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Assuming four-quark structure for the X resonances in low-lying region, we calculate their masses
using the color-spin interaction. In specific, the hyperfine masses of the color-spin interaction are
calculated for the possible states in spin-0, spin-1, spin-2 channels. The two states in spin-0 channel
as well as the two states in spin-1 channel are diagonalized in order to generate the physical hyperfine
masses. By matching the difference in hyperfine masses with the splitting in corresponding hadron
masses and using the X(3872) mass as an input, we estimate the masses corresponding to the states
JPC = 0++, 1+−, 2++. We find that the masses of two states in 1+− are close to those of X(3823),
X(3900), and the mass of the 2++ state is close to that of X(3940). For them, the discrepancies
are about ∼ 10 MeV. This may suggest that the quantum numbers of the controversial states are
X(3823) = 1+−, X(3900) = 1+−, X(3940) = 2++. In this work, we use the same inputs parameters,
the constituent quark masses and the strength of the color-spin interaction, that have been adopted
in the previous work on the D or B-meson excited states. There, it was shown that the four-quark
structure can be manifested in their excited states. Thus, our results in this work provide a consistent
treatment on open- and hidden-charm mesons as far as the four-quark model is concerned.

PACS numbers: 14.40.Rt, 14.40.Pq

I. INTRODUCTION

The exotic resonances, commonly refereed to XY Z
particles, are interesting subjects in hadron physics in
recent years. This interest was triggered by the mea-
surement of X(3872) back in 2003 by the Belle collabo-
ration [1] whose existence was further confirmed in the
later experiments [2–4].
The theoretical issues on X(3872) are mainly on its

structure. The traditional picture would be the quarko-
nium where it is viewed as heavy quark-antiquark bound
state, c̄c [5]. The other picture for X(3872) is a hadronic
molecule like DD∗ [6, 7], where the two mesons are
bounded weakly by hadronic interactions. There is also
a hybrid model like the type c̄cg [8] containing a gluon.
This type of the hybrid model is also applied [9] to the
other resonance with higher mass, Y (4260), whose exis-
tence is experimentally reported in Ref. [10]. Another
exciting scenario for X(3872) would be a long-sought
tetraquark. Along this line, the tetraquark possibility
was investigated under a traditional picture based on a
diquark-antidiquark form [11, 12] as well as under a more
extensive treatment [13, 14]. As far as we know, there is
no consensus on the structure among all these possibili-
ties. The recent review given in Ref. [15] might be useful
for current status of XY Z spectroscopy and possible fu-
ture direction.
Additional resonances reported from later experi-
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ments, which have similar masses with X(3872), es-
calate the interest further because of the expectation
that they might share a similar structure. These in-
clude X(3823) [16], X(3900)± [17, 18], X(3900)0 [19],
X(3940) [20]. These resonances, including X(3872), con-
stitute low-lying resonances in this X spectrum. Of
course, there are other resonances with higher masses,
Y (4260) [10], Z(4430) [21] etc, which provide other ex-
citing areas that should be investigated in future.
One practical problem, in dealing with these reso-

nances especially in low-lying region, is that their quan-
tum numbers are scarcely known. According to the Par-
ticle Data Group (PDG) [22], the only resonance whose
quantum numbers are completely determined isX(3872).
The quantum numbers of others in this low-lying region
are quite unknown as one can see from Table I. This pre-
cisely makes it difficult to construct a realistic model for
them. In particular, for X(3823)0, most of the quan-
tum numbers are unknown except its charge conjugation
being odd. One interpretation for this state is an ac-
companying member of ψ(3770) when ψ(3770) is viewed
as a 3D1 of c̄c. Namely, X(3823)0 could be a 3D2 state
but, without confirming its quantum numbers, the issue
is not settled yet. The exotic possibility is still open for
this resonance. Therefore, at this stage, the available
data on these resonances which can be used to test a
model construction are their measured masses and decay
modes.
In this work, we investigate the tetraquark possibil-

ity for the X resonances in low-lying region. Especially
we look for such a possibility from the electrically neu-
tral members, X(3823)0, X(3872)0, X(3900)0, X(3940)0

http://arxiv.org/abs/1602.07540v3
mailto:hungchong@kookmin.ac.kr


2

Meson IG(JPC) Mass (MeV) Γ (MeV)

X(3823)0 ??(??−) 3823.1 < 24
X(3872)0 0+(1++) 3871.7 < 1.2
X(3900)± ?(1+) 3888.7 35
X(3900)0 ?(??) 3904 -
X(3940)0 ??(???) 3942 37

