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Abstract We report evidence for the charged charmed-
strange baryon �c(2930)+ with a signal significance of 3.9σ

with systematic errors included. The charged �c(2930)+
is found in its decay to K 0

S�
+
c in the substructure of

B̄0 → K 0
S�

+
c �̄−

c decays. The measured mass and width
are [2942.3 ± 4.4(stat.) ± 1.5(syst.)] MeV/c2 and [14.8 ±
8.8(stat.) ± 2.5(syst.)] MeV, respectively, and the product
branching fraction is B(B̄0 → �c(2930)+�̄−

c )

B(�c(2930)+ → K̄ 0�+
c ) = [2.37 ± 0.51(stat.) ± 0.31

(syst.)] × 10−4. We also measure B(B̄0 → K̄ 0�+
c �̄−

c ) =
[3.99 ± 0.76(stat.) ± 0.51(syst.)] × 10−4 with greater pre-
cision than previous experiments, and present the results of
a search for the charmonium-like state Y (4660) and its spin
partner, Yη, in the �+

c �̄−
c invariant mass spectrum. No clear

signals of the Y (4660) or Yη are observed and the 90% cred-
ibility level (C.L.) upper limits on their production rates are
determined. These measurements are obtained from a sample
of (772 ± 11) × 106B B̄ pairs collected at the ϒ(4S) reso-
nance by the Belle detector at the KEKB asymmetric energy
electron-positron collider.

The study of the excited states of charmed and bottom
baryons is important as they offer an excellent laboratory for
testing the heavy-quark symmetry of the c and b quarks and
the chiral symmetry of the light quarks. At present, the parti-
cle data group (PDG) lists ten charmed-strange baryons [1].
Among these, �c(2930) and �c(3123) are relatively less
established and the evidence for them is poor [1]. For most
of these excited �c states the spin and parity (J P ) have not
been determined by experiments due to limited statistics.

Theoretically, the mass spectrum of excited charmed
baryons has been computed in many models, including quark
potential models [2–6], the relativistic flux tube model [7,8],
the coupled channel model [9], the Quantum Chromodynam-
ics (QCD) sum rule [10–14], Regge phenomenology [15], the
constituent quark model [16,17], and lattice QCD [18,19].
The strong decays of excited �c baryons have also been stud-
ied in many models [20–26]. In these models, some possible
J P assignments of these excited �c have been performed.
While many new excited charmed baryons have been dis-
covered in experiments in recent years, and there has been
dedicated theoretical work devoted to study the nature of
charmed baryon such as the baryon internal structure and
quark configuration, further cooperative efforts are needed
from both experimentalists and theorists to make progress in
this area.

Very recently, Belle reported the first observation of
the �c(2930)0 charmed-strange baryon with a significance

a e-mail: shencp@ihep.ac.cn

greater than 5σ from a study of the substructure of B− →
K−�+

c �̄−
c decays [27]. The measured mass and width of

the �c(2930)0 were found to be [2928.9 ± 3.0(stat.)+0.9
−12.0

(syst.)] MeV/c2 and [19.5 ± 8.4(stat.)+5.9
−7.9(syst.)] MeV,

respectively. As the isospin of the �c state is always 1
2

and the neutral �c(2930)0 has been found, it is natural to
search for the charged �c(2930)+ state in the substructure
in B̄0 → K̄ 0�+

c �̄−
c decays.

BaBar and Belle have previously studied B̄0 → K̄ 0�+
c �̄−

c
decays using data samples of 230 × 106 and 386 × 106 B B̄
pairs, and found signals of 1.4σ and 6.6σ significances,
respectively [28,29]. Neither experiment searched for pos-
sible intermediate states such as the K 0

S�c system. The full
Belle data sample of (772 ± 11) × 106B B̄ pairs permits an
improved study of B̄0 → K̄ 0�+

c �̄−
c and a search for the

charged �c(2930)+ in the decay mode K̄ 0�+
c .

