. Such a
normalization depends on frame and coordinate transforms
and may encode (effective) cosmological constants, matter
sources etc. We note that similar variational and/or geomet-
ric methods allows to derive from W(τ ) (17) certain types
nonlinear evolution equations which are equivalent to (20).
It is more difficult to solve explicitly such PDEs but a W-
functional allows to elaborate directly on certain classes of
thermodynamic models, see Sect. 5.
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3.3 Entropic gravity and gravitational field equations as
Ricci solitons

For self-similar point τ = τ0 configurations when ∂τgμν =
0,with a corresponding choice of the normalizing geometric
flow function f, the equations (20) transform into relativistic
nonholonomic Ricci soliton equations

Ri j = totϒi j , Rab = totϒab, Ria = Rai = 0 (21)

which are equivalent to (modified) Einstein equations in
(MGT) GR for corresponding definitions of totϒαβ. A class
of MGTs and GR can be formulated as geometric theories of
entropic elastic origin which is similar to the idea of emer-
gent gravity put forward by Verlinde [6,7], i.e. in the form
(7) with (effective) entropic and quasiperiodic source totϒαβ
(15).

We conclude that an emergent gravity model in the Ver-
linde sense [6,7,65], can be constructed for Lagrange distri-
butions (14) and respective sources (15) introduced as gen-
erating data for the nonholonomic Hamilton equations (20)
and respective relativistic Ricci solitons. Such geometric flow
evolution theories and their spacetime elastic, quasiperiodic
and thermodynamic properties are determined by the gener-
alized W-entropy (17).

4 Decoupling and integrability of entropic flow
equations

In this section, we prove that the system of nonlinear PDEs
(20) describing spacetime elastic and quasiperiodic flows and
entropic gravity theories can be formally integrated in very
general forms for generic off-diagonal metrics and canoni-
cal d-connections (in particular, for LC-configurations). The
coefficients of geometric objects for such solutions depend
on all spacetime coordinates via generating and integration
functions and (effective) matter sources. The anholonomic
frame deformation method, AFDM, for constructing exact
solutions in MGTs and GR is developed for generating new
classes of solutions encoding entropic quasiperiodic modifi-
cations in g(τ ) (2), D(τ ) (4), and totϒαβ(τ) (15). For similar
details and mathematical proofs, we refer readers to our pre-
vious works [55–60,63,64], on exact solutions in MGTs, and
[33–41], for solutions with nonholonomic Ricci flows, and
citations therein.

4.1 Geometric flows with parametric modified Einstein
equations

Introducing effective sources, entropic geometric flow equa-
tions can written as modified Einstein equations with depen-
dence on a temperature like parameter τ . We show that such

systems of nonlinear PDEs can be decoupled in general
forms.

4.1.1 Entropic quasiperiodic flow modifications of
gravitational field equations

Using nonholonomic frame transforms and tetradic (vier-
bein) fields, we introduce effective sources which in N-
adapted form are parameterized

e f f �μν(τ ) = eμ
′
μ(τ)e

ν′
ν (τ )

[
totϒμ′ν′(τ )+ 1

2
∂τgμ′ν′(τ )

]

= [h�(τ, xk)δij ,�(τ, xk, yc)δab ]. (22)

Such families of vielbein transforms eμ
μ′(τ ) = eμ

μ′(τ, uγ )

and their dual e ν
′

ν (τ, u
γ ), when eμ = eμ

μ′duμ
′
can be chosen

for any frame/coordinate transforms of a N-splitting struc-
ture (1). In result, the system of nonholonomic entropic R.
Hamilton equations (20) can be written in the form (7) but
with geometric objects depending additionally on a temper-
ature like parameter τ and for effective source (22),

Rαβ(τ ) = e f f �αβ(τ ). (23)

We note that such geometric evolution equations are for an
undetermined normalization function f (τ ) = f (τ, (τ, uγ )
which can be defined explicitly for respective classes of exact
or parametric solutions. For self-similar point τ = τ0 con-
figurations with ∂τgμν(τ0) = 0, this system of nonlinear
PDEs transforms into the nonholonomic entropic Ricci soli-
ton equations (21).

4.1.2 Effective entropic sources for stationary and/or
cosmological configurations

The values h�(τ, x) and �(τ, x, y) in (22) can be consid-
ered as generating data for (effective) matter sources. Pre-
scribing such data, we impose certain nonholonomic frame
constraints on geometric evolution and self-similar config-
urations of entropic and quasiperiodic structures. This type
of �-generating functions allows formal integrations of the
system (23) in certain general forms.

Using frame transforms, the τ -evolution of d-metric g(τ )
(2) can be parameterized for respective spherical symmetric
coordinates uα = (r, θ, y3 = ϕ, t) or some cosmological
coordinates (xk, y4 = t),

gi (τ ) = eψ(τ,r,θ),

ga(τ ) = ω(τ, r, θ, yb)ha(τ, r, θ, ϕ),
N 3
i (τ ) = wi (τ, r, θ, ϕ), N 4

i (τ ) = ni (τ, r, θ, ϕ),

for ω = 1, stationary configurations; (24)

gi (τ ) = eψ(τ,x
k ), ga(τ ) = ω(τ,xk, yb)ha(τ,xk, t),

N 3
i (τ ) = ni (τ,x

k, t), N 4
i (τ ) = wi (τ,x

k, t),
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for ω = 1, cosmological configurations. (25)

The AFDM results in more simple and explicit (still very
general classes) of solutions if we work with nonholonomic
configurations possessing at least one Killing symmetry, for
instance, on ∂4 = ∂t for stationary solution or on ∂3 = ∂ϕ,

locally anisotropic solutions.11

We shall use brief notations of partial derivatives ∂αq =
∂q/∂uα when a function q(xk, ya),

∂1q = q• = ∂q/∂x1, ∂2q = q ′ = ∂q/∂x2,

∂3q = ∂q/∂y3 = ∂q/∂ϕ = q�, ∂4q = ∂q/∂t = ∂t q = q∗,
∂2

33 = ∂2q/∂ϕ2 = ∂2
ϕϕq = q��, ∂2

44 = ∂2q/∂t2 = ∂2
t t q = q∗∗.

For respective Killing symmetries, the effective sources
�(τ, x, y) in (22) can be parameterized

e f f �μν (τ)

=
{ [h�(τ, r, θ)δij ,�(τ, r, θ, ϕ)δ

a
b ], stationary configurations;

[h�(τ, xi )δij ,�(τ, x
i , t)δab ], cosmological configurations.

(26)

Considering as typical examples two types of a Killing space
symmetry or time like Killing symmetry for effective gener-
ating sources, we shall construct and study properties of two
general classes of exact solutions (the first one will be for
stationary configurations which may contain BH solutions
and the second one will be for cosmological type solutions).

4.2 Nontrivial Ricci d-tensors and decoupling of entropic
flow equations

In this subsection, we outline the key steps for proofs of
general decoupling and integrability of (modified) Einstein
equations with effective sources (26).

4.2.1 Off-diagonal metric ansatz, (non) holonomic
variables, and ODEs and PDEs

Let us summarize in Table 1 below the data on nonholonomic
3 + 1 and 2 + 2 variables and corresponding ansatz which
allows to transform geometric and entropic flow equations
and, a nonholonomic Ricci solitons, gravitational field equa-
tions in entropic MGTs and GR into respective systems of
nonlinear ordinary differential equations, ODEs, and partial
differential equations, PDEs. All formulas will be proven
in next subsections. We model a nonholonomic deformation

11 In principle, we can construct for (23) certain classes of exact and
parametric off-diagonal solutions generically depending on all space-
time coordinates (xk , ya) but that would result in hundreds of pages
with a cumbersome formulas for respective geometric techniques, see
[55–59] and references therein.

with η-polarization functions, g̊ → g(τ ), of a ‘prime’ metric,
g̊, into a family ‘target’ d-metrics g(τ ) (2), if

g(τ ) = ηi (τ, x
k)g̊i dx

i ⊗ dxi

+ηa(τ, xk, yb)h̊aea[η] ⊗ ea[η], (27)

where the target N-elongated basis is determined by Na
i (τ, u)

= ηai (τ, xk, yb)N̊ a
i (τ, x

k, yb) in the form12 eα[η] = (dxi , ea =
dya + ηai N̊ a

i dx
i ). The values ηi (τ ) = ηi (τ, xk), ηa(τ ) =

ηa(τ, xk, yb) and ηai (τ ) = ηai (τ, x
k, yb) are called respec-

tively geometric/entropic flow or gravitational polarization
functions, or η-polarizations. Any g(τ ) is subjected to the
condition that it defines a solution of modified Einstein equa-
tions resulting in entropic quasiperiodic geometric flows
and/or via nonholonomic deformations. A general prime
metric in a coordinate parametrization is of type g̊ =
g̊αβ(xi , ya)duα⊗duβ,which can be also represented equiv-
alently in N-adapted form

g̊ = g̊α(u)e̊α ⊗ e̊β = g̊i (x)dx
i ⊗ dxi + g̊a(x, y)e̊a ⊗ e̊a,

for e̊α = (dxi , ea = dya + N̊ a
i (u)dx

i ), and

e̊α = (e̊i = ∂/∂ya − N̊ b
i (u)∂/∂y

b, ea = ∂/∂ya). (28)

Such a d-metric can be, or not, a solution of some gravita-
tional field equations in a MGT or GR but it nonholonomic
deformations to a target metric (27) are subjected to the con-
dition to define an exact or parametric solutions of certain
entropic flow evolutions equations.