TABLE I. The X resonances collected from PDG [22] in low-
lying region. The charge, denoted by a superscript in the
name of each resonance, is assigned based on its decaying
channel. Note, the measured masses in the third column are
slightly different from the numbers appearing in the resonance
names in the first column. The measured masses in the third
column will be used in our analysis.

by assuming that they belong to the same isospin mul-
tiplet. Since X(3872) is isoscalar (I = 0), this assump-
tion is equivalent to the statement that the other res-
onances, X(3823)0, X(3900)0, X(3940)0, are also iso-
calar. Of course, according to the SU(3)f symmetry,
one can expect their charged partners (isovector) in the
same SU(3)f multiplet whose existence can support our
isoscalar framework more. Currently there is only one
candidate for them in the similar mass region, X(3900)±,
which is not enough to support our isoscalar tetraquark
fully. As more or more resonances are updating in this
scarcely explored region, one can expect that more isovec-
tor resonances might appear in future. One possible
explanation for the lack of the isovector resonances in
the current PDG might due to their large width, which
makes them difficult to be measured. In particular, the
isovector resonances can decay to c̄c+π which is however
hindered by the isospin conservation for the isoscalar X
resonances.
We introduce the four-quark states consisting of

diquark-antidiquark, cqc̄q̄, (q = u, d) and test their jus-
tification by calculating the masses using the color-spin
interaction. The construction of diquark-antidiquark and
its application in light-quark sectors can be found in
Ref. [23–25]. This type of four-quark model for the X
resonances was also studied by Maiani et al. [11, 12].
They introduced this type of wave function and calcu-
lated the masses using the color-spin interaction. In their
approach, the constituent quark masses as well as the
strength of the color-spin interaction are all fitted to the
low-lying baryon and meson spectra. What we want to
do in this work is to upgrade this approach by imple-
menting a few ingredients.
Firstly, we notice that the color-spin interaction alone

is only useful to calculate the mass splittings through the
hyperfine mass splittings. The color-spin interaction does
not represent the full interaction between two quarks and,
therefore, may not be enough to calculate the hadron
mass itself. In specific, there are additional potentials
such as the color-electric term and the constant shift as
will be discussed below. What makes the color-spin in-
teraction special is that, in the mass splittings, the color-
spin interaction survives while the additional potentials

cancel. Secondly, as we will discuss below, there is a
physical issue like mixing in the possible spin states. If
one constructs spin states from cqc̄q̄, (q = u, d), there are
two states in spin-0 and three states in spin-1. Some of
them must mix in generating the mass eigenstates, which
constitutes another ingredient in this development.
Another thing, which is more important to us, is that

this type of approach is closely related to the earlier
work [26]. Namely, in Ref. [26] where two authors (H.Kim
and M.K.Cheoun) in the present paper are involved, we
suggested that most of the D or B-meson excited states
currently listed in PDG, especially their mass spectrum,
can be understood if they are viewed as tetraquarks with
the diquark-antidiquark form, cqq̄q̄, (q = u, d, s). Using
the strength of the color-spin interaction fixed from the
mass difference of D∗0

2 (2463)−D∗0
0 (2318), we were able

to reproduce the masses of other resonances in the ex-
cited states of D and B mesons quite successfully. Also
our four-quark model provides interesting phenomenol-
ogy related to decays of spin-1 mesons, which seems to
fit nicely with experimental observation. Based on its
phenomenological success, we made some predictions for
the D and B mesons to be found in future. This ap-
proach in Ref.[26] can be straightforwardly applied to the
hidden-charm case here. Through this application, one
can test the parameters fixed in Ref. [26] which can help
to construct a consistent four-quark picture that might
be relevant for both, open- and hidden-charm mesons.
The paper is organized as follows. In Sec. II, we present

four-quark wave functions that could be relevant for the
X resonances. The color-spin interaction and its applica-
tion to the hadron spectroscopy is discussed in Sec. III.
In Sec. IV, we present our calculations of the hyper-
fine masses and discuss their implication in the X spec-
troscopy. We summarize in Sec. V.

