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Abstract 

Since the rise of new generation sequencing (NGS), host-bacteria interactions are viewed as a 

complex interactive network. This study focused on the influence of a probiotic treatment on the 

natural microbiota of Brook charr (Salvelinus fontinalis), especially on the disturbance of the 

natural microbiota (dysbiosis). The results indicated that an indigenous probiotic strain (identified 

as Rhodococcus sp.) colonized neither the fish skin nor the water following the probiotic 

treatment. Instead, the probiotic strain was only detected in the biofilm of the test tank. 

Nevertheless, a substantial beneficial effect of the probiotic treatment was observed through the 

decrease of F. psychrophilum in the treated tank water. This study clearly shows that the 

indigenous strain chosen for the probiotic treatment did not disturb the natural fish skin 

microbiota, but acted directly through the production system to control the growth of the 

pathogen, and, as a consequence, to enhance fish survival. 



 

Introduction 

During the last decades, the interest on host-bacteria interactions has greatly increased. Indeed, 

this field has improved significantly considering both, theoretical and technical aspects due to the 

development of new culture-independent methods such as metagenomic and metatranscriptomic 

(Costello et al. 2009; Roberts et al. 2010; Robinson et al. 2010; Gonzalez et al. 2011; Rumbaugh 

and Kaufmann 2012). Thus, host-pathogenic bacteria interaction is no longer understood as two-

component system involved in an “evolutionary arms race” but rather as an integrative system in 

which the host arbors a consortia of cooperating bacteria, as suggested in the Black queen theory 

(Van Valen 1973; Darch et al. 2012; Morris et al. 2012). Those theoretical advances are also 

correlated with the assessment of new methods for the prevention of bacterial infections 

(Verschuere et al. 2000; Merrifield et al. 2010). Indeed, the use of probiotics is now considered 

as a valuable tool in the struggle against pathogens in agriculture and aquaculture, as well as for 

improving human health (Fuller 1995; Balcázar et al. 2004; Balcazar et al. 2006; Wang et al. 

2008).  

The FAO/WHO defined a probiotic agent as “live microorganisms which when administered in 

adequate amounts confer a health benefit on the host”(FAO/WHO 2001). The current strategy to 

develop probiotic for a given host species is to test a probiotic agent already proven to be 

efficient in another host species (Villamil et al. 2003; Mohamed and Ahmed Refat 2011). 

However, when transferred into a different environment, the probiotic agent may lose its 

probiotic properties, and possibly become harmful for the host (Courvalin 2006). Therefore, to 

ensure the harmlessness of a probiotic in a given host species, it may be more efficient to isolate 

it from the host’s endogenous bacterial community (Balcazar et al. 2006). However, information 

about the probiotics influence on the natural microbiota equilibrium is still scarce. For therapeutic 

use, probiotics are often added in greater concentration relative to the abundance naturally found 

in hosts (Vine et al. 2004). Therefore, there is a pressing need to test whether probiotic treatments 

have any disturbing effect on the homeostasis of both endogenous microbiota and surrounding 

environmental bacterial community. 



In this study, we focused on the treatment of a cold-water disease (CWD) affecting Salvelinus 

fontinalis by using a mix of probiotics. Cold water disease is caused by a bacterial agent, 

Flavobacterium psychrophilum (Starliper 2011). This bacterium has been recovered from a broad 

geographic range and is responsible for the rainbow trout (Oncorhynchus mykiss) fry syndrome 

and CWD, two important infectious diseases in farmed fish (Wiklund et al. 2000). These diseases 

affect especially the early life-stages and it is well documented that stressful conditions and 

injuries facilitate infections (Madetoja et al. 2000; Bader et al. 2003; Starliper 2011). The 

probiotics used in this study, recently isolated from the natural microflora of brook charr, belongs 

to the rare biosphere on natural fish skin microbiota and has already proven their efficiency 

through in vitro and in vivo experiments (Boutin et al. 2012). Specifically, we used 454-

pyrosequencing to monitor the natural microflora of the fish skin and the surrounding water 

during the in vivo experiment to ensure that those probiotics disturbed neither the natural 

microflora of fish skin nor the bacterial community of the surrounding environment. 

