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Abstract 

In this paper, we review the latest developments in biological methods used in the removal of hydrogen 

sulphide, present in the liquid phase in anaerobic reactors. Also the toxicity of H2S on methane-forming 

microorganisms and the problems caused by the presence of this compound in the biogas generated during 

this process as well as the main causes of hydrogen sulphide generation in anaerobic processes of wastes. We 

specially discuss the fundamentals in applying micro-aerobic conditions in order to remove dissolved 

hydrogen sulphide from the aqueous phase of an anaerobic reactor. The alternative technology of 

simultaneous removal of sulphide, nitrate and organic matter is under recent investigation. Therefore, this 

review paper study and analyze the microbiological basis of this technology, the physical - chemical factors 

that influence the process and the potential application of this technology on different types of wastewaters 

and situations. Also considered are the fundamentals of both biofilm reactors and microbial fuel cells 
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desulphurization. Because relatively few studies on modeling desulphurisation processes are available, we 

discuss the advances made in the area. 

 

Keywords: anaerobic, denitrifying sulphide, desulphurization, microaerobic, modeling. 

 

1. Introduction 

The different ways to remove hydrogen sulphide generated during the degradation of organic matter via 

anaerobic digestion has been an important subject in many studies. In recent years, several works have been 

written on the application of biological processes in the removal of hydrogen sulphide, including different 

reviews in microbiology on the sulphur cycle (Tang et al. 2009), sulfate conversion in wastewater treatment 

(Hao et al. 2014) and the simultaneous removal of nitrogen-sulphur-carbon (Show et al. 2013). Even though 

these works thoroughly review sulphur removal, their efforts have focused on the removal of H2S from the 

gas phase while sulphide removal from the liquid phase has been scarcely analyzed. Due to this reality and 

their potential, it is beneficial to analyze specifically the application of these processes. This paper begins by 

establishing the various problems that hydrogen sulphide presence and production generate in anaerobic 

processes; this background is extremely important in order to develope strategies to reduce their production. 

The second part of this work focuss in the foundations of the main biological desulphurization processes 

studied and recently applied on different scales: microaerobic desulphurization, autotrophic denitrifying, 

microbial fuel cells (MFCs) and biofilm reactors for desulphurization. Due to the potential applicability of 

process modeling, this subject has also been included in this paper.  

 

2. H2S production, toxicity and their concerns in anaerobic processes 

The application of anaerobic processes in the treatment of liquid and solid waste has increased significantly in 

recent years, mainly due to the upflow anaerobic sludge blanket (UASB) reactor developed by Gatze Lettinga 

in the Netherlands (Lettinga, et al. 1980). The main advantage that anaerobic processes has over aerobic 

processes is that the transformation of organic matter is achieved using a low power consumption technology. 
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When compared results that during the aerobic processes approximately 60% of the energy was consumed 

during the synthesis of new biomass and 40% of the energy is lost as reaction heat while during the anaerobic 

processes almost 90% of the energy that originally exist in the substrate is retain as biogas and only 7% of the 

initial energy is lost as reaction heat. During the aerobic processes approximately 50% of the carbon in the 

substrate was converted into biomass and 50% was converted to CO2;while during the anaerobic processes 

approximately 95% of organic matter was converted to biogas (CH4, CO2) and only 5% is converted to 

biomass. Therefore, the production of biogas generate or recover energy instead of just save energy. This 

reduce operational costs when compared with aerobic processes with lower nutrient requirements with 

optimum C:N:P ratio of 100:0.5:0.1, which is approximately tenth than necessary in aerobic processes 

(Converti et al. 2009; Kothari et al. 2014; Semblante et al. 2014; Yang et al. 2014). 

One of the main drawbacks of anaerobic digestion is hydrogen sulphide. H2S is generated from the 

reduction of sulfate in anaerobic digestion, causing inhibitory effects. Therefore it should be taken into 

account when wastewaters containing high sulfate concentrations are treated. (e.g. wastewater from fishery, 

tannery, food processing, distillery, pulp and mill, mining, metalurgical, chemical, pharmaceutical and oil 

refinery industries and livestock farming (Janssen et al. 1999; Jarvis and Younger 2000; Lens et al. 2003; 

Altaş and Büyükgüngör 2008; Kaksonen and Puhakka 2007; Zheng et al. 2009; Hiibel et al. 2011; Shakir et 

al. 2012; Klok et al. 2013; Hao et al. 2014; Searmsirimongkol et al. 2011). The toxicity problem of hydrogen 

sulphide is extremely complicated due to the complex roles this compound plays as a nutrient as well as an 

inhibitor of microorganism activities. Moreover, H2S is a volatile malodorous compound whose presence 

causes downstream corrosion and damage in equipment, for example, in combined heat and power biogas 

engines. Therefore, H2S must be removed from biogas if is used in energy generation (Peu et al. 2012). 

Hydrogen sulphide generated by sulfate reducing bacteria (SRB), in the presence of organic matter, 

appears partially dissociated as HS
-
 and H

+
, depending on the pH of the liquid bulk (Sawyer et al. 2003, 

Simbualhong et al. 2007). The non-ionized form of sulphide is the molcule responsable for the inhibition 

process (Visser et al. 1993; Valdés et al. 2006). The pH value plays a fundamental role in the degree of 

inhibition, since it determines the equilibrium between ionized and non-ionized sulphide forms as can be seen 

in Figure 1. 
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From Fig. 1, it can be inferred that as pH values approach 6, the ionized form predominates. For this 

reason, it is recommended that in wastewater treatment with high concentrations of sulfates, operating pH 

must be maintained at relatively high values. The mechanism of inhibition indicates that the non- ionized 

hydrogen sulphide molecule, is able to penetrate the methanogenic archaea (MA) cell membrane and interfere 

with disulphide bridges between polypeptide chains, obstructing coenzyme activities (Vahdati 2007) and 

preventing sulphur assimilation process by the MA (Chen et al. 2008). 

From a thermodynamic and kinetic point of view (Tables 1 and 2), a sulfate reduction process is more 

favourable than methanogenesis. This fact implies that SRB can out-compete MA in the presence of unlimited 

sulfate concentrations for several substrates such as hydrogen, formate, acetate, propionate, butyrate, ethanol 

and sucrose (Stams 1994; Colleran et al. 1995; Omil et al. 1996; Greben et al. 2000; Muyzer and Stams 2008). 

SRB does not compete with MA for some organic substrates, such as, trimethylamine, or methionine 

(Oremland and Polcin 1982). SRB and MA at mesophilic temperatures compete for methanol utilization, but 

at temperatures above 65 ºC SRB will out-compete methanogens for this substrate (Weijma et al. 2000).  

 The influent chemical oxygen demand (COD) – sulfate ratio (COD/SO4
2-

) is the most important 

parameter concerning the competition between SRB and MA and other anaerobic bacteria (Velasco et al. 

2008). Reducing 1g of SO4
2-

 equals 0.67 g COD (Eq. 1 and 2), which means that for every kg of SO4
2-

- that is 

reduced, the production of CH4 decreases in 0.23 m
3
. If microorganism growth is taken into account, much 

higher ratios of 0.67 are needed to reduce SO4
2-

. There is extensive evidence supporting this behavior. Table 3 

contains examples of COD removal variations dependent on COD/SO4
2-

 ratio.  

 

SO4
2-
→ S

2-
 + 2O2  (1) 

96 g SO4
2-

 → 64 g O2       (2) 

 

 As the COD/SO4
2- 

ratio increases, organic matter removal also increases (as shown in Table 3). 

However, the most conclusive results are shown by Choi and Rim (1991), they observed that SRB and MA 

were very competitive at COD/ SO4
2-

 ratio from 1.7 to 2.7; also that MA predominated at high COD/SO4
2- 

ratios, while SRB predominated when the value of this ratio decreased. On the other hand, Prasad et al. (1988) 
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observed that MA prevailed over SRB at COD/SO4
2-

 ratio around 1. Vossoughi et al. (2003) working with an 

anaerobic baffled reactor (ABR) treating synthetic wastewater (3000 mg COD/L) at 35ºC, observed that when 

COD/SO4
2-

 ratios change from 16.7 to 6 with increasing sulfate concentration from 180 to 500 mg/L, a slight 

increase in COD removal was achieved. 

Although studies vary in their results, it is noteworthy to mention that in most cases, H2S production 

increases with decreasing of COD/SO4
2-

 ratio, decreasing production of CH4. Some studies even show that 

this ratio is not decisive on the performance of UASB reactors (Callado and Foresti 1992). One must also take 

into account that when this ratio reaches values greater than 10, an important part of H2S formed is stripped 

from the liquid phase due to a much larger gas production. Moreover in different studies is been observed that 

the behavior of the anaerobic process is not only influenced by the COD/SO4
2-

 ratio, but also by the initial 

concentration of sulfates and sulphides. Inlet SO4
2-

 concentration of 150 mg/L caused a degree of inhibition in 

anaerobic processes (Silva et al. 2002). In other different studies (Cohen et al. 1982; Rinzema and Lettinga 

1988; Nanqi et al. 2002), carried out in digesters operating with acetates, propionates, lactates and glucose 

concluded:  

-Levels of dissolved sulphide of 64 - 200 mg of dissolved sulphide/L caused “stress” in completely mixed 

systems and at higher values total failure ocurred in systems operated with acetates and propionates.  