II. WAVE FUNCTIONS FOR THE X

RESONANCES

In this section, we introduce the four-quark wave func-
tions which could be relevant for theX resonances. These
wave functions, in our best recollection, was first used by
Maiani et al. [11, 12]. Here we follow their argument
closely but make a few statements which need to be im-
plemented in this update.
The X resonances are hidden-charm mesons whose de-

cay modes mostly entail J/ψ, DD̄, DD̄∗, etc, in their
final states. Based on this observation, one can assume
that their wave functions in the four-quark picture take
the diquark-antidiquark form, cqc̄q̄, (q = u, d). One can
show that the diquark (antidiquark) forms a bound state
when it is in 3̄c (3c) and in the spin state J = 0 [23–25].
These two colorful objects, a diquark and an antidiquark,
can be combined to make a four-quark state. Then fol-
lowing Refs. [11, 12], we take the approximate spin inde-
pendence of the heavy quark interaction to assume that
the J = 1 diquark (as well as the J = 1 antidiquark) also
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forms a bound state.
For the other color configuration for the diquark cq,

namely 6c, we do not consider this possibility firstly be-
cause this is less compact than the 3̄c cq in the spin-0
channel. Secondly, including the 6c scenario through the
mixing with the 3̄c doubles the possible states, which do
not seem to fit the current X phenomenology. More im-
portantly, the similar tetraquark framework applied to
the excited states of D,Ds, B,Bs mesons in Ref. [26],
where the 3̄c diquark is adopted only, provides nice
phenomenological consequences, such as mass splittings.
Moreover, this approach predicts two spin-1 resonances
which fits very well with D±

s1(2460), D
±

s1(2535). It is our
interest to test whether the similar framework works for
the other hadrons like the X resonances.
Instead of this type of diquark-antidiquark picture,

one can also consider a four-quark structure of the form
qq̄− cc̄ because of the expectation that the color-spin in-
teraction can be more attractive for qq̄ than for the 3̄c

cq. Indeed, the color-spin interaction is most attractive
when qq̄ is in a state with color singlet and spin zero,
i.e., (1c, J = 0). With this qq̄, qq̄ and cc̄ are both color-

less. This leads to a hadronic molecule of meson-meson
bound state, which tents to be separate with a long-range
interaction.
Now with the other possible color-spin configurations

for qq̄, (8c, J = 0), (8c, J = 1), one can still construct
tetraquarks of the form, qq̄ − cc̄, because now qq̄ and cc̄
are both colorful. Then the question is whether the qq̄
with (8c, J = 0), (8c, J = 1) configurations are more
compact than the 3̄c cq. One can check this explicitly
by calculating the expectation value of the color-spin in-
teraction with respect to the qq̄ and the 3̄c cq states re-
spectively. Using the constituent quark masses adopted
in our work, we find that the 3̄c cq with J = 0 is most
attractive among them. Thus, the diquark cq with the
color 3̄c and spin J = 0 is appropriate for the tetraquark
study.
For the J = 1 diquark cq with 3̄c, its color-spin in-

teraction is stronger than the qq̄ with (8c, J = 0) but
weaker than the qq̄ with (8c, J = 1). In this sense, it is
not clear whether the J = 1 diquark is appropriate for
the tetraquark study. However, at the same time, since
cc̄ is less compact than qq̄, it is also not clear whether
the composite system, qq̄− cc̄, is easier to form than the
cq − c̄q̄ when the J = 1 diquark is involved.
As we stated above, we take the approximate spin in-

dependence of the heavy quark limit to assume that the
J = 1 diquark forms a bound state. Note, however, that
the calculation based on the diquark-antidiquark basis,
cqc̄q̄, does not rule out the qq̄− cc̄ configuration entirely.
Since we calculate the color-spin interactions among all
the quark pairs [see Eq.(6) below], the qq̄ components
with the color-octet as well as the color-singlet are also
included in our framework.
In our work, we assume that the X resonances,

X(3823)0, X(3872)0, X(3900)0, X(3940)0, are isoscalar.

Then the flavor structure would be like [cuc̄ū+cdc̄d̄]/
√
2.

Technically, this is equivalent to considering the configu-
ration of the form, cuc̄ū, within our framework facilitat-
ing the color-spin interaction.
For illustration purpose, we label the four quarks in

the state, cuc̄ū, with the numerical indices 1234. So [12]
refers the two quarks in the diquark cu and [34] refers
to the two quarks in the antidiquark c̄ū. Using this la-
beling, we can explain our formalism more clearly on the
one hand, and on the other hand, the general expressions
involving the indices can be easily extended to other sit-
uations in future.
Assuming that all the quarks are in an S-wave state,

the possible spins for the four-quark states are J = 0, 1, 2.
If we denote these spin states in terms of the total spin
J , the diquark spin J12, the antidiquark spin J34, i.e.,
|J, J12, J34〉, then we come up with the possible spin con-
figurations for each spin state as follow,

