Skip to main content
Log in

Resistance metrology based on the quantum Hall effect

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The Quantum Hall effect (QHE), a macroscopic effect of solid state physics, provides a universal representation of the unit of resistance which depends on the elementary charge e and the Planck constant h only. If implemented according to specific technical guidelines, the quantum resistance standard can be reproduced with a relative uncertainty below one part in 109. Calibrations of wire resistors in terms of the QHE can be carried out with similarly low uncertainties by using resistance bridges equipped with cryogenic current comparators, the performance of which relies on the magnetic flux sensitivity of superconducting quantum interference devices (SQUID). Using a special connection technique, the fundamental properties of the QHE allow the fabrication of arrays combining a large number of single Hall bars connected in series or in parallel and which demonstrate quantum accuracy. Similar to the case of voltage metrology with Josephson array voltage standards, an improvement of resistance metrology is expected from the availability of quantum Hall array resistance standards (QHARS). The QHE Wheatstone bridge, which is another application of the same connection technique, opens the way to new universality tests of the QHE with a relative uncertainty below one part in 1011. At frequencies in the kilohertz range, the recent progress in the application of coaxial bridges to the QHE allows metrologists to operate a quantum resistance standard with alternating current reaching an accuracy of some parts in 108. Finally, the discovery of the QHE in graphene opens new horizons for the resistance metrology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • BIPM, The International System of Units (SI) (BIPM, Sèvres, 2006)

  • E. Braun, in Proceedings of the International School of Physics Enrico Fermi, Course CX, Metrology at the Frontier of Physics and Technology, edited by L. Crovini, T.J. Quinn (North-Holland, 1992), p. 211

  • K.V. Klitzing, G. Dorda, M. Pepper, Phys. Rev. Lett. 45, 494 (1980)

    Google Scholar 

  • Comité International des Poids et Mesures, Recommandation 2 (CI-1988), 77th session (1988)

  • KCDB database, Key comparison BIPM.EM-K12 (BIPM, Sèvres, 2000)

  • S. Adachi, J. Appl. Phys. 58, R1 (1985)

  • D. Mailly, Eur. Phys. J. Special Topics 172, 333 (2009)

    Google Scholar 

  • E. Prange, M. Girvin, The Quantum Hall Effect (Springer-Verlag, New York, 1987)

  • M. Stone, Quantum Hall Effect (World Scientific, Singapore, 1992)

  • M. Janben, O. Viehweger, Introduction to the theory of the Integer Quantum Hall Effect (Wiley & Sons, New York, 1994)

  • D. Yoshioka, The Quantum Hall Effect (Springer-Verlag, Berlin, 2002)

  • M.O. Goerbig, P. Lederer, Lecture notes in French, University of Paris 11, 2006

  • S.M. Girvin, The quantum Hall effect: Novel excitations and Broken Symmetries (Springer-Verlag and Les Éditions de Physique, 1999)

  • K. von Klitzing, in Séminaire Poincaré 2, 25 years of Quantum Hall Effect (QHE). A personal View on the Discovery. Physics and Application of this Quantum Effect (Paris, 2004), p. 1

  • B. Douçot, V. Pasquier, in Séminaire Poincaré 2, Physics in Strong Magnetic Field, Paris (2004), p. 17

  • C.W.J. Beenakker, H. van Houten, Quantum Transport in Semiconductor Nanostructures, Solid State Phys. 44, 1 (1991)

  • M. Büttiker, S.E. Nigg, Eur. Phys. J. Special Topics 172, 247 (2009)

    Google Scholar 

  • E.A. Abrahams, P.W. Anderson, D.C. Licciardello, T.V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979)

    Google Scholar 

  • P.W. Anderson, Phys. Rev. 109, 1492 (1958)

    Google Scholar 

  • A.M.M. Pruisken, Phys. Rev. Lett. 61, 1297 (1988)

    Google Scholar 

  • M. Büttiker, Y. Imry, R. Landauer, S. Pinhas, Phys. Rev. B 31, 6207 (1985)

