Skip to main content
Log in

Small InAsN and InN clusters: electronic properties and nitrogen stability belt

  • Clusters and Nanostructures
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Electronic properties of several small non-stoichiometric InAsN and InN clusters derived from the symmetry elements of the zincblende InAs and wurtzite InN bulk lattices have been studied by the first-principle, many-body field theoretical methods. Clusters’ nucleation conditions reflected those in quantum confinement and “vacuum”. Electronic properties of such clusters can be tuned both by the use of quantum confinement and doping, which provide for symmetry breaking and realization of excitations optically forbidden in tetrahedral and hexagonal symmetry clusters. Doping with nitrogen enhances stability and allows tailoring the optical transition energy of the clusters from ultraviolet to infrared. The obtained results closely correlate with available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • P.M. Asbeck, E.T. Yu, S.S. Lau, G.J. Sullivan, J. Van Hove, J.M. Redwing, Elect. Lett. 33, 1230 (1997)

    Google Scholar 

  • O. Khaselev, J.A. Turner, Science 280, 425 (1998)

    Google Scholar 

  • J.M. Van Hove, R. Hickman, J.J. Klaassen, P.P. Chow, Appl. Phys. Lett. 70, 2282 (1997)

    Google Scholar 

  • S.-I. Nagahama, T. Yanamoto, M. Sano, T. Mukai, Jpn J. Appl. Phys. (Part I) 40, 3075 (2001)

    Google Scholar 

  • S. Nakamura, S. Pearton, G. Fasol, The Blue Laser Diode: The Complete Story (Springer, Berlin, 2000)

  • W. Walukiewicz, J.W. Ager III, K.M. Yu, Z. Liliental-Weber, J. Wu, S.X. Li, R.E. Jones, J.D. Denlinger, J. Phys. D 39, R83 (2006)

  • A.G. Bhuiyan, A. Hashimoto, A. Yamamoto, J. Appl. Phys. 94, 2776 (2003)

    Google Scholar 

  • D.Y. Song, M.E. Holtz, A. Chandolu, A. Bernussi, S.A. Nikishin, M.W. Holtz, I. Gherasoiu, Appl. Phys. Lett. 92, 121913 (2008)

    Google Scholar 

  • S.X. Li, K.M. Yu, J. Wu, R.E. Jones, W. Walukiewicz, J.W. Ager III, W. Shan, E.E. Haller, H. Lu, W.J. Schaff, Phys. Rev. B 71, 161201 (2005)

  • V.M. Naik, R. Naik, D.B. Haddad, J.S. Thakur, G.W. Auner, Appl. Phys. Lett. 86, 201913 (2005)

    Google Scholar 

  • See, e.g., A. Othonos, M. Zervos, M. Pervolaraki, Nano. Res. Lett. 4, 122 (2009)

  • J.B. Schlager, K.A. Bertness, P.T. Blanchard, L.H. Robins, A. Roshko, N.A. Sanford, J. Appl. Phys. 103, 124309 (2008)

    Google Scholar 

  • D. Crawley, K. Nikolic, M. Rorshaw, 3-D Nanoelectronic Computer Architecture and Implementation (Taylor & Francis/CRC Press, London, 2004)

  • E.H. Lieb, in Density Functional Methods in Physics (NATO Advanced Science Institute, Series B: Physics), edited by R.M. Dreizler, J. da Providencia (Springer, New York, 1985), Vol. 123, p. 31

  • N. Schuch, F. Verstraete, arXiv:quant-ph/0712.0483v1 (2007)

  • See also N. Schuch, F. Verstraete, Nature Phys. 5, 732 (2009)

  • A. Qteish, A.I. Al-Sharif, M. Fuchs, M. Scheffler, S. Boeck, J. Neugebauer, Comput. Phys. Commun. 169, 28 (2005)

    Google Scholar 

  • P. Rinke, M. Winkelnkemper, A. Qteish, D. Bimberg, J. Neugebauer, M. Scheffler, Phys. Rev. B 77, 075202 (2008)

    Google Scholar 

  • T. Kotani, M. van Schilfgaarde, S.V. Faleev, Phys. Rev. B 76, 165106 (2007)

    Google Scholar 

  • N.E. Christensen, I. Gorczyca, R. Laskowsky, A. Svane, R.C. Albers, A.N. Chantis, T. Kotani, M. van Schilfgaarde, Phys. Stat. Sol. B 246, 570 (2009)