J = 0: |000〉, |011〉,
J = 1: |111〉, |110〉, |101〉 ,
J = 2: |211〉, (1)

where all the states have the positive parity by their con-
struction. From these spin configurations, one can inves-
tigate how they behave under charge conjugation [11, 12].
The states in J = 0 and J = 2 are even under charge con-
jugation C. |111〉 is odd under C. And |110〉 and |101〉
transform among each other under C. Using these prop-
erties, one can classify the spin configurations in terms
of the states based on the quantum numbers JPC , which
then can be identified with physical states easily.
For J = 2, there is only one spin configuration which

can be denoted as

|2++〉 = |211〉 . (2)

For J = 0, we have two spin configurations and these
have the same quantum numbers JPC = 0++. To distin-
guish the two states in |JPC〉 notation, we further label
them, using a and b, as

|0++
a 〉 = |000〉, |0++

b 〉 = |011〉 . (3)

What we want to point out in this work is that these two
are not the mass eigenstates. Indeed, as we will show in
Sec. IV, the mixing element of the color-spin interaction,
〈0++

a |V |0++
b 〉, is not zero. Thus, the mass eigenstates,

which can be recognized as the physical states, should be
linear combinations of the two in Eq. (3).
For J = 1, we have three spin configurations. We

can assign one of them or a combination of them to
X(3872). X(3872) has well-determined quantum num-
bers, i.e., JPC = 1++. Only possible way to generate
this state with 1++ from the three configurations is the
following symmetric combination [11, 12],

|1++〉 = 1√
2
[|110〉+ |101〉] . (4)

The antisymmetric combination of |110〉 and |101〉 gen-
erates the state belonging to JPC = 1+− and the other
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spin-1 state, |111〉, also belongs to JPC = 1+−. Thus,
we have two states in JPC = 1+− given by

|1+−

a 〉 = 1√
2
[|110〉 − |101〉] , |1+−

b 〉 = |111〉 , (5)

where another labeling, a and b, has been introduced
to distinguish the two. Here in J = 1 channel again,
these two states are not the mass eignestates as there is
mixing among them through the color-spin interaction.
Their linear combinations which diagonalize the hyper-
fine masses are the mass eigenstates and, therefore, can
be identified as the physical states.

III. COLOR-SPIN INTERACTIONS

The color-spin interaction provides a simple way to cal-
culate the mass splittings among hadrons with the same
flavor content, once the wave functions are constructed
in terms of quark fields. But, in its application to the
hadron masses instead of the splittings, one may need to
consider additional terms like color-electric and constant
terms which are often neglected in common practices. In
this section, we want to look at this aspect more care-
fully in order to explain why the color-spin interaction
works well for the mass splittings but not for the masses
themselves.
The color-spin interaction takes the following simple

form [27–30]

V =
∑

i<j

v0 λi · λj
Ji · Jj
mimj

. (6)

Here λi denotes the Gell-Mann matrix for the color
SU(3), Ji the spin, and mi the constituent mass of the
i-th quark. The parameter v0 represents the strength of
the color-spin interaction to be fitted from the hadron
masses. It is common practice to write down the hadron
masses formally by

MH ∼
∑

i

mi + 〈V 〉 , (7)

where the hyperfine mass 〈V 〉 is the expectation value
of the color-spin interaction evaluated with respect to
an appropriate hadron wave function of concern. Phe-
nomenologically, the successful aspect of the color-spin
interaction is that the mass splitting among hadrons
(with the same flavor content) can be estimated simply
by the difference in the hyperfine masses [26, 31, 32],

∆MH ∼ ∆〈V 〉 . (8)

This relation can be tested, for instance, in the baryon
sector. In this case, one can fix the strength, v0 in Eq.(6),
for example, from the ∆ − N mass difference, and us-
ing the standard values for the constituent quark masses,
mu = 330 MeV, ms = 500 MeV, mc = 1500 MeV, one
can calculate the mass differences among other hadrons

like Σ − Λ, etc, through Eq. (8). The agreement with
actual mass splittings is quite good, with only ∼ 10 MeV
error. (See Table VI in Ref. [26].)
But, if one calculates the actual masses using the for-