-Levels of hydrogen sulphide of 100 – 150 mg of sulphur/L and dissolved sulphide of 200 – 400 mg of 

sulphur/L can be tolerated in anaerobic systems fed with lactate and glucose, operated with significantly 

lower efficiency level (50 – 70 % of COD removal, 40 – 80 % of sulfate conversion). Under similar 

conditions operating with lactate and glucose versus acetate and propionate, higher levels of dissolved 

sulphide and hydrogen sulphide are achieve in the anaerobic digester operating with lactate and glucose. 

-Anaerobic packed bed reactors can withstand much higher concentrations of dissolved hydrogen sulphide 

than the completely mixed systems. In this type of reactors, fed with propionates, the hydrogen sulphide 

levels above 200 mg/L did not cause inhibition and levels of dissolved sulphides near 1000 mg sulphur/L 

could be tolerated with minor negative effects. 

-In a packed reactor fed with acetate, the hydrogen sulphide levels in excess of 125 mg sulphur/L, caused no 

inhibition. In these same studies, in assays carried out with acetates and propionates using chemostats, it was 
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observed that hydrogen sulphide levels of 50 – 80 sulphur mg/L caused damage to anaerobiosis. 

From the above studies, it is evident that there are difficulties involved when setting sulphide 

concentrations so no inhibition of the anaerobic process occurs, however, there is a general consensus that 

anaerobic inhibition begins to occur at values of 50-250 mg sulphur/L. Although, there have been studies that 

not only obtain good performances from anaerobic reactors operating at higher concentrations than those 

identified above (Iza et al. 1986), but it has also been suggested that increased concentrations of sulphur can 

enhance the biological sulfate reduction (Greben et al. 2005).  

As previously commented, hydrogen sulphide cannot only cause inhibition in the anaerobic process with 

consequent loss of organic matter removal efficiency, but also when the undissolved part of biogas is 

considered it often limits significantly the use of this gas; there have been values of up to 17000 ppm of H2S 

reported in the biogas (Chaiprapat et al. 2011). However, this level of concentration is highly unusual; the 

expected concentration is no greater than 5000 ppm (Namgung et al. 2012) and in many cases this 

concentration is in the range of  1000 – 2500 ppm (Srichareon 2007; Pipatmanomai et al. 2009).  

In summary, the H2S content in biogas depends on various factors such as wastewater pH, waste carbon 

source composition and operational conditions (Noyola et al. 2006). They will determine the existence of 

different substances which can serve as donor electrons for sulfate reduction such as: H2/CO (Sipma et al. 

2007), H2/CO2 (Liamlean and Annachhatre 2007), CH4 (Zhang et al. 2010a), formate (Bitjmans et al. 2008), 

acetate (Koschorreck et al. 2004), lactate (Bertolino et al. 2011), glucose/acetate (Erdirencelebi et al. 2007), 

molasses (Teclu et al. 2009), cheese whey (Jiménez – Rodríguez et al. 2010) and animal manure (Gibert et al. 

2004). Consequently, different SRB genera act in sulfate reduction depending on electron donors; 16 genera 

belong to incomplete organic oxidizers that produce acetate and H2S and 22 genera are complete oxidizers 

that produce CO2, H2O and H2S (Hao et al. 2014). 

Some authors set the maximum allowable amounts of H2S in biogas for use in 100-500 mg/Nm
3
 biogas 

(65 – 330 ppmv) if the biogas is to be used in combined heat and power installations (Peu et al. 2012). Others 

indicate that the sulphide content in biogas should not be more than 1000 and 0.1 ppmv in internal 

combustion engines and molten carbonate fuel cells respectively (Rasi et al. 2011). Likewise, in combined 

heat and power plants, which are mainly implemented for the utilization of biogas, levels below 250 ppmv are 
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required (Weiland 2010). Duangmanee (2009) informed that the maximum H2S concentration for utilization 

in steam boiler and internal combustion motor must be 1000 and 100 ppmv, respectively. H2S concentration 

in biogas, higher than 0.03% (v/v), can cause acid rain due to high SOx generation in the combustion engine. 

The corrosive effect of H2S gas, 0.05 – 2% (v/v), significantly reduces the lifetime of pipe work and other 

installations (Deublein and Steinhauser 2011; González et al. 2014). Deublein and Steinhauser (2011) also 

stated that for vehicles the content must be lower than 5 mg/Nm
3
. 

H2S can also cause health problems. Several laws and regulations have been issued in different countries 

to minimize its presence in all part of biogas plants, including in digesters, gasholders, storage tanks, etc 

(Deublein and Steinhauser 2011). Small amounts of H2S in biogas (0.01 % v/v) emanate an odour reminding 

rotten eggs. Levels of H2S greater than 10 ppm in the air can affect human health, while levels more than 600 

ppm can cause death (Droste 1997). Other authors stated that concentracions of 0.2% of H2S, in the air is fatal 

to humans exposed for a few minutes and is also explosive at concentrations of 4.3 – 4.5% (Camargo 1986). 

 

3. Sulphide biological removal technologies 

3.1 General aspects 

Due to the previously mentioned difficulties caused by the presence of hydrogen sulphide in the biogas, 

different technologies have been applied to purify biogas (Cirne et al. 2008). Therefore, a wide range of 

physical, chemical and biological methods exist (Abatzoglou and Boivin 2009; Kobayashi et al. 2012; Lin et 

al. 2013). Since sulphideis toxis for MA in liquid phase and causes the inhibition of the anaerobic process; 

therefore, it is convenient to remove the sulphides in the liquid phase. The physico-chemical method most 

applied for hydrogen sulphide removal from the liquid phase in an anaerobic process has been precipitation 

with metals, mainly with Fe
3+

 (McFarland and Jewell 1989). A simplified reaction of hydrogen sulphide with 

Fe
3+

 is as follows (Parameshwaran and Hills 1984): 

Fe2O3 + 3H2S → Fe2S3↓ + 3H2O  (3) 
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However, this practice has several important limitations. It is expensive, complicated from an 

operational standpoint and generates sludge that may contain amounts of iron that complicates final disposal 

(McFarland and Jewell 1989). 

In contrast, biological methods have lower operational costs with lower or no utilization of chemicals 

(Syed et al. 2006; Mahmood et al. 2007). Several biological methods, for the removal of sulphide from the 

aqueous phase of an anaerobic digester, have been studied. Recently, microaerobic, autotrophic 

denitrification, microbial fuel cells and biofilms processes have been studied at different levels. 

 

3.2 Microaerobic desulphurisation 

Microaerobic desulphurisation consists in injectiing small amounts of oxygen or air into the liquid phase of 

anaerobic reactors (Jenicek et al. 2008). Some authors have pointed out that H2S removal takes place both 

biologically and chemically (Kleinjan 2005, Díaz et al. 2011). The final products of biological oxidation 

depend on the amount of oxygen available for sulphide oxidising bacteria (SOB), in accordance with the 

following reactions (Tang et al. 2009): 

 

        H2S + 1/2 O2 → Sº + H2O                   ∆Gº = -209.4 kJ         (4) 

        Sº + H2O + 3/2 O2 → SO4
2-

 + 2H
+
       ∆Gº = -587.1 kJ          (5) 

        H2S + 2 O2 → SO4
2-

 + 2H
+
                   ∆Gº = -798.2 kJ          (6) 

 

The predominance of elemental sulphur or sulfate as the final product of oxidation depends on the 

availability of oxygen; thus, in limited oxygen conditions (microaerobic), elemental sulphur is the main 

product (Janssen et al. 1995). Consequently, depending on the substrate and operational conditions (mainly 

oxygen content available), microorganisms responsible for the H2S oxidation belong to very large and 

different genera and species (Chaiprapat et al. 2011; Ramos et al. 2013, 2014a; Yu et al. 2014). 
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The results of several studies show the benefits of applying a microaerobic process to anaerobic 

digestion. However, recently there have been some concerns regarding a possible process failure due to the 

damage oxygen could cause to strict anaerobes, for example, methanogenic archea. But different authors have 

found evidence to support the possibility of no inhibitory effects of oxygen on anaerobic microorganisms. 

Information presented by Botheju and Bakke (2011) highlights that strict anaerobes have several deterrence 

mechanisms to tolerate microaerobic conditions. Other authors have found that granular sludges protect, to 

some extent, strict anaerobes from the effects of oxygen in the medium (Kato et al. 1994; Durán et al. 2008). 

A study carried out by Krayzelova et al. (2014), at laboratory scale, demonstrated that the microaerobic 

procedure did not impair the quality of granular sludge in an UASB reactor; the specific methanogenic 

activity (SMA) of the sludge achieved was that of 0.389 and 0.336 ml CH4/g TSS·d for UASB reactors with 

and without microaeration, respectively. Also, there were no inhibitory effects found on suspended sludge 

(Estrada-Vázquez et al. 2003) Jenicek et al. (2011) reported similar results. 

As previously mentioned, the limiting operational parameter of microaerobic desulphurisation in 

practical conditions is the oxygen supply, because other parameters such as temperature are fixed (generally 

35 – 37ºC). Both organic load and hydraulic retention time (HRT) depend on the type of reactor used in each 

specific installation. There have been reports on different oxygen amounts applied to the anaerobic process 

and they vary widely; there is no set of parameters or general indicators to compare the results of different 

studies objectively. An alternative could be the the use of the O2/H2Ssupplied ratio (Fortuny et al. 2008; Ramos 

et al. 2013), allowing for the normalization of the oxygen application or simply knowing the specific amount 

of oxygen being used. Another alternative could be the use of the parameter O2/SO4
2-

supplied, taking into 

account that in most cases H2S in an anaerobic process comes from SO4
2-

 reduction. O2 added volume/reactor 

volume.minute (vvm) could also be a comparative parameter for different microaerobic studies.  