    Google Scholar 

  • A. Kaminska, G. Franssen, T. Suski, I. Gorczyca, N.E. Christensen, A. Svane, A. Suchocki, H. Lu, W.J. Schaff, E. Dimakis, A. Georgakilas, Phys. Rev. B 76, 075203 (2007)

    Google Scholar 

  • W.-Q. Zhang, J.-M. Sun, G.-F. Zhao, L.-L. Zhi, J. Chem. Phys. 129, 064310 (2008)

    Google Scholar 

  • S. Zhang, N. Chen, Chem. Phys. 309, 309 (2005)

    Google Scholar 

  • A.K. Kandalam, M.A. Blanco, R. Pandey, J. Phys. Chem. B 106, 1945 (2002)

  • B.H. Cardelino, C.E. Moore, C.A. Cardelino, D.O. Frazier, K.J. Bachlmann, J. Phys. Chem. A 105, 849 (2001)

    Google Scholar 

  • See, for example, A.K. Singh, T.M. Briere, V. Kumar, Y. Kawazoe, Phys. Rev. Lett. 91, 146802 (2003)

  • V. Kumar, Y. Kawazoe, Phys. Rev. Lett. 90, 055502 (2003)

    Google Scholar 

  • J. Lu, S. Nagase, Phys. Rev. Lett. 92, 115506 (2003), and references therein

  • G.W. Bryant, W. Jaskolski, J. Phys. Chem. B 109, 19650 (2005)

    Google Scholar 

  • R.-H. Xie, G.W. Bryant, J. Zhao, T. Kar, V.H. Smith Jr., Phys. Rev. B 71, 125422 (2005)

  • See L.A. Pozhar, A.T. Yeates, F. Szmulowicz, W.C. Mitchel, Phys. Rev. B 74, 085306 (2006)

  • L.A. Pozhar, A.T. Yeates, F. Szmulowicz, W.C. Mitchel, Also, Virtual J. Nanoscale Sci. Technol. 14 (2006), and references therein

  • L.A. Pozhar, W.C. Mitchel, IEEE Trans. Magn. 43, 3037 (2007)

    Google Scholar 

  • L.A. Pozhar, A.T. Yeates, F. Szmulowicz, W.C. Mitchel, Europhys. Lett. 71, 380 (2005)

    Google Scholar 

  • L.A. Pozhar, Phys. Rev. E 61, 1432 (2000)

    Google Scholar 

  • J.M.D. MacElroy, L.A. Pozhar, S.-H. Suh, Colloid. Surf. A 187-188, 493 (2001)

    Google Scholar 

  • L.A. Pozhar, E.V. Kontar, M.Z.-C. Hu, J. Nanosci. Nanotech. 2, 209 (2002)

    Google Scholar 

  • See L.A. Pozhar, W.C. Mitchel, in Toward Functional Nanostructures, Lecture Notes in Nanoscale Science and Technology, V.5, edited by Z. Wang, A. Waag, G.J. Salamo, N. Kishimoto (Springer, New York, 2009), pp. 423–474

  • M.W. Schmidt, J. Comput. Chem. 14, 1347 (1993); http://www.msg.ameslab.gov/GAMESS

    Google Scholar 

  • L.A. Pozhar, K.E. Gubbins, Phys. Rev. E 56, 5367 (1997)

    Google Scholar 

  • L.A. Pozhar, V.F. de Almeida, M.Z.-C. Hu, Ceramics Transactions 137, 101 (2003)

    Google Scholar 

  • See also D.N. Zubarev, Soviet Phys. Uspekhi 3, 320 (1960-1961)

  • D.D. Zubarev, Nonlinear Statistical Thermodynamics (Plenum Press, New York, 1974)

  • S.V. Tyablikov, Methods in the Quantum Theory of Magnetism (Plenum Press, New York, 1967)

  • N.N. Bogolyubov, Introduction to Quantum Statistical Mechanics (World Scientific, New Jersey, 1982)

  • N.N. Bogolyubov, A.A. Logunov, A.I. Oksak, I.T. Todorov, General Principles of Quantum Field Theory (Nauka, Moscow, 1987)

  • N.N. Bogolubov, Selected Works, edited by N.N. Bogolubov Jr., A.M. Kurbatov (Gordon and Breach, New York, 1991)