mal relation, Eq.(7), the results do not agree with the
experimental masses as one can see from the third col-
umn in Table II. The disagreement is about 300 MeV for
charmed baryons, but for the rest, it is about 100 MeV.
So, the disagreement even has a flavor dependence also.
If one sticks to the relation Eq.(7) firmly, one may at-
tribute this disagreement to the parameters involved, v0
and the quark masses. One can then adjust these pa-
rameters to reproduce the baryon masses and use them
to calculate the masses of other hadrons [11]. But our
standpoint is that there are physical reasons why Eq.(7)
fails in reproducing the masses.
Physically, the interaction between two quarks in-

side a hadron can have two different sources, one-gluon-
exchange potential VOGE and instanton-induced poten-
tial Vins [33, 34]. The color-spin interaction is a common
ingredient in these potentials but there are additional
terms, the color-electric type, ∼ λi ·λj , and the constant
term. Therefore, it may be more natural to think that
the disagreement in the masses above may come from
these types of interactions instead of adjustment of the
parameters involved in Eq.(7).
Effectively, the additional potentials, being the color-

electric type and the constant shift, can be parameterized
as

Vadd =
∑

i<j

v1
λi · λj
mimj

+ v2 , (9)

with the additional parameters v1 and v2 to be fitted
from some of the baryon masses. Then the baryon mass
is given by

MH ∼
∑

i

mi + 〈V 〉+ 〈Vadd〉 . (10)

Now by fitting the additional parameters v1 and v2 to
the masses of N and Λ, for example, we obtain other
masses given in the fourth column of Table II. The results
are better than the ones determined from the color-spin
interaction only, though there are still disagreement in
the charmed baryons more than 160 MeV or so. One
can adjust the parameters at this stage to reproduce
the charmed baryon masses using Eq. (10). In partic-
ular, by changing mc from 1500 MeV to 1670 MeV, we
come out with much better fits to the charmed baryon
masses, namely, MΣc

= 2450 MeV, MΛc
= 2294 MeV,

MΣ∗

c

= 2508 MeV. Although the results are nice but, at
the same time, we are facing the results that are some-
what sensitive to the input parameters. Then it is ques-
tionable whether this new set of parameters can be con-
sistently applied to other hadrons altogether.
What is interesting is that the additional potentials

〈Vadd〉 in Eq.(10) cancel in the mass splittings among
hadrons with the same flavor content. Since two quarks
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Baryon Mexpt MH from Eq.(7) MH from Eq.(10) MH from Eq.(8)
N 940 844 940 (input) 940 (input)
∆ 1232 1136 1232 (input) 1232 (input)
Σ 1193 1080 1182 1182
Λ 1116 1014 1116 (input) 1116 (input)
Σ∗ 1385 1273 1375 1375
Ξ 1320 1223 1330 1320 (input)
Ξ∗ 1531 1415 1522 1513
Σc 2453 2166 2276 2438
Λc 2286 2014 2124 2286 (input)
Σ∗

c 2518 2230 2340 2502

TABLE II. Comparison between baryon masses from PDG and the ones calculated in the three different ways. (See also the
text for detail.) All masses are given in MeV. The masses in the third column calculated using the color-spin interaction only
where the coupling strength, v0, is fitted from the ∆ − N mass difference. In obtaining the fourth column, the additional
parameters v1 and v2 in Eq.(9) are fitted by using the N,Λ masses while v0 is still fitted from the ∆−N mass difference. The
fifth column shows the calculated the masses of Σ, Σ∗, Ξ∗, Σc, Σ

∗
c , when other resonance masses are used as inputs in the

context of Eq. (8).

inside a baryon are always in the color state 3̄c, the ex-
pectation value of the λi · λj term is the same for all
the baryons considered in Table II. The constant term is
also the same for all the baryons. The flavor dependence
comes from the quark masses only. Hence, the relation
for the mass splitting, Eq.(8), still holds regardless of the
additional potentials as long as one considers hadrons
with the same flavor content.

Therefore, a better estimation for the baryon masses
can be made if one calculates the mass splitting, ∆MH ,
via Eq. (8), and estimates one of the baryon masses in-
volved in the splitting using other baryon mass as an
input. For example, since Σ − Λ mass difference is well
fitted to ∆〈V 〉 = 〈V 〉Σ − 〈V 〉Λ, one can estimate the Σ
mass by MΣ =MΛ +∆〈V 〉 using the experimental mass
MΛ as an input. Likewise, using MN ,M∆,MΞ,MΛc

as
inputs, we estimate the other baryon masses and they
are given in the fifth column in Table II, which fit very
well with their experimental values. The reason why this
method gives the best estimation among the three calcu-
lations in Table II is simply because the mass splittings fit
to hyperfine mass splittings quite well without suffering
from the additional potentials. To check the sensitivity
to the input parameters, we also change mc from 1500
MeV to 1670 MeV as above, and obtain MΣc

= 2442,
MΣ∗

c

= 2500 MeV. These numbers are not so different
from the ones in the fifth column in Table II, indicating
that the results are not so sensitive to the input param-
eters. One may argue that this way of estimating the
baryon masses is not so persuasive as the half of the res-
onances are used as inputs. The upshot that we are driv-
ing at is that the color-spin interaction can be powerful
only when it is used in the context of the mass splittings.