Methods 

Ethics statement 

We raised fish and did the experiment according to the guidelines required by the ‘‘Comité de 

Protection des Animaux de l’Université Laval (CPAUL, 

http://www.vrr.ulaval.ca/deontologie/cpa/index.html?accueil). 

Probiotic treatment of fish infection 

Seven bacterial strains isolated from brook charr skin and selected for their antagonistic activity 

during the in vitro experiment done by Boutin et al. (2012) were tested together in a co-culture in 

Tryptic soy broth. Four different fish families (i.e. resulting from different parental crosses) 

selected on the basis of zootechnical traits of interest (growth and late sexual maturity) were used 

for the in vivo experiment (for complementary information see Boutin et al. 2012). In the present 

paper, we focused on two specific families (S5, S9) because they exhibited the greater variations 

in terms of mortality during the infection and were considered either as resistant (S5) or sensitive 

(S9) (Boutin et al. 2012). 

http://www.vrr.ulaval.ca/deontologie/cpa/index.html?accueil


Sampling 

Fish from the four families were divided among 4 tanks: 2 control and 2 test tanks (25 fish per 

family per tank). Ten individuals from each family and from each tank were randomly sampled at 

three different time periods after the occurrence of infections: 1) before treatment with the 

probiotic, 2) the last day of the probiotic treatment, 3) two weeks after the probiotic treatment. 

Mucus samples were collected with sterile swab on the surface of the fish (Livia et al. 2006). 

Samples were put into sterile micro-centrifuge tubes containing lysis buffer (Tris 50 mM, EDTA 

40 mM, Sucrose 0.75 g) and stored in a -80°C freezer until DNA extraction. Skin mucus and gut 

samples from each fish that died during the probiotic treatment were sampled. At each sampling 

time, water level was lowered by 5 cm to allow sampling of the biofilm by swabbing the wall of 

the tank. Original water level was restored after sampling. 

For water bacterial community sampling, a two-step filtration was realized using peristaltic 

filtration equipment (Masterflex L/S Pump System with Easy-Load II Pump Head, Cole-Parmer) 

cleaned up with HCl 5% and rinsed with Milli-Q water before each filtration. The first step was 

the conditioning of the filtration set up using two liters of the rearing water without filters. The 

last step was to collect duplicates of water from test and control units, by filtering a total of four 

liters of water over a series of filters beginning with a 3.0 μm followed by a 0.22 μm x 47 mm 

nitrocellulose membrane (Advantec). Immediately after each filtration process, filters were 

placed into cryotubes containing 1 mL of sterile lysis buffer (40 mM EDTA, 50 mM Tris-HCl, 0. 

75 mM sucrose) and then stored at -80°C until DNA extraction. 

DNA extraction 

DNA was extracted from mucus and water using a modified salt-extraction protocol (Aljanabi 

and Martinez 1997). During the first lysis step, 22.6 µL of lysozyme (40mg/mL) were added to 

the sample which were then incubated for 45 min at 37°C. Secondly, 22.6 µL of proteinase K 

(20mg/mL) and 90 µL of SDS 20% were added to the lysate, followed by incubation at 55°C 

over night with agitation. The aqueous phase was transferred into a clean Eppendorf tube 

containing 600 µL of NaCl 6M, mixed and centrifuged 20 min at 16000 g. The supernatant was 

transferred again into a clean Eppendorf tube containing one volume of cold isopropanol, mixed, 

and stored 30 minutes at -20°C. The mixture was centrifuged 20 min at 16000 g, and the 



supernatant was thrown away. The pellet was washed with cold ethanol 70%, air dried, and 

finally resuspended in 25 µL of sterile MiliQ H2O. Subsequently, DNA integrity and quantity 

were controlled using a Nanodrop instrument (ND-1000, Nanodrop). 

