Skip to main content
Log in

Switching behavior induced by different substituents of group in single molecular device

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We investigate the electronic transport properties of photochromic azobenzene-based molecular devices with Au electrodes using non-equilibrium Green’s function and density functional theory. A reversible switching behavior between cis and trans isomerization is found in the device. In addition, the substituent of −NH2 on the right end hydrogen atom of azobenzene molecule reduces the switching ratio of current, consequently the disappearance of switching behavior, while the substituent of −NO2 improves the switching ratio of current. We discuss the different electronic transport induced by different substituents through the transmission spectra, localized density of states, molecular projected self-consistent Hamiltonian and transmission pathways. The observed polarization effect under bias is explained by the evolution of molecular projected self-consistent Hamiltonian of LUMO level. The results indicate that the electron-withdrawing group −NO2 substituting right terminal hydrogen of azobenzene molecule becomes a candidate for improving the performance of molecular device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Akdim, R. Pachter, J. Phys. Chem. C 112, 3170 (2008)

    Article  Google Scholar 

  2. B.A. Bian, Y.P Zheng, P.P. Yuan, B. Liao, W. Chen, H.X. An, X.T. Mo, Y.Q. Ding, Phys. Lett. A 381, 2748 (2017)

    Article  ADS  Google Scholar 

  3. D. DeBrincat, O. Keers, J.E. McGrady, Chem. Commun. 49, 9116 (2013)

    Article  Google Scholar 

  4. P.P. Yuan, X.X. Han, J.J. Yang, B.A. Bian, W.B. Li, Y.M. Wang, X. Luo, B. Liao, Physica E 95, 32 (2018)

    Article  ADS  Google Scholar 

  5. M.G. Zeng, L. Shen, Y.Q. Cai, Z.D. Sha, Y.P. Feng, Appl. Phys. Lett. 96, 042104 (2010)

    Article  ADS  Google Scholar 

  6. Y.X. Deng, S.Z. Chen, Y. Zeng, W.X. Zhou, K.Q. Chen, Org. Electron. 50, 184 (2017)

    Article  Google Scholar 

  7. S.J. Tans, A.R. Verschueren, C. Dekker, Nature 393, 49 (1998)

    Article  ADS  Google Scholar 

  8. Q.M. Yan, B. Huang, J. Yu, F.W. Zheng, J. Zang, J. Wu, B.L. Gu, F. Liu, W.H. Duan, Nano Lett. 7, 1469 (2007)

    Article  ADS  Google Scholar 

  9. R.A. Wassel, G.M. Credo, R.R. Fuierer, D.L. Feldheim, C.B. Gorman, J. Am. Chem. Soc. 126, 295 (2004)

    Article  Google Scholar 

  10. P.D. Nguyen, T.C. Nguyen, F.M. Hossain, D.H. Huynh, R. Evans, E. Skafidas, Nanoscale 7, 289 (2015)

  11. J.M. Seminario, A.G. Zacarias, P.A. Derosa, J. Chem. A 105, 791 (2001)

    Google Scholar 

  12. C. Li, D.H. Zhang, X.L. Liu, S. Han, T. Tang, C.W. Zhou, W. Fan, J. Koehne, J. Han, M. Meyyappan, A.M. Rawlett, D.W. Price, J.M. Tour, Appl. Phys. Lett. 82, 645 (2003)

    Article  ADS  Google Scholar 

  13. M. Feng, L. Gao, Z.T. Deng, W. Ji, X.F. Guo, S.X. Du, D.X. Shi, D.Q. Zhang, D.B. Zhu, H.J. Gao, J. Am. Chem. Soc. 129, 2204 (2007)

    Article  Google Scholar 

  14. G.Y. Jiang, Y.L. Song, X.F. Guo, D.Q. Zhang, D.B. Zhu, Adv. Mater. 20, 2888 (2008)

    Article  Google Scholar 

  15. G.E. Emberly, G. Kirczenow, Phys. Rev. Lett. 91, 188301 (2003)

    Article  ADS  Google Scholar 

  16. R. Pati, S.P. Karna, Phys. Rev. B 69, 155419 (2004)

    Article  ADS  Google Scholar 

  17. H.S. Kolla, S.P. Surwade, X. Zhang, A.G. MacDiarmid, S.K. Manohar, J. Am. Chem. Soc. 127, 16770 (2005)

    Article  Google Scholar 

  18. S.Z. Topal, E. Önal, A.G. Gürek, C. Hirel, Dalton. Trans. 42, 11528 (2013)

    Article  Google Scholar 

  19. M. Kishida, T. Kusamoto, H. Nishihara, J. Am. Chem. Soc. 136, 4809 (2014)

    Article  Google Scholar 

  20. K. Redeckas, V. Voiciuk, R. Steponaviciute, V. Martynaitis, A. Sackus, M. Vengris, J. Phys. Chem. A 118, 5642 (2014)

    Google Scholar 

  21. J.M. Mativetsky, G. Pace, M. Elbing, M.A. Rampi, M. Mayor, P. Samori, J. Am. Chem. Soc. 130, 9192 (2008)

    Article  Google Scholar 

  22. C.J. Xia, D.S. Liu, Y.T. Zhang, Chin. Phys. Lett. 28, 093102 (2011)

    Article  ADS  Google Scholar 

  23. C.C. Jia, A. Migliore, N. Xin, S.Y. Huang, J.Y. Wang, Q. Yang, S.P. Wang, H.L. Chen, D.M. Wang, B.Y. Feng, Z.R. Liu, G.Y. Zhang, D.H. Qu, H. Tian, M.A. Ratner, H.Q. Xu, A. Nitzan, X.F. Guo, Science 352, 1443 (2016)

    Article  ADS  Google Scholar 

  24. C. Zhang, Y. He, H.P. Cheng, Phys. Rev. B 73, 125445 (2006)

  25. M. Del Vale, R. Gutierrez, C. Tejedor, Nat. Nanotechnol. 2, 176 (2007)

    Article  ADS  Google Scholar 

  26. J. Taylor, H. Guo, J. Wang, Phys. Rev. B 63, 245407 (2001)

    Article  ADS  Google Scholar 

  27. M. Brandbyge, J.L. Mozos, P. Ordejón, J. Taylor, K. Stokbro, Phys. Rev. B 65, 165401 (2002)

    Article  ADS  Google Scholar 

  28. J. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)

    Article  ADS  Google Scholar 

  29. M. Büttiker, Y. Imry, R. Landauer, S. Pinhas, Phys. Rev. B. 31, 6207 (1985)

    Article  ADS  Google Scholar 

  30. Z.Q. Fan, Z.H. Zhang, X.Q. Deng, G.P. Tang, K.Q. Chen, Org. Electron. 13, 2954 (2012)

    Article  Google Scholar 

  31. G. Foti, D. Sánchez-Portal, A. Arnau, T. Frederiksen, Phys. Rev. B 91, 035434 (2015)

  32. S.D. Kevan, R. H. Gaylord, Phys. Rev. B 36, 5809 (1987)

    Article  ADS  Google Scholar 

  33. V.M. García-Suárez, C.J. Lambert, Nanotechnology 19, 455203 (2008)

    Article  Google Scholar 

  34. C. Van Dyck, V. Geskin, J. Cornil, Adv. Funct. Mater. 24, 6154 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoan Bian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, B., Yang, J., Han, X. et al. Switching behavior induced by different substituents of group in single molecular device. Eur. Phys. J. B 91, 184 (2018). https://doi.org/10.1140/epjb/e2018-90269-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-90269-3

Keywords

Navigation