    Google Scholar 

  • C. Glattli, Eur. Phys. J. Special Topics 172, 163 (2009)

    Google Scholar 

  • B.J. van Wees, H. Van Houten, C.W.J. Beenakker, J.G. Williamson, L.P. Kouwenhoven, D. Van der Marel, C.T. Foxon, Phys. Rev. Lett. 60, 848 (1988)

    Google Scholar 

  • R. Landauer, Phil. Mag. 31, 863 (1970)

    Google Scholar 

  • M. Büttiker, Phys. Rev. B 38, 9375 (1988)

    Google Scholar 

  • S. Komiyama, H. Hirai, Phys. Rev. B 54, 2067 (1996)

  • D.B. Chklovskii, B.I. Shklovskii, L.I. Glazman, Phys. Rev. B 46, 4026 (1992)

    Google Scholar 

  • Y.Y. Wei, J. Weis, K.V. Klitzing, K. Eberl, Phys. Rev. Lett. 81, 1674 (1998)

    Google Scholar 

  • E. Ahlswede, P. Weitz, J. Weis, K.V. Klitzing, K. Eberl, Physica B 298, 562 (2001)

    Google Scholar 

  • A. Siddiki, R.R. Gerhardts, Phys. Rev. B 70, 195335 (2004)

    Google Scholar 

  • M. Büttiker, Phys. Rev. Lett. 62, 229 (1989)

    Google Scholar 

  • Q. Niu, D.J. Thouless, Phys. Rev. B 35, 2188 (1987)

    Google Scholar 

  • R.B. Laughlin, Phys. Rev. B 23, 5632 (1981)

    Google Scholar 

  • Q. Niu, D.J. Thouless, Y. Wu, Phys. Rev. B 31, 3372 (1985)

    Google Scholar 

  • D.J. Thouless, J. Math. Phys. 35, 5362 (1994)

    Google Scholar 

  • F.W. Hehl, et al., Phys. Rev. Lett. 93, 09680 (2004)

  • A. Hartland, K. Jones, J.M. Williams, B.L. Gallagher, T. Galloway, Phys. Rev. Lett. 66, 969 (1991)

    Google Scholar 

  • B. Jeckelmann, A.D. Inglis, B. Jeanneret, IEEE Trans. Instrum. Meas. 44, 269 (1995)

    Google Scholar 

  • F. Delahaye, D. Domingez, F. Alexandre, J.P. André, J.P. Hirtz, M. Razeghi, Metrologia 22, 103 (1986)

  • B. Jeanneret, B. Jeckelmann, H.J. Bühlman, B. Houdré, M. Llegems, IEEE Trans. Instrum. Meas. 44, 254 (1995)

    Google Scholar 

  • B. Jeckelman, B. Jeanneret, D. Inglis, Phys. Rev. B 55, 13124 (1997)

    Google Scholar 

  • B. Jeckelmann, A. Rüfenacht, B. Jeanneret, F. Overney, K. Pierz, A. von Campenhausen, G. Hein, IEEE Trans. Instrum. Meas. 50, 219 (2001)

    Google Scholar 

  • H. Bachmair, Eur. Phys. J. Special Topics 172, 257 (2009)

    Google Scholar 

  • P.J. Mohr, B.N. Taylor, D.B. Newell, Rev. Mod. Phys. 80, 633 (2008)

    Google Scholar 

  • A. Wicht, J.M. Hensley, E. Sarajlic, S. Chu, Phys. Scr. T 102, 82 (2002)

    Google Scholar 

  • P. Cladé, E. de Mirandes, M. Cadoret, S. Guellati-Khélifa, C. Schwob, F. Nez, L. Julien, F. Biraben, Phys. Rev. A 74, 052109 (2006)

    Google Scholar 

  • G. Gabrielse, D. Hannecke, T. Kinoshita, M. Nio, B. Odom, Phys. Rev. Lett. 97, 030802 (2006)