The �+
c �̄−

c system is interesting because (1) Belle
has observed the Y (4630) in the initial state radiation
(ISR) process e+e− → γISR�+

c �̄−
c and measured a

mass and width of [4634+8
−7(stat.)+5

−8(syst.)] MeV/c2 and

[92+40
−24(stat.)+10

−21(syst.)] MeV, respectively [30]; (2) Belle
has also observed the Y (4660) in e+e− → γISRπ+π−ψ ′
with a measured mass and width of [4652 ± 10(stat.) ±
8(syst.)] MeV/c2 and [68±11(stat.)±1(syst.)] MeV, respec-
tively [31,32]. As the masses and widths of the Y (4630)

and Y (4660) are close to each other, many theoretical
explanations assume they are the same state [33–35]. In
Refs. [36,37], the authors predicted aY (4660) spin partner—
a f0(980)ηc(2S) bound state denoted by the Yη—with a mass
and width of (4613±4) MeV/c2 and around 30 MeV, respec-
tively, with the assumption that the Y (4660) is an f0(980)ψ ′
bound state [35,37]. Belle has searched for these states in the
substructure of B− → K−�+

c �̄−
c decays, and no clear sig-

nals were observed [27]. The corresponding B0 decay mode
can also be used to study the �+

c �̄−
c invariant mass.

In this letter, we report an updated measurement of B̄0 →
K̄ 0�+

c �̄−
c and a search for the charged �c(2930)+ →

K̄ 0�+
c state with a statistical significance of 4.1σ [38]. This

analysis is based on the full data sample collected at the
ϒ(4S) resonance by the Belle detector [39] at the KEKB
asymmetric energy electron-positron collider [40,41].

The Belle detector is a large solid angle magnetic spec-
trometer that consists of a silicon vertex detector, a 50-layer
central drift chamber (CDC), an array of aerogel thresh-
old Cherenkov counters (ACC), a barrel-like arrangement of
time-of-flight scintillation counters (TOF), and an electro-
magnetic calorimeter comprised of CsI(Tl) crystals located
inside a superconducting solenoid coil that provides a 1.5 T
magnetic field. An iron flux-return yoke located outside the
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coil is instrumented to detect K 0
L mesons and to identify

muons. A detailed description of the Belle detector can be
found in Ref. [39]. Simulated signal events with B meson
decays are generated using EvtGen [42], while the inclu-
sive decays are generated via PYTHIA [43]. These events are
processed by a detector simulation based on GEANT3 [44].
Inclusive Monte Carlo (MC) samples of ϒ(4S) → B B̄
(B = B+ or B0) and e+e− → qq̄ (q = u, d, s, c) events
at

√
s = 10.58 GeV are used to check the backgrounds, cor-

responding to more than 5 times the integrated luminosity of
the data.

In our analysis of B̄0 → K̄ 0�+
c �̄−

c , K̄ 0 is recon-
structed via its decay K 0

S → π+π−, and �+
c candidates are

reconstructed in the �+
c → pK−π+, pK 0

S , and �π+(→
pπ−π+) decay channels. Then a �+

c and �̄−
c are combined

to reconstruct a B candidate, with at least one required to
have been reconstructed via the pK−π+ or p̄K+π− decay
process.

For well reconstructed charged tracks, except for those
from � → pπ− and K 0

S → π+π− decays, the impact
parameters perpendicular to and along the beam direction
with respect to the nominal interaction point are required to
be less than 0.5 cm and 4 cm, respectively, and the transverse
momentum in the laboratory frame is required to be larger
than 0.1 GeV/c. The information from different detector sub-
systems including specific ionization in the CDC, time mea-
surements in the TOF and response of the ACC is combined
to form the likelihood Li of the track for particle species i ,
where i = π , K or p [45]. Except for the charged tracks
from � → pπ− and K 0

S → π+π− decays, tracks with a
likelihood ratio Rπ

K = LK /(LK + Lπ ) > 0.6 are identified
as kaons, while tracks with Rπ

K < 0.4 are treated as pions.
The kaon (pion) identification efficiency is about 94% (97%),
while 5% (3%) of the kaons (pions) are misidentified as pions
(kaons) with the selection criteria above. For proton identi-
fication, a track with Rπ

p/ p̄ = Lp/ p̄/(Lp/ p̄ + Lπ ) > 0.6

and RK
p/ p̄ = Lp/ p̄/(Lp/ p̄ + LK ) > 0.6 is identified as

a proton/anti-proton with an efficiency of about 98%; less
than 1% of the pions/kaons are misidentified as protons/anti-
protons.

