Skip to main content
Log in

Growth, structure and electrical properties of tungsten oxide nanorods

  • Quantum Dots, Wires and Nanotubes
  • Published:
The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics Aims and scope Submit manuscript

Abstract.

Tungsten trioxide has shown good sensing properties towards various gases. Recently thin nanostructured WO3 films have been tested. Due to their large surface area to volume ratio they exhibit good sensitivity depending on the grain size. However in conventional WO3 thin films the average grain size exceeds the thickness of the surface space charge layer, so the electrical conduction is mainly controlled by the carriers transport across the grain boundaries. An alternative way seems to be in a monocrystalline material with nanometric dimensions. Our objective is to fabricate nanosized tungsten oxide rods and to test their sensing properties under gas adsorption. In this work, we focus on the growth, the structure and the electrical properties of tungsten nanorods. The tungsten oxide nanorods were grown by vapour transport from a WO3 layer onto a substrate (Mica). The nanorods growth was controlled by the temperature gradient between the WO3 layer and the substrate. Their morphology was investigated by AFM and their structure by TED and TEM. We have investigated the conductivity of the WO3 nanorods with a technique derived from Atomic Force Microscopy operating in contact mode with a conductive tip (Resiscope).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J.S.E.M. Svensson, C.G. Granqvist, Solar Energy Mater. 11, 29 (1984)

    Google Scholar 

  • F.A. Cotton, G. Wilkinson, Advances in Organic Chemistry, 5th edn. (Wiley, New York, 1988), p. 829

  • C. Cantalini, H.T. Sun, M. Faccio, M. Pelino, S. Santucci, L. Lozzi, M. Passacanto, Sensors Actuators B 31, 81 (1996)

    Google Scholar 

  • M. Akiyama, Z. Zhang, J. Tamaki, M. Miura, N. Yamazoe, T. Harada, Sensors Actuators B 13/14, 619 (1993)

    Google Scholar 

  • A. Agraval, H. Habibi, Thin Solid Films 169, 257 (1988)

    Google Scholar 

  • H. Meixner, J. Gerblinger, U. Lampe, M. Fleisher, Sensors Actuators B 23, 119 (1995)

    Google Scholar 

  • D. Manno, A. Serra, M. Di Giulio, G. Micocci, A. Tepore, Thin Solid Films 324, 44 (1998)

    Google Scholar 

  • M. Penza, M.A. Tagliente, L. Mirenghi, G. Gerardi, C. Martucci, G. Cassano, Sensors Actuators B 50, 9 (1998)

    Google Scholar 

  • Zhihong Jin, Huan-Jun Zhou, Zhang-Li Jin, R.F. Savinell, Chung-Chiun Liu, Sensors Actuators B 52, 188 (1998)

    Google Scholar 

  • E. Liobet, J. Electr. Soc. 147, 776 (2000)

    Google Scholar 

  • W. Qu, W. Wlodarski, Sensors Actuators B 64, 42 (2000)

    Google Scholar 

  • C. Cantalini, W. Wlodarski, Y. Li, M. Passacantando, S. Santucci, E. Comini, G. Faglia, G. Sberveglieri, Sensors Actuators B 64, 182 (2000)

    Google Scholar 

  • L. Lozzi, L. Ottaviano, M. Passacantando, S. Santucci, C. Cantalini, Thin Solid Films 391, 224 (2001)

    Google Scholar 

  • C. Bittencourt, R. Landers, E. Llobet, G. Molas, X. Correig, M.A.P. Silva, J.E. Sueiras, J. Calderer, J. Electrochem. Soc. 149, 81 (2002)

    Google Scholar 

  • J. Tamaki, A. Hayashi, Y. Yamamoto, M. Matsuoka, Sensors Actuators B 95, 111 (2003)

    Google Scholar 

  • S. Wang, Tse-Chuan Chou, Chung-Chiun Liu, Sensors Actuators B 94, 343 (2003)

    Google Scholar 

  • X. Miao, J. Crystal Growth 197, 1008 (1999)

    Google Scholar 

  • R. Fan, X.H. Chen, Z. Gui, Z. Sun, S.Y. Li, Z.Y. Chen, J. Phys. Chem. Sol. 61, 2029 (2000)

    Google Scholar 

  • X.G. Yang, C. Li, M.S. Mo, J.H. Zhan, W.C. Yu, Y. Yan, Y.T. Qian, J. Crystal Growth 249, 594 (2003)

    Google Scholar 

  • Y.Q. Zhu, W. Hu, W.K. Hsu, D.R.M. Walton, H. Terromes, D.R. Troto, J.F. Hare, D.L. Gobert, Chem. Phys. Lett. 309, 327 (1999)

    Google Scholar 

  • M. Gadenne, O. Schneegans, F. Houzé, P. Chrétien, C. Demarest, J. Sztern, P. Gadenne, Physica B 279, 94 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gillet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gillet, M., Delamare, R. & Gillet, E. Growth, structure and electrical properties of tungsten oxide nanorods. Eur. Phys. J. D 34, 291–294 (2005). https://doi.org/10.1140/epjd/e2005-00161-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2005-00161-2

Keywords

Navigation