Ramos et al. (2014b) operated a pilot anerobic sludge digester at HRT of 22- 24 days with an initial 1% 

(v/v) HS
-
 , supplying 0.21 – 0.28 NL O2/Lsludge feed achieving CH4, H2S and O2 concentrations (% v/v) of 95.3, 

0.03 and 0.86 , respectively. In other studies (Ramos et al. 2013), a pilot anaerobic sludge digester was 

operated at 14 – 18 days of HRT working with oxygen flow rates of 4.4 – 6.2 NL O2/m
3
.d, achieving 

concentrations (% v/v) of H2S in biogas of 0.02-0.03. Whereas, when oxygen was not supplied, H2S 

concentration (% v/v) in biogas was 0.34. The high efficiency of microaerobic desulphurization was also 
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demonstrated in studies performed by Díaz et al. (2011); in pilot sludge anaerobic digester where H2S 

concentration of 1.5% (v/v) in biogas was obtained after the application of 0.25 NL O2/Lfed sludge. The resulting 

H2S concentration was very close to zero most of the time (more than 98 % H2S removal was achieved).  

Montalvo et al. (2014a) used natural zeolite in a microaerobic procedure (0.08 ppmv) into a UASB 

reactor. They found that the use of natural zeolite helped the granulation process and start up of the UASB 

reactor; with zeolite there was a time decrease of 50% to complete the granulation compared to that of the 

UASB reactor without zeolite. The anaerobic process enhancement has been shown in various studies 

(Fernández et al. 2007, Montalvo et al. 2012, Montalvo et al. 2014b). Hydrogen sulphide removal in the 

UASB reactor with natural zeolite and micro-aeration was not largely affected neither by different HRTs 

applied to the operation of the reactor nor by high volumetric organic loads (VOL). When operating at a HRT 

of 2.4 h and a VOL of 18.6 kg COD/m
3
/d, there was no evident decrease in sulphide removal. The average 

hydrogen sulphide removal was higher than 94.56 ± 4.71%, confirming that the micro-aeration system is 

reliable to operate under conditions in which shocks of organic matter or sulfate concentrations in the reactor 

may happens without a reduction in their efficiency. In this study, when an excess of O2 was applied to assays 

carried out in batch reactors, there was a re-conversion of H2S to H2SO4. 

Pure O2 or air (21% O2 and 79% N2) can be injected in anaerobic reactors in order to promote a 

microaerobic environment. Air is a costless oxygen source; however, the effect of introducing nitrogen results 

in calorific power dilution of the biogas. Thus, it is very important to know what will be the end use of the 

biogas. Díaz et al. (2011) carried out research in order to compare microaerobic – anaerobic process behavior 

when air is injected into a reactor. They found that similar removal efficiencies were achieved when using 

oxygen and air, but air slightly lowered the methane concentration in the biogas because of nitrogen dilution, 

yet the biogas maintained its fuel qualities. Montalvo et al. (2014a, b) also found that using air in 

microaerobic – anaerobic process, biogas also maintained its fuel qualities. Díaz et al. (2011) stated that when 

air is used therefore diluteing biogas with nitrogen in microaerobic process, a redution in engine efficiency 

might be expected. Considering that in many cases biogas is not used to generate electricity or moving 

internal combustion engines, the use of air in microaerobic processes becomes more applicable. Porpatham et 

al. (2007) demonstrated that “diluted” biogas could be used in a combustion engine, they found that a 
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decrease in methane concentration from 70% to 50% only reduced the spark-ignition engine energetic 

performance by 0.9% for the same mass methane flow. 

A common aspect in all studies about microaerobic desulphurization is that the dissolved O2 

concentration in liquid media always remains as dissolved oxygen below 1 mg/l. 

One aspect that is more complex to analyze in microaerobic desulphurization is the balance of sulphur 

compounds, because of the use of oxygen in a liquid medium containing sulphides where different sulphur 

chemical species exist according to the following reactions (Duan et al. 2005): 

 

H2S → Sº → S2O3
2-

 → S4O6
2-

 → S3O6
3- 
→SO3

2-
 → SO4

2-
   (7) 

 

The balance of sulphur compounds is very important, because the hydrogen sulphide content and 

dissolved hydrogen sulphide content in the biogas is of interest. The mentioned interest is not only due to the 

inhibition that it may cause on the anaerobic process, but also because their presence in the liquid effluent of 

the digester can consumption a significant amount of oxygen in their final disposal. This is of preponderant 

importance, especially if its final disposal is in rivers or lackes. Finally, the formation about elemental sulphur 

is one aspect that can have a great impact on process maintenance, because they generate solid deposits inside 

the digesters. 

The various streams leaving the microaerated anaerobic reactor that contain sulphur compounds, also 

affects the sulphur balance: 1) total sulphur compounds in the effluent, 2) total sulphur compounds in the 

excess of biomass, 3) hydrogen sulphide in biogas, 4) deposition of elemental sulphur in the reactor 

headspace, 5) total sulphur compounds in the effluent solids. For example, De Graff et al. (2012), in order to 

calculate the elemental sulphur concentration, used the following mass balance under steady-state conditions: 

 

[S°] = [Influent S] – [SO4
2-

] – 2[S2O3
2-

] – [HS
-
]  (8) 
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It has been proven that the balance can be carried out with minimal error, if its only consider in practical 

conditions of microaeration the following chemical species in the streams leaving the reactors: H2S dissolved 

and in the biogas, Sº present in the biomass, in the headspace and in the effluent solids and SO4
2-

 in the 

effluent. It is also very important to know the sulfate concentration that may be in the liquid effluent from the 

digester, because concentration of this chemical species has regulated values when discharged into 

watercourses. 

It is known that the solubility of oxygen in a liquid medium is relatively low, hence, a substantial part of 

the supplied oxygen will remains in gas phase which results in: 1) a certain amount of O2 will incorporate 

itself into the biogas leaving the digester and 2) another amount of oxygen will be involved in the oxidation of 

hydrogen sulphide present in the biogas. This desulphurization results in Sº deposition in the reactor 

headspace which in turn requires periodic cleaning in order to prevent clogging problems (Díaz and 

Fernández–Polanco 2011). Ramos et al. (2013) observed that Sº accumulates in the surface near to the liquid 

media (liquid surface and wall and ceiling of the digester). Sº also settled at the digester bottom. Ramos et al. 

(2014a) found that a cleaning interval of 14 months was necessary in order to maintain good process 

efficiency. They also found that once microaerobic conditions were restored after being cleaned, all H2S was 

rapidly removed from the biogas. 

The application of microaeration in anaerobic process not only induc H2S removal, but also enhanced 

hydrolysis by increasing the synthesis and activity of extracellular hydrolytic enzymes (Johansen and Bakke 

2006; Zhu et al. 2009; Botheju and Bakke 2011). This improve the anaerobic process mainly when sludge is 

treated, because t hydrolysis is the bottleneck of the anaerobic process due to the high organic suspended solid 

content of this residue (Myint et al. 2007; Lillo et al. 2014). 

 

3.3 Autotrophic denitrification  

Sulphide can be present in wastewater together with carbon and nitrogen compounds and their 

interactions between the biological cycles of the three elements can be used to remove each other (Figure 3). 

The biological interaction between sulphur and nitrogen cycles is given by autotrophic denitrification 

which consists in the oxidation of sulphide (or other reduced sulphur compounds such as S2O3
-2 

and Sº) by 
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nitrogen oxides (NO3
-
 and/or NO2

-
) producing sulfate (Equations 9, 10 and 11) which is less harmful than S

-2
, 

particularly when the effluent is disposed in a marine environment. 

 

  5 S
-2

 + 8 NO3
-
 + 8 H

+
→ 5 SO4

-2
 + 4 N2 + 4 H2O                         (9) 

     5 S2O3
-2

 + 8 NO3
-
 + H2O→ 10 SO4

-2
 + 4 N2 + 2 H

+
 (10) 

 5 S° + 6 NO3
-
 + 2 H2O → 5 SO4

-2
 + 3 N2 + 4 H

+
 (11) 

 

Sulphur denitrifying bacteria are members of the phylum Proteobacteria. The microorganism best 

studied, able to carry out autotrophic denitrification using reduced sulphur compounds, is Thiobacillus 

denitrificans (β-Proteobacteria class) and it is known as colourless sulphur bacteria (Robertson and Kuenen 

1992). It is rod-shaped, gram-negative with polar flagella motile or non-motile bacteria and it grows under 

mesophilic conditions. Thiobacillus thiophilus has also been recently reported as an autotrophic denitrifying 

bacterium that uses thiosulfate and nitrate (Kellermann and Griebler 2009). Another major bacterium 

performing the autotrophic denitrification is Sulphurimonas denitrificans (Epsilonproteobacteria). It is a rod-

shaped, non-motile bacteria and it is able to oxidize S2O3
2- 

and S
-2

 into sulfate coupled to the reduction of 

nitrate (Gadekar et al. 2006; Takai et al. 2006; Tandukar et al. 2009). 