The K 0
S candidates are reconstructed from pairs of

oppositely-charged tracks which are treated as pions, and
identified by a multivariate analysis with a neural net-
work [46] based on two sets of input variables [47]. Can-
didate � baryons are reconstructed in the decay � → pπ−
and selected if the pπ− invariant mass is within 5 MeV/c2

(5σ ) of the � nominal mass [1].
A vertex fit to the B candidates is performed and the can-

didate with the minimum χ2
vertex/n.d. f. from the vertex fit

is selected as the signal B candidate if there is more than
one B candidates in an event, where n.d. f. is the number
of freedom of the vertex fit. Then χ2

vertex/n.d. f. < 15 is

required, which has a selection efficiency above 96%. As the
continuum background level is very low, further continuum
suppression is not necessary.

The B candidates are identified using the beam-energy
constrained mass Mbc and the mass difference �MB .
The beam-energy constrained mass is defined as Mbc ≡√
E2

beam/c2 − (
∑ �pi )2/c, where Ebeam is the beam energy

and �pi are the three-momenta of the B-meson decay prod-
ucts, all defined in the center-of-mass system (CMS) of the
e+e− collision. The mass difference is defined as �MB ≡
MB − mB , where MB is the invariant mass of the B can-
didate and mB is the nominal B-meson mass [1]. The B
signal region is defined as |�MB | < 0.018 GeV/c2 and
Mbc > 5.272 GeV/c2 (∼ 2.5σ ) which is shown as the cen-
tral box in the distribution of �MB versus Mbc in Fig 1.

The scatter plot of M�̄−
c

versus M�+
c

is shown in the right

panel of Fig. 1 for the selected B̄0 → K 0
S�

+
c �̄−

c data can-
didates in the B signal region, and clear �+

c and �̄−
c sig-

nals are observed. According to the signal MC simulation,
the mass resolution of �c candidates is almost independent
of the �c decay mode. The �c signal region is defined as
|M�c − m�c | < 12 MeV/c2 (∼ 2.5σ ) for all �c decay
modes illustrated by the central green box in the Fig. 1 (right
panel), where m�c is the nominal mass of the �c baryon [1].
To estimate the non-�c backgrounds, we define the �+

c and
�̄−

c mass sidebands as half of the total number of events in
the four sideband regions next to the signal region minus one
quarter of the total number of events in the four sideband
regions in the corners as shown in Fig. 1 (right panel).

To extract the B̄0 → K 0
S�

+
c �̄−

c signal yields, we perform
an unbinned two-dimensional (2D) simultaneous extended
maximum likelihood fit to the �MB versus Mbc distribu-
tions for the three reconstructed �c decay modes. A Gaussian
function for the signal shape plus an ARGUS function [48]
for the background are used to fit the Mbc distribution, and
the sum of a double-Gaussian function for the signal plus a
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Fig. 1 Signal-enhanced distributions of �MB versus Mbc (left panel)
and of M(�̄−

c ) versus M(�+
c ) (right panel) from the selected B̄0 →

K̄ 0�+
c �̄−

c candidates, summing over all three reconstructed �c decay
modes. Each panel shows the events falling in the solid green signal
region of the other panel. The dashed red and blue boxes in the left panel
show the defined �c sideband regions described in the text, which are
used for the estimation of the non-�c background
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+
c �̄−

c ,
combining three exclusive final states. The dots with error bars are data,
the solid blue curves are the best-fit projections to the distributions, and
the dashed magenta lines are the fitted backgrounds

first-order polynomial for the background are used to fit the
�MB distribution. Due to limited statistics, all the parame-
ters of the Gaussian functions are fixed to the values from the
fits to the individual MC signal distributions, and the relative
signal yields among the three final states are fixed according
to the relative branching fraction between the final states and
the detection acceptance and efficiency of the intermediate
states.