  • Yu.A. Tserkovnikov, Dokl. Acad. Nauk SSSR 143, 832 (1962) [Soviet Phys. Dokl. 7, 22 (1962/63)]

  • G.F. Mazenko, Phys. Rev. A 7, 209 (1973)

    Google Scholar 

  • G.F. Mazenko, Phys. Rev. 7, 222 (1973)

    Google Scholar 

  • G.F. Mazenko, Phys Rev. 9, 360 (1974)

    Google Scholar 

  • D.N. Zubarev, Yu.A. Tserkovnikov, Proc. Steklov Institute of Mathematics 2, 139 (1988), where the TTGF method was developed and applied to various problems of nonequilibrium statistical mechanics of homogeneous (bulk) systems

  • See, for example, L.-W. Wang, J. Kim, A. Zunger, Phys. Rev. B 59, 5678 (1999)

  • J. Kim, L.-W. Wang, A. Zunger, Phys. Rev. B 57, R9408 (1998)

  • A. Zunger, L.-W. Wang, Appl. Surf. Sci. 102, 350 (1996)

    Google Scholar 

  • J.-Z. Zang, I. Galbraith, Appl. Phys. Lett. 84, 1934 (2004)

  • Y.-Y. Marzin, G. Bastard, Solid State Commun. 92, 437 (1994)

  • M. Grundmann, O. Stier, D. Bimberg, Phys. Rev. B 52, 11969 (1995)

    Google Scholar 

  • T. Nakaoka, T. Saito, J. Tatebayashi, Y. Arakawa, Phys. Rev. B 70, 235337 (2004)

    Google Scholar 

  • G. Alan, Y.M. Niquet, C. Delerue, Appl. Phys. Lett. 77, 639 (2000)

    Google Scholar 

  • H. Jiang, J. Singh, Phys. Rev. B 56, 4696 (1997)

    Google Scholar 

  • T. Saito, J.N. Schulman, Y. Arakawa, Phys. Rev. B 57, 13016 (1998)

    Google Scholar 

  • K. Chang, J.-B. Xia, Solid State Commun. 104, 351 (1997)

    Google Scholar 

  • A.I. Boldyrev, L.-S. Wang, J. Phys. Chem. A 105, 10759 (2001)

    Google Scholar 

  • See, for example, A.K. Singh, T.M. Briere, V. Kumar, Y. Kawazoe, Phys. Rev. Lett. 91, 146802 (2003)

  • V. Kumar, Y. Kawazoe, Phys. Rev. Lett. 90, 055502 (2003)

    Google Scholar 

  • J. Lu, S. Nagase, Phys. Rev. Lett. 90, 115506 (2003), and references therein

  • L.A. Pozhar, Transport theory of inhomogeneous fluids (World Scientific, New Jersey, 1994)

  • J.K. Percus, L.A. Pozhar, K.E. Gubbins, Phys. Rev. E 51, 261 (1995)

    Google Scholar 

  • L.A. Pozhar, K.E. Gubbins, J.K. Percus, Phys. Rev. E 48, 1819 (1993)

    Google Scholar 

  • L.A. Pozhar, K.E. Gubbins, J. Chem. Phys. 99, 8970 (1993)

    Google Scholar 

  • E.F. Archiborg, A. St-Amant, S.K. Goh, D.S. Marynick, Chem. Phys. Lett. 361, 411 (2002)

    Google Scholar 

  • A. Costales, A.K. Kandalam, R. Franko, R. Pandey, J. Phys. Chem. B 106, 1940 (2002)

  • P.P. Korambath, S.P. Karna, J. Phys. Chem. A 104, 4801 (2000)

    Google Scholar 

  • P.P. Korambath, B.B.K. Singaraju, S.P. Karna, Int. J. Quant. Chem. 77, 563 (2000)

    Google Scholar 

  • P. Piquini, S. Canuto, A. Fazzio, Nanostruct. Mater. 10, 635 (1998)

    Google Scholar 

  • G.W. Bryant, W. Jaskolski, Mat. Res. Soc. Proc. 789, N3.10 (2004)

    Google Scholar 

  • W.J. Stevens, H. Basch, M. Krauss, P. Jasien, Can. J. Chem. 70, 612 (1992)

    Google Scholar 

  • T.R. Cundari, W.J. Stevens, J. Chem. Phys. 98, 5555 (1993)