 

3.3.1 Kinetic and stoichiometric parameters of sulphur denitrifying bacteria 

For autotrophic denitrification, bacteria growth and substrate consumption rates can be described by 

Monod equation (Oh et al. 2000). The majority of the kinetic studies have been conducted with pure cultures 

of Thiobacillus denitrificans and Thiomicrospira denitrificans. The estimated kinetic and stoichiometric 

parameters from the different studied bacterial populations present a wide range of values (Table 4) which 

indicates their large diversity. 
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3.3.2 Key operational parameters for sulphur denitrification 

There are some basic operational parameters to consider during the application of autotrophic denitrification 

for the treatment of wastewater containing sulphide and nitrogen compounds, such as: 

• Temperature and pH  

Autotrophic denitrifying bacteria have been found in mesophilic environments (25-35ºC); their optimum 

temperature being around 35ºC. When temperature is higher than 40 ºC (Oh et al. 2000) or lower than 15 ºC 

(Yamamoto-Ikemoto et al. 2000), the autotrophic denitrification rate is negligible. The optimal pH range for 

this kind of bacteria is 7-8 (Oh et al. 2000; Claus and Kutzner 1985). In this range of pH values, the end 

products of denitrification are N2 and sulfate. While at pH values below 7 the denitrification process is 

incomplete and intermediate products such as nitrite and/or elemental sulphur are detected. At pH values 

under 6 or over 9, a complete inhibition of denitrification is observed (Oh et al. 2000; Moon et al. 2004). 

• Oxygen 

Oxygen and nitrate are electron acceptors in the oxidation of sulphide. The oxidation of S
-2

 in the presence of 

oxygen is thermodynamically more favourable than the oxidation using nitrate. Therefore, its presence should 

be avoided. Several research works agree that the minimum concentration of dissolved oxygen which does 

not cause the inhibition of autotrophic denitrification is between of 0.1-0.3 mg O2/L. Above these 

concentrations denitrification is inhibited (Sublette et al. 1998; Kimura et al. 2002; Gu et al. 2004).  

• Presence of inhibitory compounds 

Inhibition of autotrophic denitrification by substrates (nitrate, nitrite and sulphide) has been reported. 

Nitrate exerts inhibitory effects at concentrations of 660 mg NO3
-
-N/L, while nitrite and sulphide appear to be 

strong inhibitors of denitrification even at low concentrations (36-60 mg NO2
-
-N/L and 200 mg S-S

-2
/L) (Oh 

et al. 2002, Fajardo et al. 2014). The inhibitory effect of sulphide can be avoided by applying specific 

sulphide loading rates lower than the specific sulphide removal rate of the biomass (Fajardo et al. 2012) or 

maintaining an influent S/N ratio lower than the stoichiometric ratio. The last strategy is not advisable since 

sulphur limitation generally causes the accumulation of nitrite that is also a strong inhibitor of the 
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denitrification process and, in addition, elemental sulphur that is retained causes the accumulation of 

inorganic solids inside the system (Fajardo et al. 2012). 

The inhibition of autotrophic denitrification, by heavy metals such as Zn and Cu at concentrations of 0.5 and 

1.0 mg/L, has also been reported (Claus and Kutzner 1985; Krishnakumar and Manilal 1999; Oh et al. 2000; 

Moon et al. 2006). Organic matter has no inhibitory effect on the process, but it affects the oxidation of 

sulphur species, decreasing the formation of sulfate (Kim and Son 2000; Oh et al. 2002). Sulfate is a product 

of the process and has been reported to provoke partial inhibition at concentrations of 500 mg SO4
-2

-S/L and 

total activity depletion at 6400 mg SO4
-2

-S/L (Claus and Kutzer 1985; Campos et al. 2008). 

 

3.3.3 Potential applications of autotrophic denitrification  

Autotrophic denitrification can be considered as a suitable process to remove sulphide from wastewater 

(Vaiopoulou et al. 2005; Fajardo et al. 2014) or even in removing H2S from biogas generated during the 

anaerobic digestion of effluents containing sulfate (canneries, petrochemical industries, tanneries, among 

other) or fluel gas (Kleerebezem and Méndez 2002; Syed et al. 2006; Baspinar et al. 2011; Qian et al. 2015). 

However, in spite of its advantages, up to now, this process has been scarcely applied on a full scale (Garuti et 

al. 2001; Sahinkaya et al. 2014). The following potential applications of autotrophic denitrification using 

sulphur compounds can be highlighted: 

• Industrial wastewater treatment 

Industrial effluents generally contain large quantities of organic matter and if treated by anaerobic digestion 

can result in a significant source of energy. However, anaerobic digestion only removes organic matter and, 

then, effluents with low C/N are generated. The post-treatment of these effluents by conventional 

nitrification–denitrification processes is not economically feasible since additional carbon source is needed to 

carry out denitrification. On the other hand, part of these industrial effluents can contain high concentrations 

of sulfate, which is converted into sulphide during anaerobic digestion (Tandukar et al. 2009). Depending on 

the operational conditions, the sulphide generated could remain in the liquid phase or transfer to the biogas.  
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In the case of sulphide being predominantly in the liquid phase, a predenitrifying configuration should be 

used to remove both nitrogen and sulphide (Fig. 4a) (Tandukar et al. 2009). In this configuration, the effluent 

from the anaerobic digester is fed into the denitrifying reactor and later a nitrification is carried out. A stream 

from the aerobic tank containing nitrate and/or nitrite is recirculated to the first unit to carry out 

denitrification. Therefore, the nitrogen removal efficiency depends on the recycling ratio. The post 

denitrifying configuration is advisable when sulphide is mainly present in the biogas. In this case, the effluent 

of the anaerobic digester is fed into the nitrifying unit and its effluent enters an absorption tower where biogas 

is supplied in order to transfer sulphide to the liquid phase. Afterwards, sulphur and nitrogen compounds are 

removed in the denitrifying reactor. This configuration is very simple, easy to control and no recycling is 

needed (Fig. 4b) (Fajardo et al. 2013). 

• Sewage treatment 

When seawater is used for toilet flushing, concentrations around 500 mg/L of sulfate can be expected in 

sewage (Wang et al. 2009a). In this case, if an anaerobic digester is used to remove organic matter, most of it 

is consumed by sulfate-reducing bacteria, instead of be converted into methane, and an effluent with a high 

sulphide concentration is generated. In this case, ammonia can be removed by applying nitrification and 

autotrophic denitrification units in a predenitrifying configuration (SANI process; Lu et al. 2009). 

• H2S emissions control in sewers systems 

Hydrogen sulphide generation by anaerobic microorganisms in sewer systems is generally associated with 

biogenic corrosion of concrete and release of odors to the urban atmosphere (Zhang et al. 2008). There are 

several chemicals inhibiting H2S formation or removing sulphide from wastewater, such as, oxygen, hydrogen 

peroxide and ferric salts. Nevertheless, the addition of nitrate seems a very atractive option due its high 

solubility, low consumption rate and low operational costs compared to those of the other chemicals (Park et 

al. 2014). 

The addition of nitrate in a septic wastewater oxidizes biologically dissolved sulphide, via autotrophic 

denitrification by sulphur denitrifying bacteria and also promotes the development of heterotrophic 

denitrifying bacteria, competing with SRB for organic matter (Fig. 5). 
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3.4 Sulphide removal from liquid streams using biofilm reactors 

Even though a traditional suspended growth bioreactor, such as activated sludge, is commonly used in 

wastewater treatment, it has problems associated with its high solid retention time (SRT) and lower HRT, 

which strongly relies on effective settling of the final clarifier. In order to avoid this problem, immobilized 

cell technology has been applied in sulphide biological treatment (Yang et al. 1997). This technology has 

several advantages such as: (i) Biomass is easily retained and no recirculation is required, allowing higher 

biomass concentration. (ii) The system can tolerate higher hydraulic or organic loads because of higher 

biomass concentration in the reactor. (iii) The coexistence of aerobic, anoxic, and anaerobic environments 

becomes possible, because of the interaction between the microbial oxygen demand and molecular oxygen 

transfer. This method can provide for more diversified microorganism species within the system (Kuo and 

Shu 2004). 

The biological sulphide removing studies, with immobilized biomass, use either photoautotrophic or 

chemolithotrophic SOB. Photoautotrophs use CO2 as the terminal electron acceptor, while with 

chemolithotrophs oxygen (aerobic species) or nitrate and nitrite (anaerobic species) serve as terminal electron 

acceptors (Tang et al. 2009). Bioreactors using chemotrophic SOB generally achieve higher sulphide loading 

rates than photoautotrophic systems (Krishnakumar et al. 2005; Tang et al. 2009). The simpler nutritional 

requirements and higher sulphide tolerance of chemotrophic organisms also  favoured their application in 

biological sulphide oxidation systems (Krishnakumar et al. 2005). Indeed, after 2006 there are no publications 

of phototrophic technology applied to sulphide removal. A number of studies have been conducted using 

chemotrophic bacteria to convert H2S to S
0

, using different electron acceptors since Tang et al. (2009) 

summarized from the research works done in this area prior to 2009. Therefore, only chemotrophic SOB will 

be analyzed in this review. Removals and main characteristics of biofilm systems are shown in Table 5. 