The projections of Mbc and �MB summed over the
three reconstructed �c decay modes in �c signal region,
together with the fitted results, are shown in Fig. 2. There are
34.9 ± 6.6 signal events with a statistical signal significance
above 8.3σ , and from which we extract the branching frac-
tion of B(B̄0 → K̄ 0�+

c �̄−
c ) = [3.99 ± 0.76(stat.)] × 10−4.

To check the intermediate states, mass constraint fits of
K 0

S , �̄−
c , and B̄0 are applied to the selected candidates in the

signal regions to improve the mass resolutions, while for the
above defined sidebands no mass constraint fits are applied.
After applying all selection criteria above, Dalitz distribution
of the M2

K 0
S�c

versus M2
�+

c �̄−
c

is shown in Fig. 3 with a flat 2D

efficiency distribution. Here, M2
K 0
S�c

is the sum of M2
K 0
S�

+
c

and M2
K 0
S�̄

−
c

. An enhancement can be seen in the horizontal

band corresponding to M(K 0
S�c) ∼ 2.93 GeV/c2, while no

signal band is apparent in the M(�+
c �̄−

c ) vertical direction.
The sum of the projections of MK 0

S�
+
c

and MK 0
S�̄

−
c

mass

spectra, denoted MK 0
S�c

, is shown in Fig. 4. The shaded his-

togram is from the normalized �+
c and �̄−

c mass sidebands,
which is consistent with the contributions from normalized
e+e− → qq̄ and ϒ(4S) → B B̄ generic MC samples. There-
fore, the estimate from the normalized �+

c and �̄−
c mass side-

bands is taken to represent the total background, neglecting
the small possible contribution of background with real �+

c
and �̄−

c .
A clear charged �c(2930)+ signal is found. No structure

is seen in the �+
c and �̄−

c mass sidebands.
An unbinned simultaneous extended maximum likelihood

fit is performed to the K 0
S�

+
c invariant mass spectra for the
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dates in the B signal region. The black dots are data; the shaded region
is the MC simulated phase-space distribution

total selected signal candidates and the �+
c and �̄−

c mass
sidebands. The following components are included in the fit
to the K 0

S�
+
c mass distribution for the total selected sig-

nal candidates: a constant width relativistic Breit-Wigner
(RBW) function ( 1

M2
�

+
c (2930)

−M2
K0
S�c

−iM
�

+
c (2930)

�
�

+
c (2930)

) con-

volved with a Gaussian resolution function with the phase
space factor and efficiency curve included (the width of the
Gaussian function being fixed to 5.36 MeV/c2 from the sig-
nal MC simulation) is taken as the charged �c(2930)+ signal
shape; a broader structure obtained by MC simulation is used
to represent the reflection of the charged �̄c(2930)−; direct
three-body B̄0 → K 0

S�
+
c �̄−

c decays are modeled by the
MC-simulated shape distributed uniformly in phase space; a
second-order polynomial is used to represent the �+

c and �̄−
c

mass-sideband distribution, which is normalized to represent
the total background events in the fit. In the above fit, the sig-
nal yields of the charged �c(2930)+ and the corresponding
reflection are constrained to be the same.