    Google Scholar 

  • D.G. Polyakov, B.I. Shklovskii, Phys. Rev. Lett. 73, 1150 (1994)

    Google Scholar 

  • D.G.Polyakov, B.I. Shklovskii, Phys. Rev. B. 48, 11167 (1993)

    Google Scholar 

  • D.G. Polyakov, B.I. Shklovskii, Phys. Rev. Lett. 70, 3796 (1993)

    Google Scholar 

  • M.E. Cage, B.F. Field, R.F. Dziuba, S.M. Girvin, A.C. Gossard, D.C. Tsui, Phys. Rev. B 40, 2286 (1984)

    Google Scholar 

  • F. Piquemal, G. Genevès, F. Delahaye, J.P. André, J N. Patillon, P. Frijlink, IEEE Trans. Instrum. Meas. 42, 264 (1993)

    Google Scholar 

  • F. Piquemal, Bull. Bureau Nation. Métrol. 116, 3 (1999)

    Google Scholar 

  • W. van der Wel, Ph.D. thesis, University of Delft, 1988

  • W. van der Wel, C.J.P.M. Harmans, J.E. Mooij, J. Phys. C 21, L171 (1988)

  • D. Domingez, Ph.D. thesis, CNAM, Paris, 1987

  • M.E. Cage, R.F. Dziuba, B.F. Field, E.R. Williams, S.M. Girvin, A.C. Gossard, D.C. Tsui, R.J. Wagner, Phys. Rev. Lett. 51, 1374 (1983)

    Google Scholar 

  • L. Eaves, F.W. Sheard, Semicond. Sci. Technol. 1, 346 (1986)

    Google Scholar 

  • C. Chaubet, A. Raymond, D. Dur, Phys. Rev. B 52, 11178 (1995)

    Google Scholar 

  • S. Komiyama, Y. Kawaguchi, Phys. Rev. B 61, 2014 (2000)

  • C. Chaubet, Y.M. Meziani, B. Jouault, A. Raymond, W. Poirier, F. Piquemal, Semicond. Sci. Technol. 15, 983 (2003)

    Google Scholar 

  • Y.M. Meziani, C. Chaubet, S. Bonifacie, A. Raymond, W. Poirier, F. Piquemal, J. Appl. Phys. 96, 404 (2004)

    Google Scholar 

  • S. Komiyama, H. Hirai, M. Ohsawa, Y. Matsuda, S. Sasa, T. Fujii, Phys. Rev. B 45, 11085 (1992)

    Google Scholar 

  • F. Delahaye, B. Jeckelmann, Metrologia 40, 217 (2003)

    Google Scholar 

  • B. Jeckelmann, B. Jeanneret, Rep. Prog. Phys. 64, 1603 (2001)

    Google Scholar 

  • F. Delahaye, Metrologia 29, 81 (1992)

  • P. Warnecke, J. Niemeyer, F.W. Dunschede, L. Grimm, G. Weimann, W. Schlapp, IEEE Trans. Instrum. Meas. 36, 249 (1987)

    Google Scholar 

  • R. Behr, T. Funck, B. Schumacher, P. Warnecke, IEEE Trans. Instrum. Meas. 52, 521 (2003)

    Google Scholar 

  • I.K. Harvey, Rev. Sci. Instrum. 43, 1626 (1972)

    Google Scholar 

  • J.C. Gallop, F. Piquemal, in The SQUID Handbook, Vol. II, Applications of SQUIDS and SQUID systems, Chapter 4, SQUIDs for Standards and Metrology, edited by J. Clarke, A.I. Braginski (Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim, 2006), p. 95

  • J.C. Gallop, SQUIDs, the Josephson Effects and Superconducting Electronics (Adam Hilger Ltd., Bristol, Philadelphia and New York, 1991)

  • H. Seppä, A. Satrapinski, IEEE Trans Instrum. Meas. 39, 689 (1990)

    Google Scholar 

  • H. Seppä, A. Satrapinski, IEEE Trans. Instrum. Meas. 46, 463 (1997)