Pyrosequencing 

Each DNA sample was PCR amplified using Takara Ex taq premix (Fisher). All PCR reactions 

were performed in a final volume of 50 μL containing 25 μL of Premix Taq, 1 μM of each 

primer, 500 ng of template and sterile MilliQ H2O to up to 50 μL. To achieve the PCR 

amplifications, a general reverse primer (R519) combined with B primer (Roche) was used in 

combination with a unique tagged forward primer (F63-targeted) combined with A primer 

(Roche) (Marchesi et al. 1998; Turner et al. 1999). PCR conditions were as follows: after a 

denaturing step of 30 sec at 98°C, samples were processed through 30 cycles consisting of 10 sec 

at 98°C, 30 sec at 55°C and 30 sec at 72°C. The final extension step was done at 72°C for 4 min 

30 sec. Following amplification, samples were purified using AMPure Beads (Beckman Coulter 

Genomics). Samples were adjusted to 100 µL with EB (Qiagen), 63 µL of beads were added. 

Samples were mixed and incubated for 5 min at RT. Using a Magnetic Particle Concentrator 

(MPC), the beads were pelleted against the wall of the tube and the supernatant was removed. 

The beads were washed twice with 500 µL of 70% ethanol and incubated for 30 sec each time. 

The supernatant was removed and beads were allowed to air dry for 5 min. Tubes were removed 

from the MPC and 24 µL of EB were added. Samples were vortexed to resuspend the beads. 

Finally, using the MPC, the beads were pelleted against the wall once more and supernatant was 

transferred to a new clean tube. Samples were quantified with Nanodrop and mixed equally 

before being sent to the Plateforme d’Analyses Biomoléculaires (Institut de Biologie Intégrative 

et des Systèmes, Université Laval) for sequencing on a 454 GS-FLX DNA Sequencer with the 

Titanium Chemistry (Roche), according to the procedure described by the manufacturer. 

Sequence analysis 

The data were analyzed in two steps. First, CLC Genomics Workbench 3.1 (CLC Bio, Aarhus, 

Denmark CLC work bench BIO®) was used to trim sequences for quality and recover the 

primers' sequences and tags. In a second step, pre-processing and analysis were performed using 

the MOTHUR software (Schloss et al. 2009). We screened all the dataset to extract the sequences 



reaching 300 bp to ensure an accurate taxonomic assignation at the genus level. We used the 

Operational Taxonomic Unit-based method described by Costello et al. (2009). The index 

retained to assess the quality of pyrosequencing was the sequence coverage index (Good’s 

coverage estimator). This index is a non-parametric index used to estimate the quality of a dataset 

(Esty 1986). All sequences were clustered into OTU using a 97% identity threshold and OTU 

were classified from phylum to genus using the program MOTHUR with the default setting. To 

visualize similarities between mucus communities and water communities, distances between 

communities were computed using Unifrac weighted. Distances were then represented using 

dendrograms based on ThetaYC (weighted) index because it takes into account the relative 

abundance of each OTU (Yue and Clayton 2005). We also used a Principal Coordinates Analysis 

(PCoA) using an eigenvector-based approach (Joliffe and Morgan 1992) to represent 

multidimensional data in as few dimensions as possible to visualize the distances between 

communities. 

Detection of Flavobacterium sp. and Rhodococcus sp. 

Each sample was tested for the presence of F. psychrophilum, F. columnare and Rhodococcus sp. 

using a diagnostic PCR approach. The method used to detect F. psychrophilum from fish tissues 

and water samples was developed by Wiklund et al. (2000). The primers developed by Bader et 

al. (2003) to detect F. columnare and Rhodococcus sp. were used in combination with the PCR 

method developed to targets the catA gene (Táncsics et al. 2008). The specificity of those primers 

was tested by analyzing three strains of Rhodococcus isolated from fish skin mucus. The skin and 

gut of dead fish were also tested during the experiment and all dead fish showed symptoms of 

CWD. 