The fit results are shown in Fig. 4, where the solid blue
line is the best fit, and the solid magenta line is the total non-
charged-�c(2930) backgrounds including the fitted phase
space, the reflection of the charged �̄c(2930)−, and the fit-
ted sideband shape. The yields of the charged �c(2930)+
signal and the phase-space contribution are N�c(2930)+ =
21.2 ± 4.6 and Nphsp = 18.3 ± 4.6. The fitted mass and
width are M�c(2930)+ = [2942.3 ± 4.4(stat.)] MeV/c2 and
��c(2930)+ = [14.8 ± 8.8(stat.)] MeV, respectively, where
the correction of 2.8 MeV/c2 has been applied on the charged
�c(2930)+ mass, determined using the input and output
mass difference in the MC simulation. The statistical sig-
nificance of the charged �c(2930)+ signal is 4.1σ , calcu-
lated from the difference of the logarithmic likelihoods [49],
−2 ln(L0/Lmax) = 23.1, where L0 and Lmax are the max-
imized likelihoods without and with a signal component,
respectively, taking into account the difference in the num-
ber of degrees of freedom (�ndf = 3). The signal signifi-
cance is 3.9σ when convolving the likelihood profile with a
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Fig. 4 The MK 0
S�+

c
distribution of the selected data candidates, with

fit results superimposed. Dots with error bars are the data, the solid
blue line is the best fit,the solid magenta line is the total non-charged-
�c(2930) backgrounds including the fitted phase space, the reflection
of the charged �̄c(2930)−, and the fitted sideband shape, the dotted
green line is the fitted phase space and sideband shape, the dotted red
line is the fitted sideband shape, the shaded cyan histogram is from the
normalized �+

c and �̄−
c mass sidebands

Gaussian function of width equals the total systematic uncer-
tainty from detection efficiency, fitting procedure, intermedi-
ate states’ branching fractions. Alternative fits to the K 0

S�c

mass spectra are performed: (a) using a first-order or third-
order polynomial for background shape; (b) changing the
charged �c(2930)+ mass resolution by 10%; and (c) using an
energy-dependent RBW function for the charged �c(2930)+
signal shape. The charged �c(2930)+ signal significance is
larger than 3.5σ in all cases.

The product branching fraction ofB(B̄0→�c(2930)+�̄−
c )

B(�c(2930)+ → K̄ 0�+
c ) is [2.37±0.51(stat.)]×10−4 cal-

culated as
N�c(2930)+

ε
�c(2930)+
all NB0 B̄0B(�+

c →pK−π+)2
, where N�c(2930)+

is the fitted charged �c(2930)+ signal yield; NB0 B̄0 =
Nϒ(4S)B(ϒ(4S) → B0 B̄0) (Nϒ(4S) is the number of accu-
mulated ϒ(4S) events and B(ϒ(4S) → B0 B̄0) = 0.486 ±
0.006 [1]); B(�+

c → pK−π+) = (6.23 ± 0.33)% is the
world-average branching fraction for �+

c → pK−π+ [1];

ε
�c(2930)+
all = �ε

�c(2930)+
i �i/�(pK−π+) (i is the �c

decay-mode index, ε
�c(2930)+
i is the detection efficiency by

fitting the MK 0
S�

+
c

spectrum from signal MC with a charged

�c(2930)+ intermediate state, and �i is the partial decay
width of �+

c → pK−π+, pK 0
S , and �π− [1]). Here,

B(K 0
S → π+π−) or B(� → pπ−) is included in �i for

the final states with a K 0
S or a �.

The M�+
c �̄−

c
spectrum is shown in Fig. 5, where the shaded

cyan histogram is from the normalized �+
c and �̄−

c mass
sidebands. No evident signals of Yη or Y (4660) can be seen.
An unbinned extended maximum likelihood fit is applied to
the �+

c �̄−
c mass spectrum to extract the signal yields of the

Yη and Y (4660) in B decays separately. In the fit, the signal
shape of the Yη or Y (4660) is obtained from MC simulation
directly, with the input parameters MYη = 4616 MeV/c2 and
�Yη = 30 MeV for Yη [35], and MY (4660) = 4643 MeV/c2
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Fig. 5 The �+
c �̄−

c invariant mass spectra in data with a Yη and b
Y(4660) signals included in the fits. The solid blue lines are the best fits
and the dotted red lines represent the backgrounds. The shaded cyan
histograms are from the normalized �+

c and �̄−
c mass sidebands

and �Y (4660) = 72 MeV for Y (4660) [1]. The background is
described by the sum of the phase space shape, the normal-
ized �+

c and �̄−
c mass sidebands, and reflection shape of the

charged �c(2930)+ which has been obtained from MC sim-
ulation with the number of events fixed to that obtained from
the fit to the MK 0