In our works, we are interested usually in two physi-
cally important cases when g̊ (28) defines a BH solution (for
instance, a vacuum Kerr, or Schwarzschild, Kerr–(anti) de
Sitter metric), or a Friedman–Lemaître–Robertson–Walker
(FLRW) type metric, or any Bianchi anisotropic metrics.
For diagonalizable prime metrics (the off-diagonal struc-
ture of the Kerr metric is determined by rotation frames and
coordinates), we can always find a coordinate system when
N̊ b
i = 0. To avoid nonholonomic deformations with sin-

gular coordinates is convenient to construct exact solutions
with nontrivial functions ηα = (ηi , ηa), η

a
i , and nonzero

coefficients N̊ b
i (u). We have to consider necessary type

frame/coordinate transforms. For a d-metric (27), we can
analyze the conditions of existence and geometric/physical
properties of some target and/or prime solutions, for instance,
when ηα → 1 and Na

i → N̊ a
i . The values ηα = 1 and/or

N̊ a
i = 0 can be imposed as some special nonholonomic con-

straints.13 In brief, we shall denote certain nonholonomic

12 We do not consider summation on repeating indices if they are not
written as contraction of “up-low” ones.
13 We can consider flow evolution of a physical important target
metric g (27) with generic off-diagonal terms as an “almost” BH,
or FLRW cosmological, like metric. Such parametric solutions are
constructed for small nonholonomic deformations on some constant
parameters ηα = (ηi , ηa), η

a
i , for 0 ≤ εα, ε

b
i � 1, when ηi �
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Table 1 Entropic quasiperiodic flow modified Einstein eqs as systems of nonlinear PDEs and the Anholonomic Frame Deformation Method,
AFDM, for constructing generic off-diagonal exact, parametric, and physically important solutions

Diagonal ansatz: PDEs → ODEs AFDM: PDEs with decoupling; generating functions

Radial coordinates uα = (r, θ, ϕ, t) u = (x, y) : 2+2 splitting, uα = (x1, x2, y3, y4 = t); flow parameter τ

LC-connection ∇̊ [Connections]
N : TV = hTV ⊕ vTV, locally N = {Na

i (x, y)}
canonical connection distortion D = ∇ + Z

Diagonal ansatz gαβ(u)

=

⎛
⎜⎜⎝
g̊1

g̊2
g̊3

g̊4

⎞
⎟⎟⎠ g̊ ⇔ g(τ )

gαβ(τ ) =
gαβ(τ, xi , ya)general frames/coordinates[
gi j + Na

i N
b
j hab Nb

i hcb
Na

j hab hac

]
, 2 × 2 blocks

gαβ(τ ) = [gi j (τ ), hab(τ )],
g(τ ) = gi (τ, xk)dxi ⊗ dxi + ga(τ, xk , yb)ea ⊗ eb

g̊αβ =
{
g̊α(r) for BHs
g̊α(t) for FLRW

[Coord.frames] gαβ(τ ) =
{
gαβ(τ, r, θ, y3 = ϕ) stationary configurations
gαβ(τ, r, θ, y4 = t) cosm. configurations

Coord.tranfsorms eα = eα
′
α∂α′ ,

eβ = e β
β ′ duβ

′
, g̊αβ = g̊α′β ′eα

′
αe
β ′
β

g̊α(xk , ya)→ g̊α(r), or g̊α(t),
N̊ a
i (x

k , ya)→ 0.

[N-adapt. fr.]

⎧⎪⎪⎨
⎪⎪⎩

gi (τ, r, θ), ga(τ, r, θ, ϕ),
or gi (τ, r, θ), ga(τ, r, θ, t),

d-metrics

N 3
i (τ ) = wi (τ, r, θ, ϕ), N 4

i = ni (τ, r, θ, ϕ),
or N 3

i (τ ) = ni (τ, r, θ, t), N 4
i = wi (τ, r, θ, t),

∇̊, Ric = {R̊ βγ } Ricci tensors D, Ric = {R βγ }

mL[φ] →mTαβ [φ] Sources
ϒ
μ
ν(τ ) = eμ

μ′e ν
′

ν ϒ
μ′
ν′

= diag[h�(τ, xi )δij ,�(τ, xi , ϕ)δab ], stationary conf.
= diag[h�(τ, xi )δij ,�(τ, xi , t)δab ], cosmol. conf.

Trivial equations for ∇̊-torsion LC-conditions D|T̂ →0 = ∇ extracting new classes of solutions in GR

entropic deformations of a prime d-metrics into a target one
as g̊ → g = [gα = ηα g̊α, ηai N̊ a

i ].
Table 1 outlines the key steps for developing the AFDM

to theories of entropic quasiperiodic geometric flows. In this
work, the formulas depend on a flow temperature like param-
eter τ and the constructions are for effective matter sources
encoding entropic nonholonomic flows and deformations.

4.2.2 Cosmological Ricci d-tensors, LC-conditions, and
nonlinear symmetries

For locally anisotropic cosmological configurations, we can
consider geometric data when coefficients of the geometric
objects do not depend on a space like y3 with respect to
certain classes of N-adapted frames. Using d-metric data (25)
with ω = 1 and a source

[
h�(τ, xi ),�( τ, xi , t)

]
(26), we

write the entropic flow modified Einstein equations (23) in

Footnote 13 continued
η̌i (τ, xk)[1 + εiχi (τ, xk)] � 1 + εiχi (τ, xk), ηa � η̌a(τ, xk , yb)[1 +
εaχa(τ, xk , yb)] � 1 + εaχa(τ, xk , yb), and ηai � η̌ai (τ, x

k , yb)[1 +
εai χ

a
i (τ, x

k , yb)] � 1 + εai χa
i (τ, x

k , yb). Parametric ε-decompositions
can be performed in a self-consistent form by omitting quadratic and
higher terms after a class of solutions have been found for some evo-
lution or nonholonomic deformation data (ηα, ηai ). For certain sub-
classes of solutions, we can consider that εi , εa, εai ∼ ε, when only
one small parameter is considered for all coefficients of nonholonomic
deformations. We can work with mixed types of solutions and model
only small diagonal deformations εi , εa,∼ ε of metrics, for some gen-
eral ηai . Alternatively, we consider nontrivial ηα but εai ∼ ε.

the form14:

R1
1(τ ) = R2

2(τ ) = −h�(τ ) i.e.
g•

1g
•
2

2g1
+
(
g•

2

)2
2g2

−g••
2 + g′

1g
′
2

2g2
+ (g′

1)
2

2g1

−g′′
1 = −2g1g2h�; (29)

R3
3(τ ) = R4

4(τ ) = −�(τ ) i.e.

(
h

∗
3

)2

2h3
+ h

∗
3h

∗
4

2h4

−h
∗∗
3 = −2h3h4�; (30)

R3k(τ ) = h3

2h3
n∗∗
k +

(
3

2
h

∗
3 − h3

h4
h

∗
4

)
n∗
k

2h4
= 0; (31)

2h3R4k(τ ) = −wk

⎡
⎢⎣
(
h

∗
3

)2

2h3
+ h

∗
3h

∗
4

2h4
− h

∗∗
3

⎤
⎥⎦

+h
∗
3

2

(
∂kh3

h3
+ ∂kh4

h4

)
− ∂kh∗

3 = 0. (32)

This system of nonlinear PDEs can be transformed, respec-
tively, into a system of equation for stationary configurations

14 There are considered partial derivatives ∂t q = ∂4q = q∗ and ∂i q =
(∂1q = q•, ∂2q = q ′); we use over-lined symbols in order to emphasize
that certain values are not stationary but depend on a time like coordinate
t .
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if

hϒ(τ, x
i )→ hϒ(τ, x

i ), ϒ(τ, xi , t)→ ϒ(τ, xi , y3 = ϕ),
h3(τ, x

i , t)→ h4(τ, x
i , ϕ), h4(τ, x

i , t)→ h3(τ, x
i , ϕ),

h
∗
3(τ, x

i , t)→ h�
4(τ, x

i , ϕ),

h
∗
4(τ, x

i , t)→ h�
3(τ, x

i , ϕ), wk(τ, x
i , t)→ nk(τ, x

i , ϕ),

nk(τ, x
i , t)→ wk(τ, x

i , ϕ) etc. (33)

Such a duality exists for Lorentz manifolds with a Killing
symmetry when y3 is a space like coordinate and y4 = t
is a time like coordinated. This duality simplifies various
applications of the AFDM when we can redefine the pro-
cedure considered in the previous subsection for stationary
nonholonomic configurations to certain time dependent ones.
It allows use to prove decoupling properties and generate cos-
mological like solutions if there are known certain stationary
configurations, or inversely to find certain stationary metrics
as analogs of corresponding cosmological ones.15

We can rewrite the nonlinear PDE (29)–(32) in an explicit
decoupled form if we introduce the coefficients αi =
(∂t h3) (∂i�), β = (∂t h3) (∂t�), γ = ∂t

(
ln |h3|3/2/|h4|

)
,

where � = ln |∂t h3/
√

|h3h4||. For ∂t ha �= 0 and ∂t� �= 0,
we obtain such equations

ψ•• + ψ ′′ = 2h�; � ∗ h
∗
3 = 2h3h4�; n∗∗

i + γ n∗
i = 0;

βwi − αi = 0. (34)

We can integrate such equations “step by step” for any gen-
erating function �(xi , t) := e� and sources hϒ(xi ) and
ϒ(xk, t), see next subsection.
Nonlinear symmetries for generating functions and sources
with effective cosmological constant: The system (34) with
respective coefficients relates four functions (h3, h4, ϒ,�)

when a very important nonlinear symmetry for locally
anisotropic cosmological solutions and respective generat-
ing functions, (�(τ),ϒ(τ)) ⇐⇒ ( (τ),�(τ)) can be
found,

�( �
2
)∗ = |�|( 2

)∗, or � �
2 =  2|�|

−
∫

dt  
2|�|∗. (35)

This nonlinear symmetry allows us to introduce a new gener-
ating function  (xi , t) and an (effective) cosmological con-
stant �(τ) �= 0, which can be applied both for generating
exact off-diagonal solutions in explicit forms and elaborating
on locally anisotropic cosmological scenarios with cosmo-
logical constants, for instance, considered in entropic gravity.

15 The LC-conditions (8) for stationary configurations transform
into equations with coefficients depending on t, ∂twi = (∂i −
wi∂t ) ln

√
|h4|, (∂i − wi∂t ) ln

√
|h3| = 0, ∂kwi = ∂iwk , ∂t ni =

0, ∂i nk = ∂kni . Such nonlinear first order PDEs containing ∂t can be
solved in explicit form for certain classes of additional nonholonomic
constraints on cosmological d-metrics and N-coefficients, see (25).

4.3 Integrability of entropic quasiperiodic geometric flow
equations

We generate and study geometric properties of two classes of
generic off-diagonal solutions with elasticity and quasiperi-
odic structures of the system of nonlinear PDEs (23). The
first one is for stationary configurations and the second one
is considered for locally anisotropic cosmological models.