Different kinds of support biofilm and bioreactors have been proposed recently. Sarti et al. (2009) 

proposed the use of a bench-scale anaerobic sequencing batch biofilm reactors (ASBBR) containing mineral 

coal as inert support for removal of sulphide and organic matter (ethanol) from sulfate reduction process 

effluents. Using oxygen under micro-aeration conditions as an acceptor electron, showed that the ASBBR at 

bench scale (ASBBRBS) could obtain a COD removal efficiency of up to 90%, while effluents total sulphide 
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concentrations (H2S, HS
-
, S

2-
) remained in the range of 1.5 to 7.5 mg/L during the 50 days of operation (25 

cycles). The use of an ASBBR at pilot scale (ASBBRPS) provided only significant results in terms of COD 

removal (88%), with a low total dissolved sulphide (TDS) removal (57%). However, they mentioned that 

TDS removal can be improved by the optimization of operational strategies applied to the ASBBR 

configuration. Moghanloo et al. (2010) studied sulphide removal using Thiobacillusthioparus TK-1 in a 

biofilm airlift suspension reactor (BAS), with oxygen as acceptor electron. They evaluated the relationship 

between biofilm formation and changes in inlet loading rates. Optimal treatment performance was obtained at 

loading rate of 4.8 mol S
2-

/m
3
/h with a conversion efficiency as high as 100%. The main product of H2S 

oxidation in the BAS-reactor was sulfate, because of high oxygen concentrations in the airlift reactor. The 

maximum sulphide oxidation rate was 6.7 mol S
2-

/m
3
/h at a hydraulic residence time of 3.3 h in the mineral 

medium. Midha et al. (2012) used a continuous fluidized bed bioreactor (FBBR) with nylon support particles 

to treat synthetic sulphide wastewater at different hydraulic retention times. The microorganisms used came 

from an activated sludge, taken from the effluent of a tannery treatment plant. They demonstrated that almost 

90–92% sulphide oxidation was achieved at all hydraulic retention times, being the highest sulphide oxidation 

(92%) obtained at a hydraulic retention time of 75 min and upflow velocity of 14 m/h. This study also 

explored the use of a statistical model that included the upflow velocity, hydraulic retention time and reactor 

operation time, which could explain data within 94% variability. Liu et al. (2013) proposed a new support 

(polyethylene semi-soft packing), in order to obtain a more cost-effective technology. They indicated that the 

activity of bacteria reached the highest value at pH 7.8–8.2, with a maximal sulphide removal load of 7.25 

kg/m
3
/d, using 4.80 mg/L of dissolved oxygen (DO). The increase in the DO value corresponds to a decrease 

in the sulphur yield, obtaining its highest sulphide removal load and sulphur yield at 2.55 mg/L DO. On the 

other hand, HRT had little effect on desulphurization efficiency with constantsulphide removal load. Finally, 

the sulphide removal load decreased from 2.85 to 0.51 kg/m
3
/d) with increasing salinity from 0.5% to 2.5% 

(w/w). 

Other electron acceptors than oxygen for sulphide removal are also proposed. Beristain-Cardoso et al. 

(2009) studied the simultaneous autotrophic-heterotrophic denitrification with phenol as the organic matter in 

a microbial consortium attached on a polyethylene support. They showed through a mass balance the 

complete removal of phenol, sulphide and nitrate, and the products were nearly stoichiometrically recovered 
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as bicarbonate, sulfate and N2, respectively. Based on the results of microbial biofilm community analysis, 

they sugested that the simultaneous oxidation of phenol and sulphide coupled to nitrate reduction might be 

carried out at least by two different microbial genera. Tang et al. (2010) studied the autotrophic and 

heterotrophic denitrification processes in biofilm reactors using microbial cultures from an oil reservoir. They 

indicated that the use of this kind of microorganisms led to a marked improvement of sulphide and nitrate 

removal rates (both autotrophic and heterotrophic) when compared with those reported in literature. They also 

showed that the application of biofilms improved sulphide and nitrate removal rates significantly when 

compared with freely suspended cells, with maximum sulphide and nitrate removal rates under autotrophic 

conditions of 30.0 and 24.4 mM/h, respectively (residence time: 0.5 h). In this study, the conversion of 

sulphide to sulfate increased as nitrate to sulphide molar loading ratio was increased. On the other hand, 

Moraes et al. (2011) evaluated the effect of sulphide concentration on autrotrophic denitrification using nitrate 

and nitrite as electron acceptors in vertical fixed-bed reactors. The reactors’ bed consisted of 0.5 cm 

polyurethane foam cubic matrices, in which the biomass was immobilized. Two sulphide concentrations were 

tested with each electron acceptor: excess of electron donor (molar N/S ratios of 0.9 and 1.5, for nitrate and 

nitrite respectively) and close to the required stoichiometrically (molar N/S ratios of 1.7 and 2.8 for nitrate 

and nitrite, respectively), both considering complete oxidation to sulfate. Sulphide concentration influenced 

the formation of final oxidation products. Higher sulphide concentrations led to a larger formation of 

intermediary sulphur compounds. Finally, it was found that microorganisms use nitrite more readily when 

compared to nitrate, information that might be useful for planning and optimizing the first step of nitrogen 

removal from effluents produced by anaerobic reactors applied to domestic sewage treatment. Moraes et al. 

(2013) investigated the feasibility of simultaneous nitrification/denitrification (SND) coupled with sulphide 

oxidation sequencing fed-batch biofilm reactors intermittently aerated for the post treatment of the effluent 

from an UASB reactor. The main objective was to evaluate two start-up alternatives and feeding strategies for 

the establishment of nitrification and denitrification. The fed-batch mode with sulphide application in excess 

was the best feeding strategy only in the anoxic periods, providing average efficiencies of 85.7% and 53.0% 

for nitrification and denitrification, respectively. However, the low overall nitrogen removal efficiency and 

some operational constraints indicated that autotrophic denitrification using sulphide in a single SBR was not 

suitable for SND under the assayed conditions. Liang et al. (2013) also investigated autotrophic partial 
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nitrification/denitrification and simultaneous sulphide removal by using synthetic wastewater in a vertical 

submerged biofilm reactor. Influent ammonium nitrogen and sulphide concentrations ranging from 54.6 to 

129.8 mg /L and from 52.7 to 412.4 mg/L, respectively, were used. The results demonstrated that the working 

parameters were more stable when the sulphur/nitrogen ratio was set at 3:2, which yielded the maximum 

sulphur conversion. Furthermore, batch experiments with different phosphate concentrations proved that a 

suitable phosphate buffer solution to control pH values could improve process performance by synchronous 

desulphurization denitrification. Chen et al. (2014) presented the integrated simultaneous desulphurization 

and denitrification (ISDD) using an expanded granular sludge bed (EGSB) reactor, exploring the effect of the 

COD/SO4
2-

 ratio on the performance of ISDD process. At COD/SO4
2-

 in the range1.5-2:1, the granules were 

formed to retain most functional strains in the reactor. At COD/SO4
2-

 > 2:1, the excess sulphide yielded SRB, 

which inhibited the activities of heterotrophic denitrifiers (hNRB) and autotrophic denitrifiers (aNRB) to 

deteriorate reactor performance. At COD/ SO4
2-

 < 1:1, the hNRB group would out-compete the SRB group 

with the limited organic electronic donors, therefore, the S
2-

 was not sufficiently produced with limited 

activity of aNRB. 

In addition to microorganisms, enzymes are also an option for sulphide removal. Zhang et al. (2009b) 

proposed the use of a bioreactor packed with an enzyme (sulphide-oxidase) immobilized on chitosan beads, 

using oxygen as an electron acceptor, showing that this technology could remove up to 99% of inlet sulphide. 

Volumetric loading, space velocity and airflow rate had significant effects on the efficiency of sulphide 

removal. The most important finding was the prediction of the performance of the bioreactor using 

operational equations. 

Regarding the study of the microbial community, biofilm systems have also been investigated for 

sulphide removal. Vannini et al. (2008) characterized the microbial community in an experimental membrane 

bioreactor for sulphide oxidation and the selected microbial community was characterized by constructing 

16SrRNA gene libraries and subsequent screening of clones. Fluorescence in situ hybridization (FISH) was 

then used to assess the relative abundance of different bacterial groups. After the start-up phase, the process 

proceeded in a very stable manner, as long as the influent sulphide concentrations did not exceed 900 mg/L 

with a 79% of sulphide removal. Nevertheless, membrane fouling was relatively fast, needing weekly 

washing. Both analysis of clone libraries and FISH experiments revealed that the dominant operational 
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taxonomic unit (OTU), in the bioreactor, was constituted by Gamma proteobacteria belonging to the 

Halothiobacillaceae family.  

 

3.4.1 Sulphide removal in microbial fuel cells 

MFCs enable the direct capture of the energy contained in biodegradable organic matter in the form of 

electricity. The basis of this technology relates to the fact that electron transfer is inherent to the nature of 

microbial metabolism, as bacteria derive their energy from electrons transfered from a substrate to an electron 

acceptor at a higher redox potential. Microbial fuel cells provide a new approach for wastewater treatment, 

allowing electricity generation from the degradation of organic and inorganic matter (Logan et al., 2006). In a 

microbial fuel cell, the bacteria are stimulated to transfer their electrons to an electrode, from which the 

electrons flow to the external electrical circuit (I). On the basis of this principle, MFCs have been developed 

first for organic compounds and from 2006, with the work presented by Rabaey et al. (2006), for sulphide 

compounds. Sulphide is oxidized under standard conditions to elemental sulphur at potentials of at least 

higher than -0.274 V versus standard hydrogen electrode (SHE). Increasing the potential can further oxidize 

elemental sulphur. The work of Rabaey et al. (2006) has also been mentioned in another review (Zhang et al., 

2008)). Here further findings will be analyzed. Table 6 shows the main characteristics of the MFC used for 

sulphide removal.  