More importantly, this way of estimating the masses,
relying only on hyperfine mass splittings, can be very
powerful in its application to theX resonances. As all the
X resonances are assumed to have the same flavor con-
tent, once the mass splittings are calculated via Eq. (8),
we can estimate all the masses using only one resonance

mass as an input. Based on the experience in the baryon
sector as well as in the meson sector, this method relying
on the mass splittings can determine the masses quite
reliably.

IV. RESULTS AND DISCUSSION

Now we present our calculation for the hyperfine
masses which can be used to estimate the mass split-
tings among the X resonances. The hyperfine mass is
the expectation value of Eq. (6) with respect to the cor-
responding state that we have introduced in Sec. II. Then
the color and spin parts need to be calculated separately.
For the color part, since the diquark and antidiquark
are in 3̄c, 3c respectively, one can easily evaluate the
expectation value of the terms like λ1 · λ2 and λ3 · λ4.
For the other combinations like λ1 · λ3 and λ2 · λ3, etc,
one can rearrange the wave functions from the diquark-
antidiquark ([12][34]) basis into the ([13][24]) basis or
the ([14][23]) basis and evaluate the expectation values
straightforwardly. One can take the similar steps to cal-
culate the spin parts also. (See Ref. [26] for technical
details.)
Table III shows our results for the hyperfine masses

evaluated for the states, |0++
a 〉, |0++

b 〉, |1++〉, |1+−
a 〉,

|1+−

b 〉, |2++〉, as well as the mixing terms appear-

ing in spin-0, spin-1 channels through 〈0++
a |V |0++

b 〉,
〈1+−

a |V |1+−

b 〉. The origin of the mixing is that, even
though the diquark ([12]) and antidiquark ([34]) are
in definite color and spin states, the quark pairs like
[13],[14],[23],[24], are not in definite color and spin states.
The color-spin interaction between two quarks in such a
pair gives nonzero contribution in the matrix elements
of 〈0++

a |V |0++
b 〉, 〈1+−

a |V |1+−

b 〉. One can explicitly see
this from our formulas for the mixing terms in Table III,
where only the terms related to such a pair appear. Note,
the state |1++〉 can not mix with |1+−

a 〉 or |1+−

b 〉 because
they are in the different states in charge conjugation. Or
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States, |JPC〉 Hyperfine mass 〈JPC |V |JPC〉q
1
q
2
q̄
3
q̄
4

|0++
a 〉 2v0

[

1

m1m2

+
1

m3m4

]

|0++

b 〉 −2

3
v0

[

1

m1m2

+
1

m3m4

− 1

m1m3

− 1

m1m4

− 1

m2m3

− 1

m2m4

]

Mixing [|0++
a 〉, |0++

b 〉] 1√
3
v0

[

1

m1m3

− 1

m1m4

− 1

m2m3

+
1

m2m4

]

|1++〉 1

3
v0

[

2

m1m2

+
2

m3m4

− 1

m1m3

+
1

m1m4

+
1

m2m3

− 1

m2m4

]

|1+−
a 〉 1

3
v0

[

2

m1m2

+
2

m3m4

+
1

m1m3

− 1

m1m4

− 1

m2m3

+
1

m2m4

]

|1+−

b 〉 −2

3
v0

[

1

m1m2

+
1

m3m4

− 1

2m1m3

− 1

2m1m4

− 1

2m2m3

− 1

2m2m4

]

Mixing [|1+−
a 〉, |1+−

b 〉] −2

3
v0

[

1

m1m3

− 1

m2m4

]

|2++〉 −2

3
v0

[

1

m1m2

+
1

m3m4

+
1

2m1m3

+
1

2m1m4

+
1

2m2m3

+
1

2m2m4

]

TABLE III. The formulas for the hyperfine masses are provided here, which are obtained from expectation values of the color-
spin interaction with respect to the states indicated in the first column. The formulas presented here are for a general flavor
combination, q1q2q̄3q̄4. For the X resonances in this work, one needs to replace simply m1 = mc,m2 = mu,m3 = mc, m4 = mu.

one can explicitly check this in our approach by showing
that 〈1++|V |1+−

a 〉 = 〈1++|V |1+−

b 〉 = 0.