Results 

The probiotic addition significantly reduced the mortality in test tanks (p < 0.001). The family S9 

exhibited a very high sensitivity to infection (24% motality in control tanks) whereas the S5 

family was more resistant (4.4% mortality in control tanks) as detailed previously (Boutin et al. 

2012). Fish that died during the experiment exhibited symptoms imputable either to Columnaris 

disease or CWD (i.e. fin erosion, necrosis…). The PCR approach was used to accurately identify 

the causative agent. Only F. psychrophilum was successfully detected in 87% of the skin from 



dead fishes and all water samples, except for control tanks at the end of the experiment (table 1). 

In the gut from dead fish, the pathogen was detected in 43.4% of our samples. Gut samples from 

control and test tanks were not equally infected; 60% of the dead fish from control tanks were 

positive on the PCR whereas 30 % of the dead fish from test samples were positive, although this 

difference was not significant (p= 0.159). F. psychrophilum was also found at the initial step of 

the experiment in samples from one duplicate of the family S5 and S9 in test tanks. After two 

weeks of treatment (control or test), F. psychrophilum was found in all the samples. Finally, two 

weeks after the probiotic treatment, F. psychrophilum was still present in all control samples but 

only in 50% of the test samples. Using pyrosequencing, it was noted that the genus 

Flavobacterium was weakly represented in the bacterial community (0.7%). This pathogen was 

not found in the mucus samples, except in one sample from the family S9 in a test tank at the end 

of the probiotic treatment. In the water, Flavobacterium was also poorly represented. It was never 

found in test tanks. In control tanks, it was absent at the first sampling but reached 3.9 % at the 

end of the placebo treatment to finally decreased at 0.3% at the end of the experiment.  

A total of 117 260 reads was obtained from the 31 samples through 454 pyrosequencing analysis. 

After the filtering process of short (<300 bp) and bad quality sequences, 61 881 reads were kept 

(52% of the dataset). The relatively low rate of retrieved sequences is due to the strong threshold 

of quality. Usually, the recommended length threshold for taxonomic assignation was 150 bp 

(Costello et al. 2009). According to this threshold (i.e. filtering process of short (<150 bp) 

sequences), 96 931 sequences (82.6% of the dataset) were retrieved. Although all analyses done 

with this dataset gave consistent results for spatial (PCoA) and phylogenetical (Unifrac) 

relationships between samples, this low threshold of filtering process greatly increased the 

uncertainty of the taxonomic assignation at the genus level due to shorter sequences (Okubo et al. 

2012). This results about short reads and their sufficiency was already discussed (Liu et al. 2007). 

To combine a good genus assignation and an accurate community analysis, we choose a 

threshold of 300 bp as recommended in other study (Liu et al. 2008). In order to focus on the 

more biologically relevant taxa, OTUs represented by less than ten reads were discarded for the 

analysis where taxonomic assignation was important (relative abundance in figure 3-1) but were 

kept for the other analysis (PCoA and Unifrac analysis). The resulting dataset was distributed 

among 38 genera and 5 groups or phyla. The Good’s coverage estimations ranked between 69% 

and 100%. 



The results from pyrosequencing indicated that only one genus was detected in the mix of 

probiotics, namely Rhodococcus (100% of the reads from the probiotic sample). The genus 

Rhodococcus was also detected by pyrosequencing in one sample from the family S9 in a test 

tank at the end of the treatment. There were two strains of Rhodococcus in the probiotic mix. 

Among the three Rhodococcus strains isolated from fish skin mucus, only one strain from the two 

used as probiotic in our experiment was detected by PCR. This Rhodococcus strain was detected 

with the PCR method only in the biofilm of test tanks at the end of the addition of probiotic, but 

not in any fish or water samples (table 1). Furthermore, we validated this taxonomic assignation 

by culturing this bacterium from the mix of probiotic and re-sequenced it. The strain was 

assigned to Rhodococcus genus with a read length of 1500 bp.  