4.3.1 Off-diagonal cosmological solutions with elastic
quasiperiodic structures

Applying the AFDM, we can construct cosmological solu-
tions (which, in general, are locally anisotropic) of the
entropic flow modified Einstein equations (23) with N-
adapted sources h�(τ ) = h�(τ, xk) and�(τ ) = �(τ, xk, t),
see parameterizations for cosmological configurations in
(26). Integrating “step by step” the system of the nonlin-
ear PDEs (29)–(32) decoupled in the form (34), we obtain
such d-metric coefficients for (2),

gi (τ ) = e ψ(τ,x
k ) as a solution of 2-d Poisson eqs. ψ•• + ψ ′′

= 2h�(τ );
g3(τ ) = h3(τ, x

i , t) = h[0]
3 (τ, x

k)

−
∫

dt
(�

2
)∗

4�
= h[0]

3 (τ, x
k)− 2

/4�(τ);

g4(τ ) = h4(τ, x
i , t) = − (�

2
)∗

4�2
h3

= − (�
2
)∗

4�2
(h[0]

3 (τ, x
k)− ∫ dt (�2

)∗/4�)

= − [( 2
)�]2

4h3|�(τ)
∫
dt�[ 2]�|

= − [( 2
)∗]2

4[h[0]
3 (x

k)− 2
/4�(τ)]| ∫ dt �[ 2]∗|

. (36)

The N-connection coefficients are computed,

N 3
k (τ ) = nk(τ, x

i , t) = 1nk(τ, x
i )+ 2nk(τ, x

i )

×
∫

dt
(�

∗
)2

�2|h[0]
3 (τ, x

i )− ∫ dt (�2
)∗/4�|5/2

= 1nk(τ, x
i )+ 2nk(τ, x

i )

×
∫

dt
( 

∗
)2

4|�(τ) ∫ dt�[ 2]∗||h3|5/2
;

N 4
i (τ ) = wi (τ, x

i , t) = ∂i �

�
∗ = ∂i �

2

(�
2
)∗

= ∂i [
∫
dt �(  2

)∗]
�(  2

)∗
,

(37)
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In these formulas, h[0]
3 (τ, x

k), 1nk(τ, xi ), and 2nk(τ, xi )
are integration functions encoding various possible sets
of (non) commutative parameters and integration con-
stants running on τ for geometric evolution flows. We can
chose different generating data (�(τ, xi , t), ϒ(τ, xi , t)) or
( (τ, xi , t),�(τ)) which are related by nonlinear differen-
tial/integral transforms (35), and respective integration func-
tions. Such values should be chosen in explicit form fol-
lowing certain topology/symmetry/asymptotic conditions for
some classes of exact/parametric cosmological solutions.
The coefficients (36) and (37) define generic off-diagonal
cosmological solutions if the corresponding anholonomy
coefficients are not trivial. Such locally cosmological solu-
tions are with nontrivial nonholonomically induced d-torsion
and N-adapted coefficients which can be computed in
explicit form. In order to generate as particular cases some
well-known cosmological FLRW, or Bianchi, type met-
rics, we have to consider data of type (�(τ, t), ϒ(τ, t)),
or ( (τ, t),�(τ)), with integration functions which allow
frame/ coordinate transforms to respective (off-) diagonal
configurations gαβ(τ, t).

Let us analyze certain important nonholonomic evo-
lution properties of above locally anisotropic cosmologi-
cal solutions using the formulas for effective sources (22)
with cosmological parameterizations (26). In N-adapted
form, we obtain a system of equations with first order
evolution derivatives ∂τ when the v-part of vierbeinds

depend on a time like coordinate y4 = t, eμ
′
μ(τ) =

[e1′
1(τ, x

k), e2′
2(τ, x

k), e3′
3(τ, x

k, t), e4′
4(τ, x

k, t)]; there are

considered coordinates (xk, t), when the dependence on
y3 can be omitted because of Killing symmetry on ∂3.

We can consider frame transforms for generating effective
sources, e f f �i (τ ) = [ei ′i (τ )]2)[ totϒ i ′1′(τ )+ 1

2 ∂τg1′(τ )] =
h�(τ, xk),

e f f �a(τ ) = [ea′
a(τ )]2)

[
totϒa′a′(τ )+ 1

2
∂τga′(τ )

]

= �(τ, xk, t). (38)

In these formulas, we can prescribe any values for the mat-
ter sources totϒμν(τ ) in a cosmological or spacetime QC
model. Then, for simplicity, we can consider N-adapted
diagonal configurations and integrate on τ and determine
a cosmological evolution flow of gα′(τ, xk, t) modelled as
a nonholonomic and nonlinear geometric diffusion process.
All geometric constructions are performed with respect to

a new system of reference determined by eμ
′
μ(τ, xk, t). We

have to prescribe some locally anisotropic generating values

[eμ′
μ(τ, xk, t), totϒμν(τ, xk, t)] which are compatible with

certain observational data, for instance, in modern cosmol-
ogy and dark matter and dark energy physics.

4.3.2 Quadratic line elements for off-diagonal
cosmological configurations with elastic flows

Any coefficient h3(τ ) = h3(τ, xk, t) = h[0]
3 (τ, x

k) −
 

2
/4�(τ), h

∗
3 �= 0, can be considered also as a generating

function, for instance, for entropic quasiperiodic configura-

tions. Using formulas (36), we find 
2 = −4�(τ)h3(τ, r, θ, t)

transforming (35) in (�
2
)∗ = ∫

dt �h
∗
3. Introducing such

values into the formulas for ha and � in (36) and (37), we
construct locally anisotropic cosmological solutions param-
eterized by d-metrics (2) with N-adapted coefficients (25),

ds2 = e ψ(τ,x
k )[(dx1)2 + (dx2)2]

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h3[dy3 + (1nk + 42nk
∫
dt (h

∗
3)

2

| ∫ dy4 �h
∗
3 | (h3)

5/2 )dx
k ]

− (h
∗
3)

2

| ∫ dt �h
∗
3 | h3

[
dt + ∂i (

∫
dt � h

∗
3)

�h
∗
3

dxi
]
,

or

gener. funct.h3,

source �, or �(τ);

(
h[0]

3 − ∫ dt (�2
)∗

4 �

)⎡
⎣dy3 +

⎛
⎝1nk + 2nk

∫
dt (�

∗
)2

4 �2|h[0]
3 −∫ dy4 (�

2
)∗

4 � |5/2

⎞
⎠ dxk

⎤
⎦

− (�
2
)∗

4 �2
(
h[0]

3 −∫ dt (�2
)∗

4 �

)
[
dt + ∂i �

�
∗ dxi

]
,

or

gener. funct.�,
source �;

(
h[0]

3 −  
2

4�

)
[dy3 +

(
1nk + 2nk

∫
dt [( 2

)∗]2
| 4�

∫
dy4 �( 2

)∗| |h
[0]
4 (xk )−  

2

4�
|−5/2

)
dxk ]

− [( 2
)∗]2

| 4�
∫
dy4 �( 2

)∗|
(
h[0]

3 − 2

4�

)
[
dt + ∂i [

∫
dt �( 2

)∗]
�( 2

)∗
dxi
]
,

gener. funct. 
�(τ) for �.

(39)
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Such solutions posses a Killing symmetry on ∂3 and can be
re-written in terms of η-polarization function functions for
target locally anisotropic cosmological metrics ĝ = [gα =
ηα g̊α, ηai N̊

a
i ] encoding primary cosmological data [g̊α, N̊ a

i ].

4.3.3 Off-diagonal Levi-Civita entropic and quasiperiodic
cosmological configurations

We can extract and model entropic flow evolution of cosmo-
logical spacetimes in GR. To satisfy the zero torsion con-
ditions (8), see equations in footnote 15, let us consider a
special class of generating functions and sources when, for

instance, �(τ) = �̌(τ, xi , t), when (∂i �̌)∗ = ∂i (�̌
∗
) and

�(τ, xi , t) = �[�̌] = �̌(τ ),or � = const.For such classes
of entropic quasiperiodic generating functions and sources,

the nonlinear symmetries (35) are written �(τ) �̌
2 =

 ̌
2|�̌| − ∫ dt  ̌2|�̌|∗,  ̌2 = −4�(τ)ȟ3(τ, r, θ, t), �̌

2 =∫
dt �̌(τ, r, θ, t)ȟ

∗
3(τ, r, θ, t).Using these formulas, we con-

clude that the coefficient h4(τ ) = ȟ4(τ, xi , t) can be consid-
ered also as generating function for entropic cosmological
solutions. For such LC-configurations, there are some para-

metric on τ functions Ǎ(τ, xi , t) and n(τ, xi ) when the N-
connection coefficients are computed

nk(τ ) = ňk(τ ) = ∂kn(τ, xi ) and

wi (τ ) = ∂
i Ǎ(τ ) = ∂i (

∫
dt �̌ ȟ

∗
3])

�̌ ȟ
∗
3

= ∂i �̌

�̌
∗ = ∂i [

∫
dt �̌( ̌

2
)∗]

�̌( ̌
2
)∗

.

Summarizing above formulas, we construct new classes of
locally anisotropic cosmological solutions as ub GR defined
as subclasses of solutions (39) with zero torsion but with
entropic quasiperiodic geometric flow evolution,

ds2 = e ψ(τ,x
k )[(dx1)2 + (dx2)2]

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ȟ3
[
dy3 + (∂kn)dxk

]− ( ȟ
∗
3)

2

| ∫ dt �̌ ȟ
∗
3| ȟ3

[dt + (∂i Ǎ)dxi ],
or

gener. funct.ȟ3,

source �̌, or �;(
h[0]

3 − ∫ dt (�̌2
)∗

4�̌

)
[dy3 + (∂kn)dxk] − (�̌

2
)∗

4�̌
2
(
h[0]

3 −∫ dt (�̌2
)∗

4�̌

) [dt + (∂i Ǎ)dxi ],

or

gener. funct.�̌,

source �̌;
(
h[0]

3 −  ̌
2

4�

)
[dy3 + (∂kn)dxk] − [( ̌2

)∗]2

| 4�
∫
dt�̌( ̌

2
)∗|
(
h[0]

3 −  ̌
2

4�

) [dt + (∂i Ǎ)dxi ], gener. funct.  ̌

effective � for �̌.

(40)

Such cosmological metrics are generic off-diagonal and
define new classes of solutions if the anholonomy coeffi-

cients are not zero for N 3
k (τ = ∂kn and N 4

i (τ = ∂i Ǎ. They
encode entropic quasiperiodic structures. We can analyze
certain nonholonomic cosmological configurations deter-

mined, for instance, by data (�̌, �̌, h[0]
3 , ňk), when ∂kn →

0 and wi = ∂i Ǎ → 0. Zero values can be fixed also
by certain additional nonholonomic constraints. Choosing

data (�̌(τ, t), �̌(τ, t), h[0]
3 = const, ňk = const), we

can generate (off-) diagonal entropic metrics of Bianchi, or
FLRW, types and generalizations to other type configurations
gαβ(τ, t) in GR modified under geometric flow evolution.

5 Entropic quasiperiodic flows and cosmological
solutions

The goal of this section is to consider physical implications
of models with entropic and quasiperiodic flow evolution of
locally anisotropic and inhomogeneous cosmological space-
times.