S�
+
c

distribution. The fit results are shown in
Figs. 5a, b for the Yη and Y (4660), respectively. From the fits,
we obtain (10.4 ± 5.6) Yη and (10.0 ± 6.7) Y (4660) signal
events each with a signal statistical significance of 2.0σ and
1.6σ (n.d. f. = 1), respectively.

As the statistical signal significance of each Y state is
less than 3σ , 90% C.L. Bayesian upper limits on B(B̄0 →
K̄ 0Y )B(Y → �+

c �̄−
c ) are determined to be 2.2 × 10−4 and

2.3 × 10−4 for Y = Yη and Y (4660), respectively, by solv-

ing the equation
∫ Bup

0 L(B)dB/
∫ +∞

0 L(B)dB = 0.9, where
B = nY

εYallNB0 B̄0B(�+
c →pK−π+)2 is the assumed product branch-

ing fraction; L(B) is the corresponding maximized likeli-
hood of the data; nY is the number of Y signal events; and
εYall = ∑

εYi × �i/�(pK−π+) (εYi is the detection effi-
ciency from MC simulation for mode i). To take the system-
atic uncertainty into account, the above likelihood is con-
volved with a Gaussian function whose width equals to the
total systematic uncertainty discussed below.

The systematic uncertainties in the branching fraction
measurements are listed below. The detection efficiency rele-
vant (DER) uncertainties include those for tracking efficiency
(0.35%/track), particle identification efficiency (1.0%/kaon,
0.9%/pion, 3.7%/proton and 3.4%/anti-proton), as well as �

(3.0%) and K 0
S (2.3%) selection efficiencies. Assuming all

the above systematic uncertainty sources are independent, the
DER uncertainties are summed in quadrature for each decay
mode, yielding 5.8–8.6%, depending on the mode. For the
four branching fraction measurements, the final DER uncer-
tainties are summed in quadrature over the three �c decay
modes using weight factors equal to the product of the total
efficiency and the �c partial decay width. Systematic uncer-
tainties associated with the fitting procedure are estimated by
a changing the order of the background polynomial, changing
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Table 1 Relative systematic uncertainties (%) in the branching frac-
tion measurements. Here, B1 ≡ B(B̄0 → K̄ 0�+

c �̄−
c ), B2 ≡

B(B̄0 → �c(2930)+�̄−
c )B(�c(2930)+ → K̄ 0�+

c ), B3 ≡
B(B̄0 → K̄ 0Yη)B(Yη → �+

c �̄−
c ), and B4 ≡ B(B̄0 →

K̄ 0Y (4660))B(Y (4660) → �+
c �̄−

c )

Branching fraction DER Fit �c decays N 0
B B̄

0 Sum

B1 5.28 4.20 10.5 1.82 12.6

B2 5.31 6.10 10.5 1.82 13.4

B3 5.28 10.2 10.5 1.82 15.7

B4 5.27 11.6 10.5 1.82 13.3

the range of the fit, and by enlarging the mass resolution by
10% for all the fits; (b) adding the possible contributions from
charged �c(2815) and �c(2970) states in the fit to MK 0

S�c

spectrum; (c) changing the values of the masses and widths of
theYη andY (4660)by±1σ and changing the fitted number of
�c(3920)by 1σ in the fit to M�+

c �̄−
c

spectrum. The deviations
from nominal fit results are taken as systematic uncertainties.
Uncertainties for B(�+

c → pK−π+) and �i/�(pK−π+)

are taken from Ref. [1]. The final uncertainties on the �c

partial decay widths are summed in quadrature over the three
modes weighted by the detection efficiency. The world aver-
age of B(ϒ(4S) → B0 B̄0) is (48.6 ± 0.6)% [1], which
corresponds to a systematic uncertainty of 1.23%. The sys-
tematic uncertainty on Nϒ(4S) is 1.37%. The total systematic
uncertainties are found by adding the uncertainties from all
sources in quadrature, and they are listed in Table 1.