Sun et al. (2009) studied sulphide oxidation coupled with electricity generation, demonstrating that both 

electrochemical reactions and microbial catalysis were involved in a complex sulphide oxidation process in 

the anode of a MFC. They also proposed the sulphide oxidation pathways where the oxidation of sulphide to 

S
0
/Sx

2-
 and further to S4O6

2-
/S2O3

2-
 occurred spontaneously as electrochemical reactions produced electricity. 

Meanwhile, the bacteria in the MFC anode, generating SO4
-2

, accelerate the formation of S
0
/Sx

2-
 and S2O3

2-
. 

Finally, it was noted that the microbe-assisted production of S2O3
2-

 and SO4
2-

 resulted in a persistent current 

from the MFC. Zhang et al. (2009a) proposed the simultaneous removal of sulphide (including organics) and 

Vanadium (V) removal with electricity generation. During a 72 h operation, a sulphide removal rate of up to 

84.7 ± 2.8% was achieved, with a Vanadium (V) reduction rate of 25.3 ± 1.1%, while MFCs produced a 

maximum power output of 572.4 ± 18.2 mW/m
2
. Furthermore, a 20.7 ± 2.1% of the organics in sulphide 
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containing wastewater could also be removed alongside sulphide. An important improvement from this 

research was obtaining solid sulphur without controlling the anode potential and the use of cathode materials 

composed of carbon without any need for a plating of noble metal, therefore reducing the material costs. 

Zhang et al. (2010b) examined the operating parameters such as initial concentration, conductivity, pH 

and external resistance for the sulphide removal using Vanadium (V) as an electron acceptor. It was found 

that the anode potential decreased as the initial sulphide concentration increased, resulting in the increase of 

the power output. The maximum power density obtained in this section was in the range of 500 – 700 

mW/m
2
. On the other hand, increasing the anode electrolyte conductivity up to a threshold value (12.3 mS/cm 

here), considerably raised the sulphide removal rate and quantity. For anode electrolyte conductivities ranging 

from 7.4 to 12.3 mS/cm, the sulphide removal rate remained above 91%. However, the maximum power 

density rose to a peak, then, declined with increasing anode electrolyte conductivity. Regarding pH and 

external resistance, it was demonstrated that lower pH increasesulphide removal and power generation, while 

the sulphide removal increased with lower resistance values. Zhao et al. (2009) studied a MFC that uses an 

activated carbon cloth plus carbon fibre veil anode composite, air-breathing dual cathodes and the sulfate-

reducing species Desulfovibriodesulphuricans. Compared with other membrane types, proton (cation) 

exchange membrane and nafionionomer at the catalyst, enabled the cathode assembly to achieve high 

performance. The anode performance is controlled by the sulphide concentration, which was nearly 

completely removed from the wastewater during MFC operation. Lee et al. (2012a) applied a pure culture, an 

autotrophic denitrifier, Pseudomonas sp. C27, to start up a two-chambered MFC using sulphide as the sole 

electron donor. The MFC can successfully convert sulphide to elementary sulphur with electricity generation 

at a maximum power density of 40 mW/m
2
. The addition of acetate interfered biofilm activity of electricity 

generation from sulphide. Nitrate was revealed as a more powerful electron acceptor than anode in the MFC. 

Lee et al. (2012b) started up a microbial fuel cell using enriched sulfate-reducing mixed culture as 

anodic biofilms and applied the MFC for treating sulfate or sulphide-laden wastewater. The sulfate-reducing 

bacteria in anodic biofilm effectively reduced sulfate to sulphide, which was then used by neighboring anode 

respiring bacteria (ARB) as an electron donor for electricity production. The presence of organic carbon 

enhanced MFC performance since the biofilm ARB are mixotrophs that need organic carbon to grow. In the 

presence of lactate, sulfate in water change from 248 mgL to 39.3 mg/L as S in 3 days, with 84.1% 
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conversion to S
0
. With or without the addition of lactate, the MFC effectively oxidized sulphide in water to 

S
0
. The MFC produced electricity from sulfate or sulphide-laden wastewater in the presence of lactate. Lee et 

al. (2014) applied the microbial fuel cell with sulfate-reducing bacteria plus sulphide oxidizing bacteria in the 

anodic biofilm for treating the sulfate plus organic carbon wastewater. According to the results, the cell 

efficiently converted sulfate to S
0
 at an open-circuit cell voltage of 730 mV and maximum power density 

(Pmax) of about 62 mW/m
2
. Sulphide ions produced by SRB from sulfate were the key metabolite that 

determined the cell performance. Without biofilm, the anodic surface cannot efficiently oxidise sulphide. 

With biofilm, SRB converted sulfate to sulphide and then the formed sulphide diffused to neighboring SOB 

for oxidation and release of excess electrons. 

Rakoczy et al. (2013) studied a two-chambered microbial fuel cell in order to treat sulfidic-benzene-

contaminated groundwater. With this system, the total electron recoveries for benzene and sulphide were 

between 18% and 49%, implying incomplete oxidation of benzene and sulphide at the anode. Even though 

there was very little removal, this work demonstrated the feasibility of removing undesired substances 

through enrichment of groundwater microorganisms in MFC systems. Zhang et al. (2013b) proposed the 

removal of sulphide in MFC using corn stover filtrate (CSF) as a co-substrate. They showed that CSF 

concentrations and electrolyte conductivities had significant improving effects on the performance of the 

MFCs. The presence of organic compounds did not affect the sulphide removal also degrading organics 

present in CSF with almost 52% of COD removed. 

Regarding the microbial communities, Sun et al. (2010) explored their roles in the sulphide conversion 

and electricity generation. Community analysis of the sulphide-fed MFC showed a great diversity of bacteria 

in the anodic chamber, including exoelectrogenic bacteria and sulphur-related bacteria. The anode-attached 

and planktonic communities shared similar richness and diversity, while their structures were significantly 

different according to the LIBSHUFF analysis. Furthermore, the anode-attached planktonic communities 

could perform catalysis independently, and synergistic interactions occurred when the two communities 

worked together. Exoelectrogenic, sulphur-oxidizing and sulfate-reducing bacteria were found in the MFC 

anodic chamber. The discovery of these bacteria was consistent with the community characteristics for 

electricity generation from sulphide oxidation. The exoelectrogenic bacteria are present both on the anode and 

in the solution. The sulphur-oxidizing bacteria are present in greater abundance on the anode than in the 
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solution, while the sulfate-reducing bacteria preferably lived in the solution. Zhang et al. (2013a) presented 

the principles of sulphide removal as well as the bacteria involved in the MFCs with sulphide and glucose as 

the complex substrate. Community analysis shows a great diversity of bacteria on the anode surface, including 

the exoelectrogenic bacteria and sulphur-related bacteria. They are present in greater abundance than those in 

the MFCs fed with only sulphide and responsible for the effective electricity generation and sulphide 

oxidation in the above proposed MFCs. In this system, Bacteroidetes was most frequently found in the anode 

biofilms (11%), involved in electricity generation in the MFCs. In addition, Lentisphaerae (10%) and 

Armatimonadetes (2%) were new electricigens that appeared on the anode, demonstrating more 

electrochemically activated bacteria in this system than those reported by Sun et al. (2010) probably due to 

the complex substrate (sulphide and glucose) used in this study. 

 

3.4.2 Modeling of sulphide removal process 

The literature on the carbon, nitrogen and sulfate removal processes is abundant, but for sulphide treatment, 

further investigation is still needed. The sulphur cycle in wastewater and gas treatments  lack of modelling 

tools, where the oxidation of sulphide is complex to predict, because it can be biologically (and chemically) 

oxidized to either elemental sulphur or sulfate, depending on the operating conditions (Mannucci et al. 2012). 

On the other hand, authors have used single-substrate kinetic models taking into account microbial growth 

rates associated only to a single pollutant biodegradation (Monod, Haldane and other kinetic equations) to 

describe biological processes (Mora et al., 2015). A drawback of single-substrate kinetic models is the 

inability to describe the potential limitations of other species such as nutrients or the electron acceptors. Also, 

models based on single-substrates can hardly describe the formation of multiple end-products in complex 

biological processes such as biological denitrification and desulphurization processes (Klok et al. 2013). 

Even though H2S gas treatment kinetics is well re´ported, few articles focusing on H2S in liquid phase 

are available. In gas treatment, there is mass transfer limitation of H2S from the gas phase to the liquid phase, 

which is regularly included in the model. With respects to the bio-kinetics, the most used model has been 

Monod, including also some inhibitions. Gonzalez-Sanchez et al. (2009) proposed a multisubstrate function, 

where the kinetics depends on H2S concentration (type Haldane kinetic) and oxygen (Monod kinetic). They 
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calibrated their model using respirometry, reporting values of the biokinetic parameters in the same order of 

magnitude than those commonly reported for neutrophilic microorganisms. However, the value of maximum 

Oxygen Uptake Rate (OURmax) was much lower than reported for specialized sulphide oxidizing strains. 

Mannucci et al. (2012) proposed a non-competitive model including only the H2S as substrate and the SO4
2-

 as 

inhibitor. Soreanu et al. (2010) proposed a statistical model for the H2S gas treatment, but using NO3
-
 as an 

electron acceptor. Although the key factors in the control of biofilter performance were demonstrated to be 

the biogas flow-rate and H2S concentration, the results of this study indicate that the influence of H2S 

concentration on the removal efficiency is more significant, under the experimental conditions specified in the 

paper. 