5.1 The AFDM for entropic flow cosmological solutions

We outline the key steps on the AFDM for generating cosmo-
logical solutions with geometric flows and Killing symmetry
on ∂3. Considering a nonholonomic deformation procedure
for a generating function g3(τ ) = h3(τ, xi , y3) (36), cos-
mological constants �(τ) and sources h�(τ ) = h�(τ, xk)
and �(τ ) = �(τ, xk, t), see parameterizations (26) and non-
linear symmetries (35), we construct exact solutions of the
system of nonlinear PDEs for emergent cosmology (34).

Typical cosmological solutions of this class are parame-
terised
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ds2 = e ψ(τ,x
k )[(dx1)2 + (dx2)2] + h3(τ )

×
[
dy3 +

(
1nk + 42nk

∫
dt

(h
∗
3(τ ))

2

| ∫ dt �(τ )h∗
3| (h3(τ ))5/2

)
dxk
]

− [h∗
3(τ )]2

| ∫ dt �(τ )(h4
�(τ ))| h4

[
dt + ∂i (

∫
dt � (τ )h∗

3(τ ))

�(τ ) h∗
3(τ )

dxi
]
.

Such quadratic line elements are time dual to the stationary
ones which can be obtained via transforms (33).

5.2 Nonlinear PDEs for entropic quasiperiodic cosmology

We analyse two possibilities to transform the entropic flow
modified Einstein equations (23) into systems of nonlin-
ear PDEs (29)–(32) with generic off-diagonal or diagonal
solutions depending in explicit form on a evolution parame-
ter, a time like variable and two space like coordinates. In
the first case, there are considered entropic quasiperiodic
sources determined by some additive or general nonlinear
functionals for effective matter fields. In the second case,
respective nonlinear functionals determining quasiperiodic
solutions for entropic configurations are prescribed for gen-
erating functions subjected to nonlinear symmetries (35).
We also note that is possible to construct certain classes of
locally anisotropic and inhomogeneous cosmological solu-
tions using nonlinear/additive functionals both for generating
functions and (effective) sources.

5.2.1 Cosmological solutions for entropic quasiperiodic
sources

Cosmological configurations generated by additive entropic
functionals for sources: For this class of cosmological solu-
tions, we consider an additive functional for an entropic
quasiperiodic source of type �(τ, xi , t) (26),

as�(τ ) = as�(τ, xi , t) = f l�(τ, xi , t)
+m�(τ, xi , t)+ F�(τ, xi , t)
+int

0 �(τ, xi , t)+ χ
0 �(τ, xi , t). (41)

There is also an associated additive cosmological constant
as�(τ) (40) related to different types of generating functions
via nonlinear symmetries (35) when the Eq. (30) transforms
into � ∗ h

∗
3 = 2h3h4

as�(τ ) and can be integrated on time
like variable y4 = t. The systems of nonlinear PDEs (34)
can be integrated following the AFDM explained in details
in [55–60,63,64] (see sections on exact and parametric cos-
mological solutions in MGTs) and [33–41], for solutions
with nonholonomic cosmological Ricci flows, and citations
therein. Such generic off-diagonal cosmological solutions are
parameterized in the form

ds2 = e ψ(τ,x
k )[(dx1)2 + (dx2)2] + h3(τ )

×
[
dy3 +

(
1nk(τ, x

i )+ 42nk(τ, x
i )

×
∫

dt
[h3

∗(τ )]2

| ∫ dtas�(τ )h3
∗(τ )|[h3(τ )]5/2

)
dxk
]

− [h3
∗(τ )]2

| ∫ dtas�(τ )h3
∗(τ )| h3(τ )

×
[
dt + ∂i (

∫
dtas�(τ ) h3

∗(τ ))
as�(τ ) h3

∗(τ )
dxi
]
. (42)

In such quadratic linear elements, we have to fix a sign of
the coefficient h3(τ, xk, t) which describes relativistic flow
evolution with a generating function with Killing symmetry
on ∂3 determined by sources (h�(τ ), as�(τ )). Such entropic
and quasiperiodic flow solutions are of type (39) and can be
re-written equivalently with coefficients stated as functionals
of as (τ, xi , t) and as�(τ, xi , t).

We can extract from off-diagonal d-metrics (42) cer-
tain cosmological LC-configurations determined by entropic
quasiperiodic sources by imposing additional zero torsion
constraints. Such anholonomy conditions restrict the respec-

tive classes of generating functions (ȟ3(τ, xi , t), �̌(τ, xi , t)

and/or  ̌(τ, xi , t)) for n(τ, xi ), Ǎ(τ, xi , t)) and sources
as�̌(τ ) (41) and as�(τ) (40),

ds2 = e ψ(τ)[(dx1)2 + (dx2)2] + ȟ3(τ )[dy3 + (∂kn(τ ))dxk]

− [ȟ3
∗(τ )]2

| ∫ dtas�̌(τ )ȟ3
∗(τ )| ȟ3(τ )

[dt + (∂i Ǎ(τ ))dxi ].

(43)

The d-metrics (42) and/or (43) define off-diagonal cosmo-
logical solutions generated by entropic quasiperiodic addi-

tive sources as�(τ ) and/or as�̌(τ ). The terms (41) encode
and model respectively contributions of standard and/or dark
matter fields and effective entropic evolution sources. Such
values can be can be prescribed in certain forms being com-
patible to observational data of cosmological (and geomet-
ric/entropic) evolution for dark matter distributions with pos-
sible quasiperiodic, aperiodic, pattern forming, solitonic non-
linear wave interactions.
Cosmological solutions for nonlinear entropic quasiperiodic
functionals for sources: Such classes of exact cosmological
solutions can be generated by nonlinear quasiperiodic func-
tionals for effective sources, qp�(τ ) = qp�(τ, xi , t) =
qp�[ f l�, m�, F�, int0 �+χ

0 �], see functional dependencies
in (41), subjected to nonlinear symmetries (35). Applying the
AFDM, we construct entropic flow cosmological solutions
of with nonlinear sources,

ds2 = e ψ(τ)[(dx1)2 + (dx2)2] + h3(τ )
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×
[
dy3 +

(
1nk(τ )+ 42nk(τ )

×
∫

dt
[h3

∗(τ )]2

| ∫ dtqp�(τ )h3
∗(τ )|[h3(τ )]5/2

)
dxk
]

− [h3
∗(τ )]2

| ∫ dtqp�(τ ) h3
∗(τ )| h3(τ )

×
[
dt + ∂i (

∫
dtqp�(τ ) h3

∗(τ )])
qp�(τ ) h3

∗(τ )
dxi
]
. (44)

For LC-configurations, we obtain

ds2 = e ψ(τ)[(dx1)2 + (dx2)2] + ȟ3(τ )[dy3 + (∂kn(τ ))dxk]

− [ȟ3
∗(τ )]2

| ∫ dt qp�̌(τ )h3
∗(τ )| ȟ3(τ )

[dt + (∂i Ǎ(τ ))dxi ].

(45)

For additive functionals for cosmological entropic and
quasiperiodic sources, the formulas (44) and (45) transforms
respectively into quadratic linear elements (42) and (43). Fix-
ing a value τ0, we obtain cosmological solutions for Ricci
solitons and MGTs.

5.2.2 Cosmological configurations with nonstationary
entropic generating functions

In this section, the sources for (effective) matter fields and
geometric flows are defined by arbitrary functions �μν(τ ) =
[ h�(τ, xk),�(τ, xk, t)]. The quasiperiodic structure will be
stated for some additive or general nonlinear functionals for
the generating functions.
Cosmological metrics with additive entropic generating
functions: Such functionals are

a (τ) = a (τ, xi , t) = f l (τ, xi , t)

+m (τ, xi , t)+ F (τ, xi , t)

+int
0  (τ, x

i , t)+ χ
0 (τ, x

i , t). (46)

The values int
0  (τ) = int

0  (τ, x
i , t) = int [τ, ς, b] and

χ
0 (τ) = χ

0 (τ, x
i , t) = χ [τ, ς, b] are functionals on cer-

tain quasiperiodic (space time like QC or other type aperi-
odic, solitonic structures) given by functions ς and/or b sub-
jected to conditions of type (12) and/or (13). The terms in
the sum (46) correspond to the Lagrange densities (14) and
energy–momentum tensors (15) nonholonomically param-
eterised by sources (26). Changing systems of references
and coordinates, we can compute sums of functionals for
sources of type (41) using nonlinear symmetries (35) consid-
ering an associated additive cosmological constant as�(τ)

(40). For a (τ) (46), the Eq. (30) transforms into a func-
tional equation� ∗(τ )[a (τ),�(τ)] h∗

3(τ )[a (τ),�(τ)] =
2h3(τ )[a (τ),�(τ)]h4(τ )[a (τ),�(τ)]�(τ ), and related

analogs of (31) and (32) in the decoupled system of nonlinear
PDEs (34). Such equations and their solutions can be writ-
ten equivalently in different forms with additive functionals
of type ah3,4 and/or a� and respective nonlinear function-
als for the coefficients in respective equations. Applying the
AFDM as in the Sect. 4.3.1, we generate a class of parametric
solutions of (34) parameterized in a form similarly to (39)

ds2 = e ψ(τ,x
k )[(dx1)2 + (dx2)2] +

[
h[0]

3 (τ, x
i )−

a 
2
(τ )

4�(τ)

]

×

⎡
⎢⎢⎢⎣dy3 +

⎛
⎜⎜⎜⎝1nk (τ, x

i )+ 2nk(τ, x
i )

×
∫

dt
[(a 2

)∗(τ )]2

4|�(τ) ∫ dt �(τ )(a 2
(τ ))∗|

(
h[0]

3 (τ, x
i )− a 

2
(τ )

4�(τ)

)5/2

⎞
⎟⎟⎟⎠ dxk

⎤
⎥⎥⎥⎦

− [(a 2
)∗(τ )]2

4|�(τ) ∫ dt �(τ )(a 2
)∗(τ )|

[
h[0]

3 (τ, x
i )− a 

2
(τ )

4�(τ)

]

×
⎡
⎣dt +

∂i

[∫
dt � (τ )(a 

2
)∗(τ )

]

�(τ ) (a 2
)∗(τ )

dxi

⎤
⎦ , (47)

for integration functionsh[0]
3 (τ, x

i ), 1nk(τ, xi ) and 2nk(τ, xi ).
LC-configurations can be extracted from (47) imposing

additional integrability conditions on coefficients resulting in
zero nonholonomic torsion. Such solutions can be considered
both for relativistic entropic Ricci solitons and in GR, being
parameterized as in (40),

ds2 = e ψ(τ,x
k )[(dx1)2 + (dx2)2]