The sources of systematic uncertainties of charged
�c(2930)+ mass and width measurements are calculated
with the following method. Half of the correction due to the
input and output difference on the charged �c(2930)+ mass
determined from MC simulation is conservatively taken as
a systematic uncertainty. By enlarging the mass resolution
by 10%, the difference in the measured �c(2930)+ width
is 0.9 MeV, and this is taken as a systematic uncertainty.
By changing the background shape, the differences of 0.5
MeV/c2 and 1.3 MeV in the measured charged �c(2930)+
mass and width, respectively, are taken as systematic uncer-
tainties.

The signal-parametrization systematic uncertainty is esti-
mated by replacing the constant total width with a mass-
dependent width of �t = �0

t × �(MK 0
S�

+
c
)/�(M�c(2930)+),

where �0
t is the width of the resonance, �(MK 0

S�
+
c
) =

P/MK 0
S�

+
c

is the phase space factor for an S-wave two-

body system (P is the K 0
S momentum in the K 0

S�
+
c CMS)

and M�c(2930)+ is the K 0
S�

+
c invariant mass fixed at the

charged �c(2930)+ nominal mass. Due to the limited statis-
tic, we generate K 0

S�
+
c mass spectrum according to the fitted

�c(2930)+ shape with 200 times of events than the fitted sig-
nal yield. By fitting this mass spectrum with mass-dependent
RBW function, the difference in the measured �c(2930)+

mass is negligible and the difference in the width is 1.9 MeV
which is taken as the systematic uncertainty. Assuming all the
sources are independent, we add them in quadrature to obtain
the total systematic uncertainties on the charged �c(2930)+
mass and width of 1.5 MeV/c2 and 2.5 MeV, respectively.

In summary, using (772 ± 11) × 106 B B̄ pairs, we per-
form an updated analysis of B̄0 → K̄ 0�+

c �̄−
c . There is 4.1σ

evidence of the charged charmed baryon state �c(2930)+ in
the K 0

S�
+
c mass spectrum. The measured mass and width

are M�c(2930)+ = [2942.3 ± 4.4(stat.)± 1.5(syst.)] MeV/c2

and ��c(2930)+ = [14.8 ± 8.8(stat.) ± 2.5(syst.)] MeV.
The mass and width difference between neutral and charged
�c(2930) is �m = [−13.4±5.3(stat.)+1.7

−12.1(syst.)] MeV/c2

and �� = [4.7 ± 12.2(stat.)+6.4
−8.3(syst.)] MeV, respectively.

The branching fraction is B(B̄0 → K̄ 0�+
c �̄−

c ) = [3.99 ±
0.76(stat.) ± 0.51(syst.)] × 10−4, which is consistent with
the world average value of (4.3 ± 2.2) × 10−4 [1] but with
much improved precision. We measure the product branch-
ing fraction B(B̄0 → �c(2930)+�̄−

c )B(�c(2930)+ →
K̄ 0�+

c ) = [2.37 ± 0.51(stat.) ± 0.31(syst.)] × 10−4. Due
to the limited statistics, we are not able to perform an angu-
lar analysis to determine the spin-parity of the �c(2930)+,
and cannot identify its quark configuration for which there
are many theoretical possibilities. We expect that a spin-
parity analysis will be possible with the much larger data
sample which will be collected with the Belle II detec-
tor. There are no significant signals seen in the �+

c �̄−
c

mass spectrum. We place 90% C.L. upper limits for the
Y (4660) and its theoretically predicted spin partner Yη of
B(B̄0 → K̄ 0Y (4660))B(Y (4660) → �+

c �̄−
c ) < 2.3×10−4

and B(B̄0 → K̄ 0Yη)B(Yη → �+
c �̄−

c ) < 2.2 × 10−4 [50].
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