Aqueous phase bio-oxidation of sulphide has been commonly applied to autotrophic denitrification (and 

related processes) but has rarely been studied using O2 as an electron acceptor. Bio-oxidation of sulphide 

using O2 as an acceptor electron was studied by Gadekar et al. (2006) using a novel sulphide-oxidizing 

bacterium Thiomicrospira sp. CVO. In this study, experimental data of sulphide removal was fitted to Monod, 

Tessier, Moser and Contois expressions and the value of various coefficients were determined through 

nonlinear regression. The model that represent the biological behavior of the system was the Moser model. 

Jing et al. (2010) studied the effect of nitrate and nitrite as electron acceptors on the performance of the 

anaerobic sulphide oxidizing process (ASO process). In this study, when the substrates were nitrate and 

sulphide, the inhibition of sulphide removal was weaker, which could be explained by the Monod equation 

with respect to sulphide and nitrate. While using the substrates nitrite and sulphide, the inhibition was strong 

and this fits better to the Haldane equation. This implies that the tolerance of activated sludge to influent 

substrate was sulphide > nitrate > nitrite. Moraes et al. (2011) evaluated the fundamentals and kinetics of 

sulphide-oxidizing autotrophic denitrification in batch reactors containing suspended and immobilized cells. 

They showed that, for nitrate concentration, zero-order models adjust better to profiles obtained for suspended 

cell reactors, whereas first-order models were more adequate for immobilized cell reactors. However, in the 

latter, mass transfer physical phenomena had a significant effect on kinetics based on biochemical reactions. 

Furthermore, they assumed that the sulphide concentration was not in low concentration, and that nitrogen 

compounds (NOx) were the limiting substrates. 
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Roosta et al. (2011) presented a mathematical modell of sulphide oxidation with oxygen in a fed-batch 

reactor. In this case, complete oxidation of HS
-
 to SO4

2-
 was reached, using the S

0
 as intermediated product. 

They indicated that the first step (HS
-
 to S

0
) depends on HS

-
 and O2, both following Monod kinetics. The 

second step (S
0
 to SO4

2-
) depends on S

0
, O2 also on pH (OH

-
 concentration). Through this kinetic model, they 

showed that the rate of sulphur production (r1) is independent of DO values except at very low DO and that 

the rate of sulphur oxidation to sulfate (r2) increases with an increase in DO value. Thus, at low DO values, r2 

is lower than r1 and consequently, sulfate production is low and the main product is sulphur particles. As DO 

value increases, the reaction rate of r2 increases while r1 remains constant, thus more parts of produced 

sulphur convert to sulfate. 

The simultaneous removal of sulphide, nitrate and COD, known as denitrifying sulphide removal (DSR), 

has been recently studied and the kinetic removal of sulphide has also been proposed. The first attempt was 

made by Wang et al. (2009b), using an artificial neural networks as a tool. Later, Wang et al. (2010) presented 

a kinetic model of the DSR process in a batch system based on Activated Sludge Model N° 1 (ASM1). This 

model has seven microbial steps: (1) growth of heterotrophic denitrifier, (2) growth of autotrophic denitrifier, 

(3) decay of heterotrophic denitrifier, (4) decay of autotrophic denitrifier, (5) ammonification of organic 

nitrogen, (6) hydrolysis of particulate organic carbon and (7) hydrolysis of particulate nitrogen. Removal of 

sulphide by autotrophic denitrification obeys a multiple Monod kinetics, depending on HS
-
 and NO3

-
. They 

also incorporated a switch function in order to describe the competition between the autotrophic and 

heterotrophic denitrifiers. Xu et al. (2014), following the same approach, improved the model including the 

NO2
-
, oxygen and SO4

2-
 reduction in the process. All the biological processes obey Monod kinetics. Lee and 

Wong (2014) proposed a novel kinetic diagram, based on mass and electron balances, to graphically interpret 

the system kinetics and identify the accessible regime where DSR reactions can be applied. Reduction–

oxidation reactions incorporate all chemical reactions with oxidation state changes of the involved reactants. 
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4. Conclusions 

- Hydrogen sulphide is an undesirable product from anaerobic digestion, produced when sulfate is present 

in the influent. Until recently, there was no practical strategy based on varying operational conditions used 

to avoid sulfate reduction. Taking into account thermodynamic and kinetic parameters, this process is 

more favourable than methanogenesis. Part of H2S is transferr to biogas, causing corrosion problems 

during methane combustion due to SOx compounds formation. Therefore, the most efective way to avoid 

the negative effects caused by H2S is to remove it. 

- Sulfate reduction causes a double negative effect on methane production during the anaerobic process. On 

one hand, sulfate reduction consumes part of COD then; less organic matter is available for methanogens. 

On the other hand, the H2S generated inhibits the activity of methanogens. This last effect could be 

minimized by oxidizing H2S to elemental sulphur under microaerobic conditions inside the anaerobic 

reactor with a decrease in caloric value largely due to the increase of nitrogen present in the air. 

- To reduce oxygen demand it is necessary to remove the H2S present in the effluent of the anaerobic 

digester. Oxidation of hydrogen sulphide is accieved in biofilm reactors using oxygen or nitrate 

(autotrophic denitrification), autotrophic denitrification being the most advisable option when nitrogen 

removal is required. 

- Currently, biofilms using chemolithotrophic sulphide oxidizing bacteria is recommended, due to a higher 

sulphide loading, simpler nutritional requirements and higher sulphide tolerance. 

- Biofilm systems used for sulphide removal, utilizing different kinds of electron acceptors (nitrate, nitrite, 

oxygen) have been proposed, highlighting an important potential for their use at an industrial scale. The 

sulphide removal efficiencies in these systems were most of the time superior to 90%. 

- Microbial fuel cell is a new technology used in the removal of sulphide at the laboratory scale and has 

been applied since 2006. This technology achieves values of sulphide removal superior to 80% while also 

generating power between 40 W m
-2

 and 740 W m
-2

. 

- Regarding the modeling of sulphur removal, further investigation is still needed. The kinetics mainly 

involves sulphur and an electron acceptor. The main kinetics model used has been Monod, but Moser 

kinetics has also been studied and reported. 
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- Considering that in all biological desulfurization processes different species of microorganisms are 

involved that use similar substrates generating different metabolic products to achieve a more precise 

control of these processes further and deeper microbiological studies is required.  
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Table 1. Some thermodynamic values of hydrogen and acetate of SRB and MA (Alphenaar et al. 1993). 

Thermodynamic equations ∆G
o
 (kJ) 

4H2 + SO4
2-

 + H
+
→ HS

-
 + 4H2O - 38.0 

4H2 + HCO3
-
 + H

+
→ CH4 + 3H2O - 32.7 

CH3COO
-
 + H2O → CH4 + HCO3

-
 - 28.2 

CH3COO
-
 + SO4

2-
→ HS

-
 + 2HCO3

-
 - 39.5 

 

Page 47 of 63

https://mc06.manuscriptcentral.com/er-pubs

Environmental Reviews



Draft

Table 2. Kinetic parameters of hydrogen and acetate conversion of SRB and MA. 

 µµµµ (d
-1

) Y (g VSS/mol) Reference 

Hydrogen kinetics    

Desulfovibrio vulgaris 5.52 1.00 – 1.25 Thauer et al. (1977) 

Desulfovibrio sp. 1.37 0.85 Thauer and Badziong (1978) 

Desulfovibrio gigas 1.37 1.75 – 2.00 Lupton and Zeikus (1984) 

Methanobacter formicicum 2.00 0.80 Thauer and Brandis (1981) 

Methanobacter hungatei 1.20 0.20 Thauer and Brandis (1981) 

Methanobacterium sp. - 0.60 Thauer and Badziong (1978) 

Acetate kinetics:    

Desulfobacter postagei 1.03 2.56 Tiedje and Robinson (1984) 

Desulfotomaculum acetoxidans 0.55 5.52 Brandis (1983) 

Desulfonema limicola 0.55 - Pfenning and Widdel (1981) 

Mixed culture of SRB 0.51 3.72 Middleton and Lawrence (1977) 

Methanothrix soehengenii - 1.47 Huser (1980) 

Methanosarcina barkuse 0.21 - Thauer and Brandis (1981) 

Mixed cultura of MA 0.24 3.24 Huser (1980) 
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Table 3. COD removal variations dependend on COD/SO4
2-

 ratio 

COD/SO4
2-

 ratio COD removal (%) Observations References 

3 40 - 60 Wastewater with concentrated oils Escriba et al. 1998 

3-4 

3 

2 

90 

88 

80 

Acidogenic – Methanogenic completely 

mixed anaerobic reactors in series 

Nanqi et al. 2002 

> 2.5 

1.1-0.9 

90 

40 

UASB reactor Silva et al. 2002 

3.3 

1.66 

1.0 

0.77 

0.63 

77 

60 

43 

32 

25 

Tannery wastewater 

Batch reactors 

High sulfate concentration (2 – 10.4 g/L) 

 

Guerrero et al. 2013 

4 

1 

65 

25 - 35 

UASB reactor 

Glucose substrate 

Lopes et al. 2007 

6.67 95 Anaerobic baffled reactor (ABR) Sipma et al. 2000 
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Table 4. Kinetic parameters of sulphur oxidizing bacteria. 