    Google Scholar 

  • I.N. Levine, Quantum Chemistry, 5th edn. (Prentice Hall, New Jersey, 2005)

  • A. Szabo, N.S. Ostlund, Modern Quantum Chemistry (McGraw Hill, New York, 1989)

  • Ab Initio Methods in Quantum Chemistry. Part II., edited by K.P. Lawley, Adv. Chem. Phys. 69 (Wiley & Sons, New York, 1987)

  • B.O. Ross, Adv. Chem. Phys. 69, 399 (1987)

    Google Scholar 

  • C.C.J. Roothaan, Rev. Mod. Phys. 32, 179 (1960)

    Google Scholar 

  • H.H. Chang, M.Y. Lai, J.H. Wei, C.M. Wei, Y.L. Wang, Phys. Rev. Lett. 92, 066103 (2004)

    Google Scholar 

  • J.-F. Jia, X. Liu, J.-Z. Wang, J.-L. Liu, X.S. Wang, Q.-K. Xue, Z.-Q. Li, Z. Zhang, S.B. Zhang, Phys. Rev. B 66, 165412 (2002)

    Google Scholar 

  • M.Y. Lai, Y.L. Wang, Phys. Rev. B 64, 241404 (2001)

    Google Scholar 

  • R. Biswas, Y.-P. Li, Phys. Rev. Lett. 82, 2512 (1999)

    Google Scholar 

  • S.B. Zhang, D.J. Chadi, Phys. Rev. B 42, 7174 (1990)

    Google Scholar 

  • O.P. Pchelyakov, Yu.B. Bolkhovityanov, A.V. Dvurechenskii, L.V. Sokolov, A.I. Nikiforov, A.I. Yakimov, B. Voigtlander, Semiconductors 34, 1229 (2000)

  • K. Jeganathan, M. Shimizu, T. Ide, H. Okumura, Phys. Stat. Sol. B 240, 326 (2003)

    Google Scholar 

  • Y. Temko, T. Suzuki, P. Kratzer, K. Jacobi, Phys. Rev. B 68, 165310 (2003)

    Google Scholar 

  • L.A. Pozhar, A.T. Yeates, F. Szmulowicz, W.C. Mitchel, Mat. Res. Soc. Proc. 829, 49 (2005)

    Google Scholar 

  • L.A. Pozhar, W.C. Mitchel, Mat. Res. Soc. Proc. 955, 0955-I07-39 (2007)

    Google Scholar 

  • M. Kuroda, R. Katayama, S. Nishio, K. Onabe, Y. Shiraki, Phys. Stat. Sol. C 0, 2765 (2003)

    Google Scholar 

  • I. Suemune, G. Sasikala, H. Kumano, K. Uesugi, Y. Nabetani, T. Matsumoto, J.-T. Maeng, T.Y. Seong, Jpn J. Appl. Phys. 45, L529 (2006)

  • I.P. Soshnikov et al., in 9th Int. Symp. Nanostructures: Physics and Technology, June 18-22, 2001 (Ioffe Institute, St Petersburg, Russia, 2001), p. NT.24

  • I. Tanaka, I. Kamiya, H. Sakaki, M. Fujimoto, Physica E 7, 373 (2000)

    Google Scholar 

  • A.P. Vajpeyi, A.O. Ajagunna, G. Tsiakatouras, A. Adikimenakis, E. Iliopoulos, K. Tsagaraki, M. Androulidaki, A. Georgakilas, Microelectron. Eng. 86, 812 (2009)

    Google Scholar 

  • J. Segura-Ruiz, N. Garro, A. Cantarero, F. Ilikawa, C. Denker, J. Malindretos, A. Rizzi, Phys. Stat. Sol. C 6, 5553 (2009)

    Google Scholar 

  • W.P. Jencks, Catalysis in Chemistry and Enzymology (Courier Dover, New York, 1987), p. 128

  • C.M. Breneman, L.W. Weber, Can. J. Chem. 74, 1271 (1996)

    Google Scholar 

  • D.N. Talwar, in Assessing the Preferential Bonding of Nitrogen in Novel Dilute III-As-N Alloys (Springer Series in Materials Science) (Springer, Berlin, 2008), Vol. 105, p. 223