    Google Scholar 

  • J. Sesé, F. Lera, G. Camon, C. Rillo, IEEE Trans. Appl. Supercond. 9, 58 (1999)

    Google Scholar 

  • F. Gay, F. Piquemal, G. Genevès, Rev. Sci. Instrum. 71, 4592 (2000)

    Google Scholar 

  • J. Sesé, E. Bartolomé, J. Flokstra, G. Rietveld, A. Camon, C. Rillo, IEEE Trans. Instrum. Meas. 52, 612 (2003)

    Google Scholar 

  • F. Delahaye, D. Reymann, IEEE Trans. Instrum. Meas. 34, 316 (1985)

    Google Scholar 

  • A. Hartland, Metrologia 29, 175 (1992)

  • D.A. Syphers, F.F. Fang, P.J. Stiles, Surf. Sci. 142, 208 (1984)

    Google Scholar 

  • F.F. Fang, P.J. Stiles, Phys. Rev. B 29, 3749 (1984)

    Google Scholar 

  • F. Delahaye, J. Appl. Phys. 73, 7914 (1993)

    Google Scholar 

  • B.W. Ricketts, P.C. Kemeny, J. Phys. D 21, 483 (1988)

    Google Scholar 

  • W. Poirier, A. Bounouh, K. Hayashi, F. Piquemal, G. Genevès, J.P. André, J. Appl. Phys. 92, 2844 (2002)

    Google Scholar 

  • W. Poirier, A. Bounouh, F. Piquemal, J.P. André, Metrologia. 41, 285 (2004)

    Google Scholar 

  • F. Piquemal, J. Blanchet, G. Genevès, J.P. André, IEEE Trans. Instrum. Meas. 48, 296 (1999)

    Google Scholar 

  • R. Goebel, F. Delahaye, B. Jeckelmann, F. Schopfer, W. Poirier, in Proceedings of the Conference on Precision Electromagnetic Measurements, edited by F. Levi, M. Pisani (CLUT, Torino, 2006), p. 514

  • F. Schopfer, W. Poirier, J. Appl. Phys. 102, 054903 (2007)

    Google Scholar 

  • N. Kaneko, T. Oe, A. Domae, C. Urano, T. Itatani, H. Ishii, S. Kiryu, in Proceedings of the Conference on Precision Electromagnetic Measurements, edited by A.H. Cookson, T. Winter (NIST, Boulder, 2008), p. 692

  • A. Bounouh, W. Poirier, F. Piquemal, G. Genevès, J.P. André, IEEE Trans. Instrum. Meas. 52, 555 (2003)

    Google Scholar 

  • F. Schopfer, W. Poirier, in Proceedings of the Conference on Precision Electromagnetic Measurements, edited by A.H. Cookson, T. Winter (NIST, Boulder, 2008), p. 22

  • F. Kuchar, R. Meisels, G. Weimann, W. Schlapp, Phys. Rev. B 33, 2965 (1986)

    Google Scholar 

  • O. Viehweger, K.B. Efetov, J. Phys. Condens. Matter 3, 1675 (1991)

    Google Scholar 

  • R.J. Haddad, Ph.D. thesis, George Washington University, 1969

  • D.L.H. Gibbings, Proc. IEEE 110, 335 (1963)

    Google Scholar 

  • B.P. Kibble, G.H. Rayner, Coaxial AC bridges (Adam Hilger Ltd., Bristol, 1984)

  • J. Melcher, P. Warnecke, R. Hanke, IEEE Trans. Instrum. Meas. 42, 292 (1993)

    Google Scholar 

  • JA. Hartland, B.P. Kibble, P.J. Rodgers, J. Bohacek, IEEE Trans. Instrum. Meas. 44, 245 (1995)

    Google Scholar 

  • F. Delahaye, Metrologia 31, 367 (1995)

  • B.M. Wood, A.D. Inglis, M. Côté, IEEE Trans. Instrum. Meas. 46, 269 (1997)