In our numerical calculations, the input parameters
are mc, mu, and v0 in Eq. (6). For a consistent treat-
ment with our earlier work on the D and B meson ex-
cited states [26], we take the same parameters, namely
mc = 1500 MeV, mu = 330 MeV, v0 ∼ (−193)3 MeV3.
In Ref. [26], the strength v0 was fixed by the mass dif-
ference D∗0

2 (2463)−D∗0
0 (2318) in the four-quark formal-

ism for the D and B meson excited states. This value
is slightly different from the one fitted from the ∆ − N
mass difference in the baryon sector. But v0 becomes
larger when it is fitted from the ρ − π mass difference.
Thus, the extracted value for v0 has some dependence on
the number of quarks consisting the hadrons and this is
a limitation of the color-spin interaction at the moment.
Then the question is which v0 to use in our work. It may
be quite realistic to use the v0 determined from the D
meson spectrum in Ref. [26] because both formalisms are
commonly for four-quark systems. Now, the only step
left in getting actual numbers for the hyperfine masses is
to identify m1 = mc,m2 = mu,m3 = mc,m4 = mu in
Table III.

In the spin-0 channel, the hyperfine masses for the two
possible states, |0++

a 〉, |0++
b 〉 are obtained from the corre-

sponding formulas in Table III. As there are the mixing
terms between the two states, one has to diagonalize the
matrix to calculate the physical hyperfine masses which
then correspond to the physical states. We denote the
physical states with the capital letters in the subscripts

as |0++
A 〉, |0++

B 〉.

|0++
a 〉 |0++

b 〉
|0++

a 〉 −58.0 −23.1
|0++

b 〉 −23.1 −46.0
→

|0++
A 〉 |0++

B 〉
|0++

A 〉 −28.1 0.00
|0++

B 〉 0.00 −75.9

Thus, in this spin-0 channel, the hyperfine masses for
physical states, |0++

A 〉 and |0++
B 〉, are the followings,

〈0++
A |V |0++

A 〉 = −28.1 MeV ,

〈0++
B |V |0++

B 〉 = −75.9 MeV . (11)

Similarly, using corresponding formulas for the spin-
1 channel in Table III, we can calculate the hyperfine
masses for the two possible configurations, |1+−

a 〉 |1+−

b 〉,
as well as their mixing terms. Then after the diagonal-
ization, we obtain the followings.

|1+−
a 〉 |1+−

b 〉
|1+−

a 〉 −32.7 −41.8
|1+−

b 〉 −41.8 −13.4
→

|1+−

A 〉 |1+−

B 〉
|1+−

A 〉 19.9 0.00
|1+−

B 〉 0.00 −65.9

Again, we have denoted the physical states with the cap-
ital letters in the subscripts, |1+−

A 〉, |1+−

B 〉. Thus, in this
spin-1 channel, the hyperfine masses for physical states
are the followings,

〈1+−

A |V |1+−

A 〉 = 19.9 MeV ,

〈1+−

B |V |1+−

B 〉 = −65.9 MeV . (12)

There is one more state in spin-1, |1++〉, and the spin-
2 state, |2++〉, which do not mix with the other states.
Their hyperfine masses are calculated to be

〈1++|V |1++〉 = −5.96 MeV ,

〈2++|V |2++〉 = 52.0 MeV . (13)
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Now using Eq.(8), the mass splittings among theses
resonances can be estimated from the differences in the
hyperfine masses given in Eqs. (11),(12), (13). For exam-
ple, the mass difference between the states, |2++〉, |1++〉
is given by 〈2++|V |2++〉 − 〈1++|V |1++〉 = 57.96 MeV,
As we have emphasized in Sec. III, the mass splittings
calculated this way are quite insensitive to the input pa-
rameters and do not suffer from the additional potentials.
Since all these resonances have the same flavor con-

tent, we can take the mass of one resonance as an input
in order to estimate the other masses. The well-known
resonanceX(3872), which can be identified with the state
|1++〉 because of its quantum numbers, would be the best
candidate for the reference mass. Then, combining with
the mass splittings, one can estimate all the masses of
the states, |0++

A 〉, |0++
B 〉, |1+−

A 〉, |1+−

B 〉,|1++〉,|2++〉. For
example, the mass of the spin-2 state can be calculated
through