  • F. Alexandre, E. Gouardes, O. Gauthier-Lafaye, N. Buoadma, A. Vuong, B. Therdez, J. Mat. Sci. Mater. Electron. 13, 633 (2002)

    Google Scholar 

  • D.R. Hang et al., Semicond. Sci. Technol. 17, 999 (2002)

  • C.-C. Hsu, R.-Q. Hsu, Y.-H. Wu, T.-W. Chi, C.-H. Chiang, J.-F. Chen, M.-N. Chang, Ultramicroscopy 108, 1495 (2008)

  • J.-S. Wang, H.-H. Lin, J. Vac. Sci. Technol. B 17, 1997 (1999)

  • See T.V. Shubina, S.V. Ivanov, V.N. Jmerik, D.D. Solnyshkov, V.A. Vekshin, P.S. Kop’ev, A. Vasson, J. Leymarie, A. Kavokin, H. Amano, K. Shimono, A. Kasic, B. Monemar, Phys. Rev. Lett. 92, 117407 (2004)

  • M.-S. Hu, W.M. Wang, T.T. Chen, L.S. Hong, C.W. Chen, C.C. Chen, Y.F. Chen, K.H. Chen, L.C. Chen, Adv. Functional Mater. 16, 537 (2006), and references therein

  • T. Fukui, S. Ando, Y. Tokura, T. Toriyama, Appl. Phys. Lett. 58, 2018 (1991)

    Google Scholar 

  • T. Fukui, S. Ando, Superlattices Microstruct. 12, 141 (1992)

  • Y. Nagamune, M. Nishioka, S. Tsukamoto, Y. Arakava, Appl. Phys. Lett. 64, 2495 (1994)

    Google Scholar 

  • K.C. Rajkumar, K. Kaviani, J. Chen, P. Chen, A. Madhukar, Appl. Phys. Lett. 60, 850 (1992)

    Google Scholar 

  • A. Madhukar, K.C. Rajkumar, P. Chen, Appl. Phys. Lett. 62, 1547 (1993)

    Google Scholar 

  • K.C. Rajkumar, A. Madhukar, K. Rammohan, D.H. Rich, P. Chen, L. Chen, Appl. Phys. Lett. 63, 2905 (1993)

    Google Scholar 

  • K.C. Rajkumar, A. Madhukar, P. Chen, A. Konkar, L. Chen, K. Rammohan, D.H. Rich, J. Vac. Sci. Technol. B 12, 1071 (1994)

    Google Scholar 

  • R.L. Williams, G.C. Aers, P.J. Poole, J. Levebvre, D. Chithrani, P. Lamontagne, J. Cryst. Growth 223, 321 (2001)

    Google Scholar 

  • J. Levebvre, P.J. Poole, G.C. Aers, D. Chithrani, R.L. Williams, J. Vac. Sci. Technol. B 20, 2173 (2002)

    Google Scholar 

  • D. Chithrani, R.L. Williams, J. Levebvre, P.J. Poole, G.C. Aers, Appl. Phys. Lett. 84, 978 (2004)

    Google Scholar 

  • E. Kapon, E. Pelucchi, S. Watanabe, A. Malko, M.H. Baier, K. Leifer, B. Dwir, F. Michelini, M.-A. Dupertuis, Physica E 25, 288 (2004)

    Google Scholar 

  • F. Michelini, M.-A. Dupertuis, E. Kapon, Appl. Phys. Lett. 84, 4086 (2004)

    Google Scholar 

  • S. Watanabe, E. Pelucchi, B. Dwir, M.H. Baier, K. Leifer, E. Kapon, Appl. Phys. Lett. 84, 2907 (2004)

    Google Scholar 

  • M.H. Baier, S. Watanabe, E. Pelucchi, E. Kapon, Appl. Phys. Lett. 84, 1943 (2004)

    Google Scholar 

  • E. Pelucchi, S. Watanabe, K. Leifer, B. Dwir, E. Kapon, Physica E 23, 476 (2003)

    Google Scholar 

  • R.P. Bhatta, B.D. Thoms, M. Alevl, N. Dietz, Surf. Sci. 601, L120 (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Pozhar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pozhar, L. Small InAsN and InN clusters: electronic properties and nitrogen stability belt. Eur. Phys. J. D 57, 343–354 (2010). https://doi.org/10.1140/epjd/e2010-00067-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2010-00067-x

Keywords

Navigation