    Google Scholar 

  • S.W. Chua, A. Hartland, B.P. Kibble, IEEE Trans. Instrum. Meas. 48, 309 (1999)

    Google Scholar 

  • J. Schurr, J. Melcher, A.V. Campenhausen, G. Hein, F.J. Ahlers, K. Pierz, Metrologia 39, 3 (2002)

    Google Scholar 

  • F. Overney, B. Jeanneret, B. Jeckelmann, IEEE Trans. Instrum. Meas. 52, 574 (2003)

    Google Scholar 

  • F. Delahaye, B.P. Kibble, A. Zarka, Metrologia 37, 659 (2000)

    Google Scholar 

  • J. Schurr, J. Melcher, A.V. Campenhausen, K. Pierz, Metrologia 39, 13 (2002)

  • J. Schurr, J. Melcher, K. Pierz, F. Overney, B.M. Wood, Metrologia 43, 163 (2006)

  • B. Jeanneret, F. Overney, IEEE Trans. Instrum. Meas. 56, 431 (2007)

    Google Scholar 

  • F. Overney, B. Jeanneret, B. Jeckelmann, B.M. Wood, J. Schurr, Metrologia 43, 409 (2006)

    Google Scholar 

  • J. Schurr, F.J. Ahlers, G. Hein, K. Pierz, Metrologia 44, 15 (2007)

    Google Scholar 

  • P.R. Wallace, Phys. Rev. 71, 622 (1947)

    Google Scholar 

  • K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

  • A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. (to be published) [cond-mat.mes-hall/07091163]

  • A.K. Geim, K.S. Novoselov, Nature Mater. 6, 183 (2007)

    Google Scholar 

  • M.I. Katsnelson, K.S. Novoselov, A.K. Geim, Nature Phys. 2, 620 (2006)

    Google Scholar 

  • M.I. Katsnelson, K.S. Novoselov, Solid State Commun. 143, 3 (2007)

  • K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonis, A.A. Firsov, Nature 438, 197 (2005)

    Google Scholar 

  • Y.B. Zhang, Y.W. Tan, H. Stormer, P. Kim, Nature 438, 201 (2005)

    Google Scholar 

  • K.S. Novoselov, Z. Jiang, Y. Zhang, S.V. Morozov, H.L. Stormer, U. Zeitler, J.C. Maan, G.S. Boebinger, P. Kim, A.K. Geim, Science 315, 1379 (2007)

  • V.P.Gusynin, V.P. Sharapov, Phys. Rev. Lett. 95, 146801 (2005)

    Google Scholar 

  • A. Jeffery, R.E. Elmquist, J.Q. Shields, L.H. Lee, M.E. Cage, S.H. Shields, R.F. Dziuba, Metrologia 35, 83 (1998)

  • G. Trapon, O. Thévenot, J.-C., Lacueille, W. Poirier, Metrologia 40, 159 (2003)

  • G. Genevès, et al., IEEE Trans. Instrum. Meas. 54, 850 (2005)

    Google Scholar 

  • R.L. Steiner, E.R. Williams, D.B. Newell, R. Liu, Metrologia 42, 431 (2005)

    Google Scholar 

  • A. Eichenberger, G. Genevès, P. Gournay, Eur. Phys. J. Special Topics 172, 363 (2009)

    Google Scholar 

  • B. Jeanneret, S.P. Benz, Eur. Phys. J. Special Topics 172, 181 (2009)

    Google Scholar 

  • F. Piquemal, G. Genevès, Metrologia 37, 207 (2000)

    Google Scholar 

  • F. Piquemal, A. Bounouh, L. Devoille, N. Feltin, O. Thévenot, G. Trapon, C. R. Phys. 5, 857 (2004)

    Google Scholar 

  • M. Keller, Eur. Phys. J. Special Topics 172, 297 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poirier, W., Schopfer, F. Resistance metrology based on the quantum Hall effect. Eur. Phys. J. Spec. Top. 172, 207–245 (2009). https://doi.org/10.1140/epjst/e2009-01051-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2009-01051-5

Keywords

Navigation