M(J = 2) =MX(3872) + 〈2++|V |2++〉 − 〈1++|V |1++〉
= 3871.7 + 52− (−5.96) = 3929.7 MeV . (14)

Similarly we can estimate the masses of the other states.
The states corresponding to the quantum numbers and

their calculated masses are summarized as follows,

|0++
A 〉 : 3849.5 MeV ,

|0++
B 〉 : 3801.8 MeV ,

|1++〉 : 3871.7 MeV , (input) ,

|1+−

A 〉 : 3897.7 MeV ,

|1+−

B 〉 : 3811.7 MeV ,

|2++〉 : 3929.7 MeV . (15)

If we compare these masses with the X resonances in Ta-
ble I, we find that the calculated mass of |1+−

A 〉 is close
to X(3900)0 with only 7 MeV difference, and the mass
of |1+−

B 〉, is 11 MeV lower than X(3823)0. Also the mass
of |2++〉 is found to be only 12 MeV lower than the mass
of the resonance X(3940). Thus, if our framework re-
ally works, we can identify X(3823)0, X(3900)0, X(3940)
with the quantum numbers JPC = 1+−, 1+−, 2++. Of
course, future measurements on the quantum numbers
can settle the identifying issues raised in this work.
In particular, the quantum number for X(3823) is cer-

tainly not settled. It could be 3D2 state of c̄c which can
explain a narrow decay width observed experimentally.
Our four-quark assignment with JPC = 1+− leads to a
narrow width also based on observation that its fall-apart
decay to D∗D̄ is prohibited kinematically. In addition,
there is other approach based on a hadronic molecule [35]
suggesting that its quantum number JPC = 1−−. Even-
tually it will be important to confirm the quantum num-
ber of X(3823) by measuring for example the angular
distribution of X(3823) and clarify its nature.
As we have already mentioned, in this calculation, we

use the same values for the input parameters as in our
previous works [26], where we develop the four-quark
wave functions for the D and B meson excited states.

There, we found some of those resonances fit very nicely
with our picture. To us, it is quite interesting to see that
the masses of the X resonances come out very close to
the experimental values without any parameter tuning at
least in the spin-1 and spin-2 channels. This may pro-
vide a consistent treatment on open- and hidden-charm
mesons within a four-quark framework.

Currently in PDG, there are no resonances correspond-
ing to the states in the spin-0 channel, |0++

A 〉 and |0++
B 〉.

There could be various reasons for this. One possibil-
ity may be due to their broad widths. If they decay
through a fall-apart mechanism, the decay channel with
low-invariant mass like DD̄ can be open and their de-
cay width becomes broad. If so, these resonances are
hard to be measured experimentally. A similar situation
can be seen also in the B meson excited states where
there are no resonances observed in the spin-0 channel.
(See Table III in Ref. [26].) This was explained in our
four-quark model where the spin-0 mesons are expected
to have broad widths due to the presence of the decay
modes kinematically favorable. But this scenario does
not work for the spin-1 and spin-2 channels and there
are indeed some sharp resonances in PDG in these chan-
nels. It is quite likely that the similar explanation can
be applied in the X resonances. Or alternatively one can
look for some other QCD dynamics which might impede
the formation of resonances in the spin-0 channel. Cer-
tainly more works need to be done in future to clarify
this issue.

V. SUMMARY

In this work, we have calculated the masses of the X
resonances in low-lying region by considering them as
tetraquark states. The color-spin interaction is used to
calculate the mass splittings and, usingX(3872) as an in-
put, we calculate the masses corresponding to the quan-
tum numbers |JPC〉 = |0++〉, |1+−〉, |2++〉. We found
that masses of the two states in |1+−〉 and one state
in |2++〉 fit very nicely to X(3823), X(3900), X(3940)
within ∼ 10 MeV. Future experiments can settle the is-
sues of identifying the resonances by measuring the quan-
tum numbers of the controversial states. We stressed
that the color-spin interaction is powerful in generating
the mass splittings but not for the mass themselves. To
directly calculate the masses of hadrons of concern, the
color-spin interaction may not fully represent the poten-
tial among two quarks and one needs the additional po-
tentials which, however, cancel in the mass splittings.
The input parameters that have been used in the model
prediction were taken to be the same as the ones used
in the D and B meson excited states in the four-quark
formalism. Therefore, we believe that our results, if they
are confirmed by the measurement of the X quantum
numbers, can provide a consistent picture for the open-
and hidden-charm mesons in this four-quark formalism.
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