+
⎡
⎣h[0]

3 (τ, x
i )−  ̌

2
(τ )

4�(τ)

⎤
⎦ [dy3 + (∂kn(τ, xi ))dxk]

− [(a ̌2
)∗(τ )]2

4|�(τ) ∫ dt�̌(τ )(a ̌2
)∗(τ )|

(
h[0]

3 (τ, x
i )−  ̌

2
(τ )

4�(τ)

)

×[dt + (∂i Ǎ(τ, xk, t))dxi ]. (48)

We can consider small parametric decompositions and
frame/coordinate transforms (in a more general context, we
can elaborate a formalism of η- and ε-polarization functions
as for BH solutions but with time like dependence for cos-
mological configurations) in order to relate new classes of
solutions (47) and/or (48) to some well known (off-) diago-
nal cosmological metrics.
Cosmological configurations with nonlinear entropic func-
tionals for generating functions: Instead of additive gener-
ating functionals a (τ) (46), we can work with nonlinear
quasiperiodic generating functionals qp (τ) = qp (τ, xi , t)
= qp [ f l , m , F , int0  ,

χ
0 ] characterized by nonlin-

ear symmetries of type (35). The Eq. (30) transforms into a
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nonlinear functional equation, � ∗(τ )[qp (τ),�(τ)] h∗
3(τ )

[qp (τ),�(τ)] = 2h3(τ )[qp (τ),�(τ)]h4(τ )[qp (τ),
�(τ)] �(τ ), which can be solved together with other equa-
tions with decoupling (34). We obtain such solutions:

ds2 = e ψ(τ,x
k )[(dx1)2 + (dx2)2] +

[
h[0]

3 (τ, x
i )−

qp 
2
(τ )

4�(τ)

]

×

⎡
⎢⎢⎢⎣dy3 +

⎛
⎜⎜⎜⎝1nk (τ, x

i )+ 2nk (τ, x
i )

×
∫

dt
[(qp 2

)∗(τ )]2

4|�(τ) ∫ dt �(τ )(qp 2
)∗(τ )|

(
h[0]

3 (τ, x
i )− qp 

2
(τ )

4�(τ)

)5/2

⎞
⎟⎟⎟⎠ dxk

⎤
⎥⎥⎥⎦

− [(qp 2
)∗(τ )]2

4|�(τ) ∫ dt �(τ )(qp 2
)∗(τ )|

(
h[0]

3 (τ, x
i )− qp 

2
(τ )

4�(τ)

)

×
[
dt + ∂i (

∫
dt �(τ ) (qp 2

)∗ �(τ ))
�(τ ) (qp 2

)∗ �(τ )
dxi
]
, (49)

where h[0]
3 (τ, x

i ), 1nk(τ, xi ) and 2nk(τ, xi ) are integration
functions.

For zero torsion constraints, we extract LC-configurations,

ds2 = e ψ(x
k )[(dx1)2 + (dx2)2]

+
⎛
⎝h[0]

3 (τ, x
i )−

qp ̌
2
(τ )

4�(τ)

⎞
⎠

×[dy3 + (∂kn(τ, xi ))dxk ]

− [(qp ̌2
)∗(τ )]2

4|�(τ) ∫ dt �̌(τ )(qp ̌
2
)∗(τ )|

(
h[0]

3 (τ, x
i )− qp ̌

2
(τ )

4�(τ)

)

×[dt + (∂i Ǎ(τ, xi , t))dxi ]. (50)

The coefficients of d-metrics (49) and (50) can be chosen to
be of necessary smooth class and involve certain entropic,
quasiperiodic, stochastic sources and fractional derivative
processes. Such nonholonomic deformation and generalized
transforms can be constructing with changing the topologi-
cal spacetime structure and modeling certain dark energy and
dark matter effects as results of entropic quasiperiodic flows
or nonholonomic deformations of certain prime cosmologi-
cal solutions.

5.2.3 Emergent quasiperiodic cosmology from both
generating functionals and sources

We can generate entropic flow cosmological solutions using
generalized quasiperiodic nonlinear functionals both for gen-
erating functions, qp (τ), and nonlinear functionals for
(effective) sources, qp�(τ ), see above formulas. Such data
are connected via nonlinear symmetries of type (35), when
qp�(τ)qp�

2
(τ ) = qp 

2
(τ )|qp�(τ )|−∫ dtqp 2

(τ )|qp�(τ )|∗.

Similar nonlinear symmetries exist for additive function-
als both for the gravitational fields and (effective) sources,
with (46) and (41) and can be written in a particular form
a� (τ)a�

2
(τ ) = a 

2|a�(τ )| − ∫ dta 2|a�(τ )|∗. Apply-
ing the AFDM (using data (qp�(τ), qp�(τ )), and/or, equiv-
alently, (qp (τ), qp�(τ))), we construct multi-functional
nonlinear entropic quasiperiodic cosmological configura-
tions,

ds2 = e ψ(τ,x
k )[(dx1)2 + (dx2)2] +

(
h[0]

3 (τ, x
i )−

qp 
2
(τ )

4qp�(τ)

)

×
[
dy3 +

(
1nk (τ, x

i )+ 2nk (τ, x
i )

×
∫

dt
[(qp 2

)∗(τ )]2

4qp |�(τ) ∫ dtqp�(qp 2
)∗|
(
h[0]

3 (τ, x
i )− qp 

2
(τ )

4qp�(τ)

)5/2

⎞
⎟⎟⎟⎠ dxk

⎤
⎥⎥⎥⎦

− [(qp 2
)∗(τ )]2

4|qp�(τ) ∫ dtqp�(τ )(qp 2
)∗| (h[0]

3 (τ, x
i )− qp 

2
(τ )

4qp�(τ)
)

×
[
dt + ∂i (

∫
dt qp�(τ ) (qp 2

)∗(τ )])
qp�(τ ) (qp 2

)∗(τ )
dxi
]
, (51)

where for integration functions h[0]
3 (τ, x

i ), 1nk(τ, xi ) and

2nk(τ, xi ).
For LC-configurations, we obtain multi-functional non-

linear generalizations of (49) and (50) modelling locally
anisotropic and inhomogeneous solutions in entropic flow
gravity and GR,

ds2 = e ψ(τ,x
k )[(dx1)2 + (dx2)2] +

⎛
⎝h[0]

3 (τ, x
i )−

qp ̌
2
(τ )

4qp�(τ)

⎞
⎠

×[dy3 + (∂kn(τ, xi , t))dxk ]

− [(qp ̌2
)∗(τ )]2

4|qp�(τ) ∫ dtqp �̌(τ )(qp ̌
2
)∗(τ )|

(
h[0]

3 (τ, x
i )− qp ̌

2
(τ )

4qp�(τ)

)

×[dt + (∂i Ǎ(τ, xi , t))dxi ]. (52)

The classes of cosmological solutions (51) and (52)
describe off-diagonal entropic non-stationary configura-
tions determined by multi-functional nonlinear quasiperiodic
structures.

5.3 Cosmological metrics evolving in entropic
quasiperiodic media

Generic off-diagonal entropic and quasiperiodic cosmologi-
cal solutions are constructed in terms of η-polarization func-
tions following the AFDM method for parametric τ and
time like depending evolution. We consider a primary cos-
mological d-metric g̊ (28) defined by data [g̊i (xk, t), g̊a =
h̊a(xk, t); N̊ 3

k = n̊k(xi , t), N̊ 4
k = ẘk(xi , t)] which can be

diagonalized for a FLRW cosmological metric by frame/
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coordinate transforms.16 The cosmological entropic quasiperi-
odic y target metrics g(τ ) of type (27) are generated by non-
holonomic deformations

g̊ → g(τ ) = [gi (τ, xk) = ηi (τ, xk, t)g̊i , gb(τ, xk, t)
= ηb(τ, xk, t)g̊b, Na

i (τ, x
k, t) = ηai (τ, x

k, t)N̊ a
i ],

when overlined symbols are used for distinguishing cosmo-
logical d-metrics from stationary ones studied in previous
sections. The quadratic line elements corresponding to target
locally anisotropic and inhomogeneous cosmological met-
rics g(τ ) = g(τ, xk, t) can be written in terms of gravita-
tional polarization functions,

ds2 = η1(τ, x
i , t)g̊1(x

i , t)[dx1]2

+η2(τ, x
i , t)g̊2(x

i , t)[dx1]2

+η3(τ, x
i , t)h̊3(x

i , t)

×[dy3 + η3
i (τ, x

i , t)N̊ 3
i (x

k, t)dxi ]2

+η4(τ, x
i , t)h̊4(x

i , t)

×[dt + η4
i (τ, x

k, t)N̊ 4
i (x

k, t)dxi ]2.

The η-coefficients will be constructed in some explicit forms
determined by entropic quasiperiodics generation functions
and/or effective sources as solutions of the system of nonlin-
ear PDEs (34).

5.3.1 Cosmological evolutions generated by nonstationary
entropic sources

We consider entropic sources of type qp�(τ ) =qp �(τ, xi , t)
= qp�[ f l�, m�, F�, int0 � + χ

0 �] as in (44) and (45) and
compute the η-polarization functions following formulas

ηi (τ ) = e ψ(τ,x
i )/g̊i ; generating function

η3(τ ) = η3(τ, x
i , t);

η4(τ ) = − 4[(|η3(τ )h̊3|1/2)∗]2

h̊4|
∫
dtqp�(τ )(η3(τ )h̊3)∗|

;

η3
i (τ ) = 1nk(τ, xi )

n̊k
+ 4 2nk(τ, xi )

n̊k

×
∫

dt

(
[(η3(τ )h̊3)

−1/4]∗
)2

| ∫ dtqp�(τ )(η3(τ )h̊3)∗|
;

η4
k(τ ) = ∂i

∫
dtqp�(τ )(η3(τ )h̊3)

∗

ẘi
qp�(τ )(η3(τ )h̊3)∗

, (53)

where 1nk(τ, xi ) and 2nk(τ, xi ) are integration functions.
Using η3(τ, x

i , t) as a generating function, we can com-
pute other types of generating functions of the same tar-
get cosmological d-metric subjected to nonlinear symmetries

16 In general, we can consider off-diagonal Bianchi anisotropic cosmo-
logical metrics or any cosmological solution in GR or MGTs.

(35),

 
2
(τ ) = 4|qp�(τ)[h[0]

3 (τ, x
k)− η3(τ, x

i , t)h̊3(x
k, t)]|,

(�
2
)∗(τ ) = −

∫
dtqp�(τ ) [η3(τ, x

i , t)h̊3(x
i , t)]∗.

