Skip to main content
Log in

Anisotropic tight-binding model applied to zigzag ultra-small nanotubes

  • Mesoscopic and Nanoscale Systems
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

A single-wall carbon nanotube (SWCNT) can be visualized as a graphene rolled into a cylinder. Tight-binding band structure calculations, with hopping between nearest-neighbor π orbitals only (NNTB), established rules by which both the mode in which the graphene is rolled up and the diameter determine whether the SWCNT is a metal or a semiconductor. However, when the diameter of the SWCNT is ultra-small its large curvature results in the breakage of these rules. In this work, we studied zigzag (n, 0) SWCNTs with diameters smaller than 0.7 nm using a π orbital-only tight-binding model including anisotropy in the hopping between next-nearest-neighbor sites (ANNNTB). Band overlaps were found in the electronic band structures of the zigzag SWCNTs for n=3, 4, 5, and 6, indicating that they are metals. The reason why the band structures of armchair and chiral SWCNTs are less affected by curvature effects becomes clear with the ANNNTB model, as does the reason why non-degenerate states cause band overlaps of the zigzag SWCNTs for n=3, 4, 5, and 6. Our results show that a π orbital-only tight-binding model is able to describe both the band overlaps and gaps obtained by ab initio calculations for zigzag SWCNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima, Nature (London) 354, 56 (1991)

    Article  ADS  Google Scholar 

  2. P.M. Ajayan, S. Iijima, Nature (London) 358, 23 (1992)

    Article  ADS  Google Scholar 

  3. L.F. Sun, S.S. Xie, W. Liu, W.Y. Zhou, Z.Q. Liu, D.S. Tang, G. Wang, L.X. Qian, Nature (London) 403, 384 (2000)

    Article  ADS  Google Scholar 

  4. L. Qin, X. Zhao, K. Hirahara, Y. Miyamoto, Y. Ando, S. Iijima, Nature (London) 408, 50 (2000)

    Article  ADS  Google Scholar 

  5. N. Wang, Z.K. Tang, G.D. Li, J.S. Chen, Nature (London) 408, 50 (2000)

    Article  ADS  Google Scholar 

  6. L.-M. Peng, Z.L. Zhang, Z.Q. Xue, Q.D. Wu, Z.N. Gu, D.G. Pettifor, Phys. Rev. Lett. 85, 3249 (2000)

    Article  ADS  Google Scholar 

  7. X. Zhao, Y. Liu, S. Inoue, T. Suzuki, R.O. Jones, Y. Ando, Phys. Rev. Lett. 92, 125502 (2004)

    Article  ADS  Google Scholar 

  8. L. Guan, K. Suenaga, S. Iijima, Nano Lett. 8, 459 (2008)

    Article  ADS  Google Scholar 

  9. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes, 1st edn. (Imperial College, London, 1998)

    Google Scholar 

  10. R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Appl. Phys. Lett. 60, 2204 (1992)

    Article  ADS  Google Scholar 

  11. N. Hamada, S. Sawada, A. Oshiyama, Phys. Rev Lett. 68, 1579 (1992)

    Article  ADS  Google Scholar 

  12. C.T. White, D.H. Robertson, J.W. Mintmire, Phys. Rev. B 47, 5485 (1993)

    Article  ADS  Google Scholar 

  13. X. Blase, L.X. Benedict, E.L. Shirley, S.G. Louie, Phys. Rev. Lett. 72, 1878 (1994)

    Article  ADS  Google Scholar 

  14. O. Gülseren, T. Yildirim, S. Ciraci, Phys. Rev. B 65, 153405 (2002)

    Article  ADS  Google Scholar 

  15. V. Zólyomi, J. Kürti, Phys. Rev. B 70, 085403 (2004)

    Article  ADS  Google Scholar 

  16. Z.M. Li, Z.K. Tang, H.J. Liu, N. Wang, C.T. Chan, R. Saito, S. Okada, G.D. Li, J.S. Chen, N. Nagasawa, S. Tsuda, Phys. Rev. Lett. 87, 127401 (2001)

    Article  ADS  Google Scholar 

  17. H.J. Liu, C.T. Chan, Phys. Rev. B 66, 115416 (2002)

    Article  ADS  Google Scholar 

  18. M. Machón, S. Reich, C. Thomsen, D. Sánchez-Portal, P. Ordejón, Phys. Rev. B 66, 155410 (2002)

    Article  ADS  Google Scholar 

  19. I. Cabria, J.W. Mintmire, C.T. White, Phys. Rev. B 67, 121406 (2003)

    Article  ADS  Google Scholar 

  20. T. Miyake, S. Saito, Phys. Rev. B 68, 155424 (2003)

    Article  ADS  Google Scholar 

  21. J.T. Titantah, K. Jorissen, D. Lamoen, Phys. Rev. B 69, 125406 (2004)

    Article  ADS  Google Scholar 

  22. Y.L. Mao, X.H. Yan, Y. Xiao, J. Xiang, Y.R. Yang, H.L. Yu, Nanotechnology 15, 1000 (2004)

    Article  ADS  Google Scholar 

  23. V. Barone, G. Scuseria, J. Chem. Phys. 121, 10376 (2004)

    Article  ADS  Google Scholar 

  24. M.R. Mohammadizadeh, Physica E 31, 31 (2006)

    Article  ADS  Google Scholar 

  25. S. Reich, C. Thomsen, P. Ordejón, Phys. Rev. B 65, 155411 (2002)

    Article  ADS  Google Scholar 

  26. H. Yorikawa, S. Muramatsu, Phys. Rev. B 52, 2723 (1995)

    Article  ADS  Google Scholar 

  27. C.D. Sparatu, S. Ismail-Beigi, L.X. Benedict, S.G. Louie, Phys. Rev. Lett. 92, 077402 (2004)

    Article  ADS  Google Scholar 

  28. C.D. Sparatu, S. Ismail-Beigi, L.X. Benedict, S.G. Louie, Appl. Phys. A 78, 1129 (2004)

    Article  ADS  Google Scholar 

  29. R.B. Weisman, S.M. Bachilo, Nano Lett. 3, 1235 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Ribeiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribeiro, A., Macedo, C. Anisotropic tight-binding model applied to zigzag ultra-small nanotubes. Eur. Phys. J. B 74, 527–533 (2010). https://doi.org/10.1140/epjb/e2010-00107-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2010-00107-5

Keywords

Navigation