 µmax 

h
-1

 

rmax 

h
-1

 

Ks 

mg N·L
-1

 

Y 

mg VSS/mg NO3
—

N 

Reference 

Enriched sludge 0.12-0.2 0.3-

0.4 

3-10 0.4-0.5 Oh et al. (2000) 

Thiobacillus denitrificans 0.11  0.2 0.4-0.57 Claus and Kutzner 

(1985) 

Thiomicrospira 

denitrificans 

0.19-

0.22 

0.36 0.22* 0.5** Gadekar et al. 

(2006) 

Thiobacillus denitrificans 0.02-

0.08 

   Justin and Kelly 

(1978) 

Enriched sludge 0.006  0.398 0.81-1.1 Zeng and Zang 

(2005) 

*mg S·L
-1

   **mg VSS/mg S
-2

-S 
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Table 5. Operating conditions and removal in biofilms reactors with chemolithotrophic sulphide oxidizing bacteria 

Reference Culture source Biorector Biofilm support  Electron 

acceptor 

Temperature pH Treated influent Sulphide 

Efficiency 

removal, % 

End 

product 

Sarti et al. 

(2009) 

anaerobic sludge Anaerobic 

sequencing 

batch 

biofilm reactor 

Irregular pieces 

of mineral 

Coal 

O2 32-36 6.1-

7.5 

Effluents from 

the sulfate 

reduction 

process 

57 S
0
 

Beristain-

Cardoso et al. 

(2009) 

denitrifying sludge Inverse fluidized 

bed reactor 

Low density 

polyethylene 

Nitrate 30 ± 1 7 Phenol, 

sulphide and 

nitrate 

100 SO4
2-

 

Moghanloo et 

al. (2010) 

Thiobacillus 

thioparusTK-1 

Biofilm airlift 

suspension 

reactor (BAS) 

Basalt O2 25-45 7 S
2-

 100 SO4
2-

 

Midha et al. 

(2012) 

Tannery effluent 

treatment plant 

Fluidized bed 

reactor 

Nylon particles O2 30 ± 2 5.5-

6.5 

S
2-

 90% S
0
 and 

SO4
2-

 

Tang et al. 

(2010) 

Cultures enriched 

from the produce 

Up-flow biofilm 

reactor 

quartz sand NO3
-
 23–25 7-

7.5 

S
2-

, NO3
-
 and 

acetate 

97.6–99.7 S
0
 and 

SO4
2-
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water 

of the Coleville oil 

field 

Moraes et al. 

(2012) 

Anaerobic sludge Vertical fixed-

bed reactor 

polyurethane 

foam cubic 

matrices 

NO3
-
 and 

NO2
-
 

30 ± 1 8.2-

8.8 

S
2-

, NO3
-
 and 

NO2
-
 

99% S
0
 and 

SO4
2-

 

Moraes et al. 

(2013) 

Anaerobic sludge Chemostat cubic matrices of 

polyurethane 

foam 

O2, NO3
-
 

and NO2
-
 

30 ± 1 8.5-

8.9 

COD, NH3 and 

S
2-

 

 99% --- 

Liang et al. 

(2013) 

--- Fixed-bed 

biofilm 

--- NO3
-
 and 

NO2
-
 

30 ± 1 7.0-

10.9 

S
2-

 80-92 --- 

Liu et al. 

(2013) 

municipal sludge fixed-bed 

biofilm 

Polyethylene 

semisoft packing 

O2 30 6.5-

9.2 

S
2-

 87.6 S
0
 and 

SO4
2-

 

Chen et al. 

(2014) 

anaerobic sludge Plexiglass 

expanded 

granular sludge 

bed 

--- NO3
-
 28 ± 1 8 ± 

0.3 

S
2-

, COD and 

NO3
-
 

29.4-100 S
0
 and 

SO4
2-
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Table 6. Removal rate and the maximum current produced in MFCs 

Reference Culture source Type of MFC  Removal 

Efficiency, % 

Maximum 

Power output 

End 

product 

Rabaey et 

al. (2006) 

mixed aerobic sulphide-

oxidizing 

Square-type 

MFCs with 

granular graphite 

as anodic 

electrode 

(projected 

surface between 

817 and 2720 

m
2
m

-3
) 

> 99 18 mW L
-1

 

total anode 

compartment 

S
0
 

Sun et al. 

(2009) 

anaerobic sludge Square-type 

MFC with plain 

carbon paper (3 × 

7.5 cm, not wet 

proofed) as 

anodic electrode 

--- 112 mA m
-2

 S2O3
2-

 

and 

SO4
2- 

Zhang et 

al. 

(2009a) 

anaerobic granular 

sludge 

Double-chamber 

MFCs in a 

cylindrical 

geometry with 

carbon fiber felt 

of 16 cm
2
 as the 

anodic electrode. 

84.7 ± 2.8 572.4  ± 18.2 

mWm
-2

 

S
0
 and 

SO4
2-

 

Zhao et 

al. (2009) 

Desulfovibriodesulphuricans A single 

chamber, air-

91-86  2.68 mW S
0
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breathing dual 

cathode 

assembly, and 

continuous flow 

type MFC. 

Activated carbon 

cloth (60 cm
2
) as 

anode. 

Zhang et 

al. (2010) 

anaerobic granular 

sludge 

H-type MFCs in 

cylindrical 

geometry with 

carbon fiber felt 

of 16 cm
2
 as the 

anodic electrode.  

95.2 to 47.5, 

depending of 

sulphide 

initial 

concentration 

500–700 mW 

m
-2

 

S
0
 and 

SO4
2-

 

Lee et al. 

(2012a) 

Pseudomonas 

sp. C27 

Two cilindrical 

chambers. Anode 

was made of 

carbon felt (area, 

6 cm
2
) 

98.4 40 mW m
-2

 S2O3
2−

 

and S
0
 

Lee et al. 

(2012b) 

waste activated sludge Two cilindrical 

chambers. Anode 

was made of 

carbon felt (area, 

6 cm
2
) 

84.1 200–300 mW 

m
−2

 

S
0
 

Lee et al. 

(2014) 

waste activated sludge  Dual MFC 

comprising anode 

and cathode 

cylindrical 

77.9-47.6 61–63 Wm
-2

 S
0
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chambers. Anode 

was made of 

carbon felt (area, 

9 cm
2
)  

Rakoczy 

et al. 

(2013) 

benzene- and sulphide- 

contaminated groundwater, 

composed of several different 

phylotypes affiliated to 

anaerobic microorganisms. 

Two cylindrical 

glass chambers. 

Anode was 

graphite fibers 

with 94 m
2
 area. 

99-87 --- SO4
2-

 

Zhang et 

al. 

(2013a) 

anaerobic sludge Four cubic 

single-chamber 

MFCs. Anode 

was carbon fiber 

felt. 

Up to 92 744 mW m
-2

 S
0
 and 

SO4
2-
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FIGURE CAPTIONS 

 

Fig. 1.  Ionized and non-ionized sulphide forms depending on the pH of the aquatic environment 

 (Sawyer et al., 2003). 

Fig. 2.  Scheme of competition between SBR and MA. 

Fig. 3.  Biological interactions between carbon, nitrogen and sulphur cycles. 

Fig. 4.  Schematic representation of: a) Predenitrifying configuration; b) postdenitrifying configuration. 

Fig. 5.  Biological transformations of organic and sulphur compounds when nitrate is added to a sewer system 

(Adapted from Jiang et al., 2009). 
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a) 

 

 

 

b) 

 

 

Figure 4 
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Figure 5 
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ABBREVIATIONS 

 

ABR: anaerobic baffled reactor. 

aNRB: authotropic denitrifiers. 

ARB: anode respiring bacteria. 

ASBBR: anaerobic sequencing batch biofilm reactor. 

ASBBRBS: ASBBR at bench scale 

ASBBRPS: ASBBR at pilot scale 

ASM1: Activated Sludge Model N° 1. 

ASO process: anaerobic sulphide oxidizing process. 

BAS: biofilm airlift suspension reactor 

COD: chemical oxygen demand 

CSF: corn stover filtrate. 

DO: dissolved oxygen. 

DSR: denitrifying sulphide removal. 

EGSB: expanded granular sludge bed reactor. 

FBBR: fluidized bed bioreactor. 

FISH: Fluorescence in situ hybridization. 

hNRB: heterotrophic denitrifiers. 

HRT: hydraulic retention time. 

ISDD: integrated simultaneous desulphurization and denitrification 

KS: saturation constant. 

MA: methanogenic archaea. 

MFCs: microbial fuel cells. 

OTU: operational taxonomic unit. 

OURmax: maximum Oxygen Uptake Rate. 

Pmax: maximum power density. 
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r1: rate of sulphur production. 

r2: rate of sulphur oxidation to sulfate. 

rmax: maximum substrate removal rate constant. 

S
o
: elemental sulfur. 

SHE: standard hydrogen electrode. 

SMA: specific methanogenic activity. 

SND: simultaneous nitrification/denitrification. 

SOB: sulfide oxidizing bacteria. 

SRB: sulfate reducing bacteria. 

SRT: solids retention time. 

TDS: total dissolved sulfide. 

UASB: Upflow anaerobic sludge blanket reactor. 

VOL: volumetric organic load. 

Y: microorganisms growth yield. 

µmax: maximum specific growth rate of the microorganisms. 
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