For integrable generating functionals and sources, when
the constructions (15) are subjected to target off-diagonal
cosmological metrics (40) with zero torsion, we obtain

ηi (τ ) = e ψ(τ,x
i )/g̊i ; η3(τ )

= η̌3(τ, x
i , t) as a generating function;

η4(τ ) = − 4[(| η̌3(τ )h̊3|1/2)∗]2

h̊4|
∫
dtqp �̌(τ )(η̌3h̊3)∗|

;

η3
k(τ ) = ∂kn(τ, xi )

n̊k
; η4

k(τ ) = ∂k Ǎ(τ, xi , t)

ẘk
. (54)

In (53) and (54), the nonlinear functionals for the entropic
quasiperiodic v-source and (effective) cosmological constant
can be changed into additive functionals qp�(τ ) → as�(τ )
and qp�(τ) → as�(τ) which generates another classes of
cosmological solutions.

5.3.2 Cosmology from nonstationary entropic generating
functions

We can construct locally anisotropic and inhomogeneous
cosmological solutions as nonholonomic deformations of
some prime cosmological metrics when the coefficients of the
d-metrics are determined nonlinear generating functionals
qp (τ) = qp (τ, xi , t) = qp [ f l , m , F , int0  ,

χ
0 ]

as for (49). It is possible also to generate similar cosmo-
logical metrics by additive functionals a (τ) (46) for pre-
scribed families of effective sources �(τ ) = �(τ, xi , t)
and cosmological constants �(τ). Using formulas for non-
linear symmetries (35), we compute (recurrently) corre-
sponding nonlinear functionals, qpη3(τ, x

i , t), or additive
functionals,aη3(τ, x

i , t), and related polarization functions,

qp 
2
(τ ) = 4| �(τ)[h[0]

3 (τ, x
k)− qpη3(τ, x

i , t)h̊3(x
k, t)]|,

(qp�
2
)∗(τ ) = −

∫
dt �(τ ) [qpη3(τ, x

i , t)h̊3(x
i , t)]∗.

The coefficients of quadratic elements of type (39) are
recurrently computed,

ηi (τ ) = e ψ(τ,x
i )/g̊i ;

η3(τ ) =qp η3(τ, x
i , t) as a generating function;

η4(τ ) = − 4[(|qpη3(τ )h̊3|1/2)∗]2

h̊4|
∫
dt�(τ )(qpη3(τ )h̊3)∗|

;

η3
i (τ ) = 1nk(τ, xi )

n̊k
+ 4 2nk(τ, xi )

n̊k
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×
∫

dt

(
[(qpη3(τ )h̊3)

−1/4]∗
)2

| ∫ dt�(τ )(qpη3(τ )h̊3)∗|
;

η4
k(τ ) = ∂i

∫
dt �(τ )(qpη3(τ )h̊3)

∗

ẘi �(τ )(qpη3(τ )h̊3)∗
, (55)

where 1nk(τ, xi ) and 2nk(τ, xi ) are integration functions.
Target off-diagonal cosmological metrics (40) with zero

torsion extracted from (55) can be generated by polarization
functions

ηi (τ ) = e ψ(τ,x
i )/g̊i ; generating function

η3(τ ) = qpη̌3(τ, x
i , t);

η4(τ ) = − 4[(|qp η̌3(τ )h̊3|1/2)∗]2

h̊4|
∫
dt�̌(τ )(qpη̌3(τ )h̊3)∗|

;

η3
k(τ ) = (∂kn(τ, xi ))/n̊k;
η4
k = ∂k Ǎ(τ, xi , t)/ẘk .

The cosmological solutions generated in this subsec-
tion describe entropic flow nonholonomic deformations of
prime cosmological configurations (for instance, a FLRW, or
Bianchi, type metric, and various modifications in accelerat-
ing cosmology) self-consistently imbedded into a quasiperi-
odic gravitational (dark energy) media.

5.3.3 Cosmological configurations for entropic sources and
generating functions

We can construct more general classes of nonholonomic
deformations of prime cosmological metrics generated by
entropic quasiperiodic flow nonlinear quaisperiodic func-
tionals both for the generating functions and (effective)
sources. For such locally anisotropic and inhomogeneous
cosmological models defined by nonlinear superpositions of
cosmological solutions (53) and (55) when the coefficients
of (44) are computed,

ηi (τ ) = e ψ(τ,x
i )/g̊i ; generating function

qpη3(τ ) = qpη3(τ, x
i , t);

η4(τ ) = − 4[(|qpη3(τ )h̊3|1/2)∗]2

h̊4|
∫
dtqp�(τ ) (qpη3(τ )h̊3)∗|

;

η3
i (τ ) = 1nk(τ )

n̊k
+ 42nk(τ )

n̊k

×
∫

dt

(
[(qpη3(τ )h̊3)

−1/4]∗
)2

| ∫ dtqp�(τ ) (qpη3(τ )h̊3)∗|
;

η4
k(τ ) = ∂i

∫
dt qp�(τ ) (qpη3(τ )h̊3)

∗

ẘi
qp�(τ ) (qpη3(τ )h̊3)∗

, (56)

where 1nk(τ, xi ) and 2nk(τ, xi ) are integration functions.
In formulas (56), there are considered nonlinear generat-

ing functionals qp (τ) = qp (τ, xi , t) = qp [ f l , m
 , F , int0  ,

χ
0 ] characterized by nonlinear symmetries

(35) for some prescribed families of nonlinear functionals
qp�(τ ) = qp�(τ, xi , t) = qp�[ f l�, m�, F�, int0 �+χ0 �]
and qp�(τ). Instead of nonlinear superpositions (qp (τ),
qp�(τ ), qp�(τ)), we can consider additive data (a (τ),
a�(τ ), a�(τ)). We can define also general nonlinear,
qpη3(τ, x

i , t), or additive functionals, aη3(τ, x
i , t), for other

types polarization functions,

qp 
2
(τ ) = 4|qp�(τ)[h[0]

3 (τ )− qpη3(τ, x
i , t)h̊3(x

k, t)]|,
(qp�

2
)∗(τ ) = −

∫
dt qp�(τ ) [qpη3(τ, x

i , t)h̊3(x
i , t)]∗.

There are defined LC-configurations with zero torsion for
target off-diagonal cosmological metrics (40) if there are con-
sidered integrable polarization functions

ηi (τ ) = e ψ(τ,x
i )/g̊i ; generating function

η̌3(τ ) =qp η̌3(τ, x
i , t);

η4(τ ) = − 4[(|qpη̌3(τ )h̊3|1/2)∗]2

h̊4|
∫
dtqp�̌(τ )(qpη̌3(τ )h̊3)∗|

;

η3
k(τ ) = (∂kn(τ, xi ))/n̊k; η4

k(τ ) = ∂k Ǎ(τ, xi , t)/ẘk .

Finally, it should be noted that there is duality on y3 and
y4 coordinates and respective N-connection coefficients for
the class of cosmological solutions (56) and the stationary
solutions which can be generated via transforms (33).

6 Conclusions and discussion

In this article we elaborate a geometric approach to E. Ver-
linde conjecture [6,7] that gravity can be considered as emer-
gent phenomena of a conventional spacetime elasticity deter-
mined by certain entropic forces. We argue that rigorous ther-
modynamic formulations exist for the models of “entropic
spacetime and gravity” which can be derived from gener-
alizations of the Poincaré–Thurston conjecture extended to
relativistic geometric flow evolution theories. This is possible
if corresponding nonholonomic modifications of Perelman’s
(entropic type) functionals are performed. For self-similar
configurations, certain type entropic flow evolution equa-
tions result into corresponding nonholonomic Ricci soliton
equations which are equivalent to the motion equations in
emergent modified gravity theories, MGTs, and (for certain
conditions) in general relativity, GR.

To study geometric flow evolution of Riemannian met-
rics G. Perelman introduced two Lyapunov type function-
als (F- and W-entropy) [45] which was a very important
step to the proof of the Poincaré conjecture and elaborat-
ing geometric and statistical thermodynamics models for
Ricci flows and possible applications in modern physics.
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In a series of our works [34–41,78] , we considered var-
ious modifications of the F- and W-entropy functionals for
constructing (non) commutative and/or supersymmetric geo-
metric evolution models; investigating nonlinear (fractional
and/or locally anisotropic) stochastic and kinetic processes
in curved spaces; and elaborating on cosmological scenarios
encoding memory and quantum interactions of gravitational
and (effective) matter fields. Here we note that the concepts
of complex manifolds, supermanifolds and noncommutative
geometry, are defined by geometric constructions with non-
holonomic distributions on curved spaces. In such a general
context, for various entropic spacetime and emergent grav-
ity models, and in geometric flow evolution theories with
nonholonomic constraints, we have to develop an unified
geometric formalism for metric-affine spaces, generalized
Finsler–Lagrange–Hamilton geometry, almost Kähler and
noncommutative geometries etc. Such constructions were
performed for Hořava–Lifshits, f (R), R2, and other types
MGTs (see reviews [68–70,79,80]) with developments for
models of thermodynamic/entropic/entanglement and emer-
gent gravity [4–7,16,17,19–25,31,65–67]; and for locally
anisotropic kinetic and thermodynamic theories on curved
spaces (see [38,71,78,81–83] and references therein) etc.

We have found that using certain classes of nonholo-
nomic variables the (relativistic) geometric flow evolution
and Ricci soliton equations, and related motion equations
in entropic and other type MGTs, can be decoupled and
integrated in some very general forms. This allows us to
construct various classes of exact and parametric solutions
with generic off-diagonal metrics and generalized connec-
tions. The coefficients of new classes of stationary and (in
general, locally anisotropic and inhomogeneous) cosmolog-
ical solutions depend on all spacetime and associated phase
space (kinetic and/or thermodynamic) coordinates via gener-
ating and integration functions and various types of commu-
tative and noncommutative parameters and integration and
physical constants. Such geometric and analytic techniques
of constructing exact solutions in geometric flow evolution
and MGTs have been developed in the framework of the
so-called anholonomic frame deformation method, AFDM
[55–57]. For details, examples of exact solutions, and vari-
ous applications, we cite [33,38–41,41,58–60,63] and refer-
ences therein.

It should be noted that there were not elaborated cor-
responding topological methods and a well-defined ana-
lytic formalism for investigating geometric evolution equa-
tions of metrics of pseudo-Euclidean signature. A number of
such conceptual and fundamental issues in nonlinear func-
tional analysis and the geometry of Lorentz manifolds have
not addressed or solved by mathematicians. The standard
geometric flow paradigm was proposed as the Hamilton–
Perelman program for Riemannian metrics defining entropy
type functionals and deriving nonlinear evolution equations.

To elaborate realistic relativistic physical models we deal
with Ricci tensors which in the limit of weak gravita-
tional/elastic flows approximate to the d’Alembert (wave)
operator and not to the Laplace (diffusion) one used for
Euclidean signatures. So, the original approach to the topol-
ogy and geometric flows of Riemannian metrics has to be
generalized in certain relativistic and nonholonomic forms
which are compatible with modern experimental particle
physics data and observational cosmology. The Poincaré–
Thurston conjecture can be formulated and proven for non-
relativistic evolution of any 3-d space like hypersurface. In
this and partner [32] works, we advocate that using E. Ver-
linde conjecture on elastic emergent gravity, we can elabo-
rate on generalizations of nonholonomic Ricci flow theories
as certain models of relativistic flow evolution. Such mod-
els are determined by extensions of Perelman’s function-
als for 3-d Riemannian metrics to certain modified 4-d F-
and W-entropy nonholonomic analogs which are extended
on a time like coordinate and/or a temperature like evo-
lution parameter. For certain approaches with rich gravita-
tional vacuum structure, we work with geometric relativistic
kinetic/hydrodynamic/thermodynamic models (see details in
[38]) or (for instance, in this work) with a τ -parametric theory
describing geometric entropic flows determined by relativis-
tic and elastically spacetime modified nonholonomic F- and
W-functionals.

As it was mentioned above, there is not yet formulated
a rigorous mathematical approach to the theory of relativis-
tic geometric/entropic flows of metrics with Lorentz signa-
ture and generalized connections. Nevertheless, we shown
that such theories are characterized by certain classes of
generalized R. Hamilton equations with effective parametric
sources which may encode entropic and quasiperiodic struc-
tures (these are necessary for explaining, for instance, the
complex structure of dark matter and energy in modern cos-
mology). Using the AFDM, we proved that such geometric
flow evolution equations and their Ricci soliton variants can
be decoupled and integrated in very general forms. In Sect. 5,
we constructed and analyzed possible physical implications
of respective entropic locally anisotropic cosmological solu-
tions. A series of our former results on astrophysical and
cosmological models with quasiperiodic, pattern forming,
quasicrystal time like structures, see [59–64] and references
therein, were used for developing in this work similar mod-
els for the entropic geometric flow and gravity theories. Such
exact and parametric solutions provide also explicit examples
of entropic gravity models developed in a phenomenologi-
cal manner in [6,7,65]. So, we conclude that the E. Verlinde
conjecture on entropic character of gravity can be related
to a relativistic extension of the Poincaré–Thurston conjec-
ture. Even such geometric ideas have not been proven as
explicit theorems in modern geometric analysis, there are
rigorous exact solutions of respective systems of nonlinear
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PDES which support such entropic gravity and flow evolu-
tion ideas.

In Sects. 4 and 5, we shown how to construct in explicit
form entropic and quasiperiodic solutions for relativistic geo-
metric flows, nonholonomic Ricci solitons and generalized
gravitational field equations. Such a techniques was elabo-
rated similarly to MGTs with quasiperiodic structure (con-
structed and studied in this and our partner works [32,63,64])
and involves generic off-diagonal metric and nonholonom-
ically deformed non-Riemannian linear and nonlinear con-
nections. We emphasized, see also [41], that such configu-
rations are not characterized, in general, by certain entropy-
area, holographic or duality conditions. As a consequence,
it is not possible to elaborate on thermodynamic models
of entropic MGTs and physical properties of their exact or
parametric solutions using only the concepts related to the
Bekenstein–Hawking entropy. We consider that there is an
alternative and more general way when stationary and cosmo-
logical solutions in geometric/entropic flow evolution theo-
ries, MGTs and GR, can be defined and characterized by non-
holonomic deformations of Perelman’s W-entropy. Such con-
structions are similar to the well-known results on relativistic
locally anisotropic thermodynamics and kinetics [38,71] and
can be generalized for emergent classical and quantum grav-
ity theories.

Finally, we note that our geometric/entropic flow approach
to MGTs provides new mathematical methods and applica-
tions in the theory of classical and quantum informatics, for
research of quantum systems with entanglement, models of
quantum and emergent gravity, and accelerating cosmology
and dark energy/matter interactions etc. Our further research
programs are related to developments in such directions.

Acknowledgements This research develops authors’ former research
programs on geometric flows and applications in physics and informa-
tion theory partially supported by a fellowship at IMAFF CSIC Madrid;
a visit at Fields Institute, Toronto; a project IDEI, PN-II-ID-PCE-2011-
3-0256; fellowships at CERN and DAAD programs for W. Heisenberg
(M. Plank) Institute, Munich.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: Associated data
were not considered for this work.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

References

1. J.D. Bekenstein, Black holes and the second law. Nuovo Cimento
Lett. 4, 737–740 (1972)

2. J.D. Bekenstein, Black holes and entropy. Phys. Rev. D 7, 2333–
2346 (1973)

3. J.M. Bardeen, B. Carter, S.W. Hawking, The four laws of black
hole mechanics. Commun. Math. Phys. 31, 161 (1973)

4. T. Jacobson, Entanglement equilibrium and the Einstein equation.
Phys. Rev. Lett. 116, 201101 (2016)

5. T. Padmanabhan, Theromdynamical aspects of gravity: new
insights. Rep. Prog. Phys. 73, 046901 (2010)

6. E.P. Verlinde, On the origin of gravity and the laws of Newton.
JHEP 1104, 029 (2011)

7. E.P. Verlinde, Emergent gravity and the dark universe. SciPost
Phys. 2(3), 016 (2017)

8. A. Strominger, C. Vafa, Microscopic origin of the Bekenstein–
Hawking entropy. Phys. Lett. B 379, 99 (1996)

9. L. Susskind, The world as a hologram. J. Math. Phys. 36, 6377–
6396 (1995)

10. G. ’t Hooft, Dimensional reduction in quantum gravity.
arXiv:gr-qc/9310026

11. L. Susskind, L. Thorlacius, J. Uglum, The stretched horizon and
black hole complementarity. Phys. Rev. D 48, 3743–3761 (1993)

12. E. Witten, Anti-de Sitter space and holography. Adv. Theor. Math.
Phys. 2, 253–291 (1998)

13. O. Aharaony, S.S. Gubser, J.M. Maldacena, H. Ooguri, Y. Oz,
Large-N field theories, string theory and gravity. Phys. Rep. 323,
183–386 (2000)

14. J.M. Maldacena, The large N limit of superconformal field theories
and supergravity. Adv. Theor. Math. Phys. 2, 231 (1998)

15. A. Ashtekar, B. Krishnan, Isolated and dynamical horizons and
their application. Living Rev. Relativ. 7, 10 (2004)

16. M. Van Raamsdonk, Building up spacetime with quantum entan-
glement. Gen. Relativ. Gravit. 42, 2323 (2010). arXiv:1005.3035

17. M. Van Raamsdonk, Building up spacetime with quantum entan-
glement. Int. J. Mod. Phys. D 19, 2429 (2010)

18. J. Maldacena, L. Susskind, Cool horizons for entangled black holes.
Fortschr. Phys. 61, 781 (2013)

19. N. Lashkari, M.B. McDermott, M. Van Raamsdonk, Gravitational
dynamics from entanglement ‘thermodynamics’. JHEP 1404, 195
(2014)

20. S. Ryu, T. Takayanagi, Holographic derivation of entanglement
entropy from AdS/CFT. Phys. Rev. Lett. 96, 181602 (2006)

21. S. Ryu, T. Takayanagi, Aspects of holographic entanglement
entropy. JHEP 1105, 036 (2011)

22. S. Lloyd, The quantum geometric limit. arXiv:1206.6559
23. T. Faulkner, M. Guica, T. Harman, R.C. Myers, M. Van Raamsdonk,

Gravitation from entanglement and holographic CFTs. JHEP 1403,
051 (2015)

24. B. Swingle, Entanglement renormalization and holography. Phys.
Rev. D 86, 065007 (2012)

25. F. Pastawski, B. Yoshida, D. Harlow, J. Preskill, Holographic quan-
tum error-correcting codes: toy models for the bulk/boundary cor-
respondence. JHEP 1506, 149 (2015)

26. E. Oh, I.Y. Park, S.-J. Sin, Complete Einstein equation from the
generalized first law of entanglement. Phys. Rev. D 98, 026020
(2018)

27. E. Witten, A mini-introduction to information theory. Riv. Nuovo
Cim. 43, 187–227 (2020)

28. J. Preskill, Lecture notes. http://www.theory.caltech.edu/~preskill/
ph219/index.html#lecture

29. H. Casini, M. Huerta, R.C. Myers, Towards a derivation of holo-
graphic entanglement entropy. JHEP 1105, 036 (2011)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/gr-qc/9310026
http://arxiv.org/abs/1005.3035
http://arxiv.org/abs/1206.6559
http://www.theory.caltech.edu/~preskill/ph219/index.html#lecture
http://www.theory.caltech.edu/~preskill/ph219/index.html#lecture


81 Page 24 of 25 Eur. Phys. J. C (2021) 81 :81

30. A. Lewkowycz, J. Maldacena, Generalized gravitational entropy.
JHEP 1308, 090 (2013)

31. S.N. Solodukhin, Entanglement entropy of black holes. Living Rev.
Relativ. 14, 8 (2011)

32. I. Bubuianu, S. Vacaru, E.V. Veliev, Entropy functionals and
thermodynamics of relativistic geometric flows, stationary quasi-
periodic Ricci solitons, and gravity. Ann. Phys. 423, 168333 (2020)

33. S. Vacaru, Ricci flows and solitonic pp-waves. Int. J. Mod. Phys.
A 21, 4899–4912 (2006)

34. S. Vacaru, Nonholonomic Ricci flows: II. Evolution equations and
dynamics. J. Math. Phys. 49, 043504 (2008)

35. S. Vacaru, Spectral functionals, nonholonomic Dirac operators, and
noncommutative Ricci flows. J. Math. Phys. 50, 073503 (2009)

36. S. Vacaru, Fractional nonholonomic Ricci flows. Chaos Solitons
Fractals 45, 1266–1276 (2012)

37. S. Vacaru, Almost Kaehler Ricci flows and Einstein and Lagrange–
Finsler structures on Lie algebroids. Mediterr. J. Math. 12, 1397–
1427 (2015)

38. V. Ruchin, O. Vacaru, S. Vacaru, Perelman’s W-entropy and sta-
tistical and relativistic thermodynamic description of gravitational
fields. Eur. Phys. J. C 77, 184 (2017)

39. T. Gheorghiu, V. Ruchin, O. Vacaru, S. Vacaru, Geometric flows
and Perelman’s thermodynamics for black ellipsoids in R2 and
Einstein gravity theories. Ann. Phys. 369, 1–35 (2016)

40. S. Rajpoot, S. Vacaru, On supersymmetric geometric flows and R2
inflation from scale invariant supergravity. Ann. Phys. 384, 20–60
(2017)

41. L. Bubuianu, S. Vacaru, Black holes with MDRs and Bekenstein–
Hawking and Perelman entropies for Finsler–Lagrange–Hamilton
spaces. Ann. Phys. 404, 10–38 (2019)

42. R.S. Hamilton, Three-manifolds with positive Ricci curvature. J.
Differ. Geom. 17, 255–306 (1982)

43. R.S. Hamilton, The Ricci flow on surfaces, in Mathematics and
General Relativity. ContemporaryMathematics, vol. 71 (American
Mathematical Society, Providence, 1988), pp. 237–262

44. R.S. Hamilton, in Surveys in Differential Geometry, vol. 2 (Inter-
national Press, Vienna, 1995), pp. 7–136

45. G. Perelman, The entropy formula for the Ricci flow and its geo-
metric applications. arXiv:math.DG/0211159

46. H.-D. Cao, H.-P. Zhu, A complete proof of the Poincaré
and geometrization conjectures—application of the Hamilton–
Perelman theory of the Ricci flow. Asian J. Math. 10, 165–495
(2006)

47. J.W. Morgan, G. Tian, Ricci Flow and the Poincaré Conjecture,
AMS, Clay Mathematics Monographs, vol. 3 (2007)

48. B. Kleiner, J. Lott, Notes on Perelman’s papers. Geom. Topol. 12,
2587–2855 (2008)

49. D. Friedan, Nonlinear models in 2 + ε dimensions. PhD Thesis
(Berkely) LBL-11517, UMI-81-13038, Aug 1980 (1980)

50. D. Friedan, Nonlinear models in 2+ε dimensions. Phys. Rev. Lett.
45, 1057–1060 (1980)

51. D. Friedan, Nonlinear models in 2+ε dimensions. Ann. Phys. 163,
318–419 (1985)

52. E.P. Verlinde, H.L. Verlinde, RG flow, gravity and the cosmological
constant. JHEP 0005, 034 (2000)

53. A.A. Tseytlin, On sigma model RG flow, “central charge” action
and Perelman’s entropy. Phys. Rev. D 75, 064024 (2007)

54. S. Jackson, R. Pourhasan, H. Verlinde, Geometric RG flow.
arXiv:1312.6914

55. S. Vacaru, Exact solutions with noncommutative symmetries in
Einstein and gauge gravity. J. Math. Phys. 46, 042503 (2005)

56. S. Vacaru, Nonholonomic Ricci flows, exact solutions in gravity,
and symmetric and nonsymmetric metrics. Int. J. Theor. Phys. 48,
579–606 (2009)

57. S. Vacaru, On general solutions in Einstein gravity. Int. J. Geom.
Methods Mod. Phys. 8, 9–21 (2011)

58. T. Gheorghiu, O. Vacaru, S. Vacaru, Off-diagonal deformations
of Kerr black holes in Einstein and modified massive gravity and
higher dimensions. Eur. Phys. J. C 74, 3152 (2014)

59. L. Bubuianu, K. Irwin, S. Vacaru, Heterotic supergravity with inter-
nal almost-Kaehler spaces; instantons for SO(32), or E8 × E8,
gauge groups; and deformed black holes with soliton, quasiperi-
odic and/or pattern-forming structures. Class. Quantum Gravity 34,
075012 (2017)

60. S. Vacaru, Off-diagonal ekpyrotic scenarios and equivalence of
modified, massive and/or Einstein gravity. Phys. Lett. B 752, 27–
33 (2016)

61. M.M. Amaral, R. Ashheim, L. Bubuianu, K. Irwin, S.I. Vacaru,
D. Woolridge, Anamorphic quasiperiodic universes in modified
and Einstein gravity with loop quantum gravity corrections. Class.
Quantum Gravity 34, 185002 (2017)

62. R. Aschheim, L. Bubuianu, F. Fang, K. Irwin, V. Ruchin, S. Vacaru,
Starobinsky inflation and dark energy and dark matter effects from
quasicrystal like spacetime structure. Ann. Phys. 394, 120–138
(2018)

63. L. Bubuianu, S. Vacaru, Deforming black hole and cosmologi-
cal solutions by quasiperiodic and/or pattern forming structures in
modified and Einstein gravity. Eur. Phys. J. C 78, 393 (2018)

64. S. Vacaru, Space-time quasicrystal structures and inflationary and
late time evolution dynamics in accelerating cosmology. Class.
Quantum Gravity 35, 245009 (2018)

65. S. Hossenfelder, Covariant version of Verlinde’s emergent gravity.
Phys. Rev. D 95, 124018 (2017)

66. D.-C. Dai, D. Stojkovic, Comment on ‘Covariant version of Ver-
linde’s emergent gravity’. Phys. Rev. D 96, 108501 (2017)

67. D.-C. Dai, D. Stojkovic, Inconsistencies in Verlinde’s emergent
gravity. JHEP 1711, 007 (2017)

68. S. Nojiri, S.D. Odintsov, V.K. Oikonomou, Modified gravity the-
ories in nutshell: inflation, bounce and late-time evolution. Phys.
Rep. 692, 1–104 (2017)

69. S. Capozziello, V. Faraoni, Beyond Einstein Gravity (Springer,
Berlin, 2010)

70. M. Wali Hossain, R. Myrzakulov, M. Sami, E.N. Saridakis, Unifi-
cation of inflation and drak energy á la quintessential inflation. Int.
J. Mod. Phys. D 24, 1530014 (2015)

71. S. Vacaru, Locally anisotropic kinetic processes and thermodynam-
ics in curved spaces. Ann. Phys. (N.Y.) 290, 83–123 (2001)

72. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (Freeman,
New York, 1973)

73. P. Das, S. Pan, S. Ghosh, Thermodynamics and phase transi-
tion in Shapere–Wilczek fgh model: cosmological time crystal in
quadratic gravity. Phys. Lett. B (accepted). arXiv:1810.06606

74. A. Shapere, F. Wilczek, Classical time crystals. Phys. Rev. Lett.
109, 160402 (2012)

75. F. Wilczek, Quantum time crystals. Phys. Rev. Lett. 109, 160401
(2012)

76. F. Wilczek, Wilczek reply. Phys. Rev. Lett. 110, 118902 (2013)
77. A.D. Shapere, F. Wilczek, Realization of “time crystal”

Lagrangians and emergent sisyphus dynamics. arXiv:1708.3348
78. S. Vacaru, Nonholonomic relativistic diffusion and exact solutions

for stochastic Einstein spaces. Eur. Phys. J. P 127, 32 (2012)
79. S. Basilakos, A.P. Kouretsis, E.N. Saridakis, P. Stavrinos, Resem-

bling dark energy and modified gravity with Finsler–Randers cos-
mology. Phys. Rev. D 83, 123510 (2013)

80. T. Elghozi, N.E. Mavromatos, M. Sakellariadou, M.F. Yusaf, The
D-material universe. JCAP 02, 60 (2016)

81. G. Ruppeiner, Riemannian geometry in thermodynamic fluctuation
theory. Rev. Mod. Phys. 67, 605–659 (1995) [Erratum: 68, 313
(1996)]

123

http://arxiv.org/abs/math.DG/0211159
http://arxiv.org/abs/1312.6914
http://arxiv.org/abs/1810.06606
http://arxiv.org/abs/1708.3348


Eur. Phys. J. C (2021) 81 :81 Page 25 of 25 81

82. H. Quevedo, Geometrothermodynamics. J. Math. Phys. 48, 013506
(2007)

83. C. Castro Perelman, Thermal relativity, corrections of black hole
entropy, Born’s reciprocal relativity theory and quantum gravity.
Can J. Phys. 97, 1309–1316 (2019)

123


	Off-diagonal cosmological solutions in emergent gravity theories and Grigory Perelman entropy for geometric flows
	Abstract 
	1 Introduction
	2 Spacetime 2+2 and 3+1 fibrations with elastic and quasiperiodic structures
	2.1 Nonlinear connections with 2+2 splitting of Lorentz manifolds
	2.2 Nonholonomic 3+1 splitting adapted to 2+2 structures
	2.3 Quasiperiodic space and time QC configurations
	2.3.1 1-d relativistic time QC structures
	2.3.2 3-d QC structures on curved spaces

	2.4 Distributions defining spacetime elastic configurations

	3 Relativistic geometric flows and modified entropic gravity
	3.1 Modified spacetime and hypersurface Perelman's functionals
	3.1.1 Generalized Perelman functionals for entropic geometric flows and MGTs
	3.1.2 Nonholonomic 3-d space like hypersurface F- and W-functionals

	3.2 Geometric flow equations for modified gravitational and matter fields
	3.3 Entropic gravity and gravitational field equations as Ricci solitons

	4 Decoupling and integrability of entropic flow equations
	4.1 Geometric flows with parametric modified Einstein equations
	4.1.1 Entropic quasiperiodic flow modifications of gravitational field equations
	4.1.2 Effective entropic sources for stationary and/or cosmological configurations

	4.2 Nontrivial Ricci d-tensors and decoupling of entropic flow equations
	4.2.1 Off-diagonal metric ansatz, (non) holonomic variables, and ODEs and PDEs
	4.2.2 Cosmological Ricci d-tensors, LC-conditions, and nonlinear symmetries

	4.3 Integrability of entropic quasiperiodic geometric flow equations
	4.3.1 Off-diagonal cosmological solutions with elastic quasiperiodic structures
	4.3.2 Quadratic line elements for off-diagonal cosmological configurations with elastic flows
	4.3.3 Off-diagonal Levi-Civita entropic and quasiperiodic cosmological configurations


	5 Entropic quasiperiodic flows and cosmological solutions
	5.1 The AFDM for entropic flow cosmological solutions
	5.2 Nonlinear PDEs for entropic quasiperiodic cosmology
	5.2.1 Cosmological solutions for entropic quasiperiodic sources
	5.2.2 Cosmological configurations with nonstationary entropic generating functions
	5.2.3 Emergent quasiperiodic cosmology from both generating functionals and sources

	5.3 Cosmological metrics evolving in entropic quasiperiodic media
	5.3.1 Cosmological evolutions generated by nonstationary entropic sources
	5.3.2 Cosmology from nonstationary entropic generating functions
	5.3.3 Cosmological configurations for entropic sources and generating functions


	6 Conclusions and discussion
	Acknowledgements
	References