The bacterial community of fish skin mucus was quite stable except for the family S9 sample at 

the first sampling in the control unit (CAS91) (figure 1). Samples from mucus were dominated by 

the occurrence of the genus Sphingomonas, which reached a mean of 91.6% of the community. 

The other major genera were Pseudomonas, Pseudoxanthomonas, Kerstersia, Dichelobacter and 

Propionibacterium (2.7%, 1.4%, 0.9%, 0.5%, and 0.4%). Bacterial communities from the water 

were more dynamic during the experiment even in control tanks in which no probiotic were 

added. Bacterial communities from the water samples also showed more diversity than fish skin 

microbiome. In general, the most abundant genus was still Sphingomonas (47.1%), followed by 

Legionnella (16.5%), Smithella (15.6%), Microvirga (4%), Dinoroseobacter (2.2%), Curvibacter 

(1.8%), Hydrocarboniphaga (1.8%), Kestersia (1.6%), Pseudomonas (1.4%), and Kordiimonas 

(1.2%).  

The Principal Coordinates Analysis (PCoA) shows that our data is highly dimensional (30 

dimensions) but the first and second axes represent 44.6% and 16.2% of the variation (60.8% 

total) for the theta YC distances. Furthermore, the R-squared between the original distance matrix 

and the distance between the points in 2D PCoA space was 0.978. As visualized in the PCoA 

plot, all the samples from mucus cluster in the same groups excepted once again for the sample 

coming from the family S9 at the first sampling in the control unit (CAS91) (figure 2). 

Considering the first sampling time, water samples are very close from mucus samples (TEAUA1 

and CEAUA1). The bacterial communities from water samples in control tanks for sampling 

times 2 and 3 (CEAUA2 and CEAUA3) are outliers to the cluster and formed a second cluster 



with the water sample in test tanks for sampling time 2. The dendrogram representing the 

phylogenetic distances between the bacterial communities shows exactly the same results than 

the PCoA (figure 3). All the samples from fish mucus are phylogenetically close and related to 

the water samples from the first sampling time (CEAU1 and TEAU2). The only exception was 

the CAS91 sample and the water samples of the second and third sampling times. The probiotic 

mix, as it was composed of only one genus that was not recovered in the other samples, clusters 

as an outgroup. 

Discussion 

The aim of this study was to monitor the effect of a probiotic treatment on both the natural 

microbiota of Brook charr skin mucus and the surrounding water microflora. Using 454-

pyrosequencing, the variation in abundance for the different bacterial strains was screened to test 

whether the treatment using probiotic candidate (Rhodococcus sp.) would disturb either the fish 

skin microbiota and / or the surrounding natural microflora.  

The analysis of bacterial communities present in fish mucus showed that bacterial communities 

were stable through the three sampling times and among samples from different families. This 

may be explained by the high abundance of the genus Sphingomonas, which represents 91.6% of 

the bacterial communities. This genus is widely distributed in freshwater environments and has 

already been isolated from environments with high concentrations of organic nutrients, such as 

blood and sputum (Hsueh et al. 1998). It is therefore not surprising to detect this bacterial genus 

in fish skin mucus. Sphingomonas is also known for consuming a wide range of organic 

compounds and to exhibit remarkable biodegradative and biosynthetic capabilities (Balkwill et 

al. 2006). Such metabolic abilities are correlated with the domination of Sphingomonas 

alaskensis in marine picoplancton (Eguchi et al. 2001; Vancanneyt et al. 2001). Therefore, a high 

competitiveness for nutrients could explain how Sphingomonas present in skin mucus would 

become a protective barrier against other environmental bacteria. The benefic effect of 

Sphingomonas for the host could also be related to both competition for nutrients and interference 

competition. Indeed, another species of the same genus, Sphingomonas paucimobilis, is known to 

inhibit the growth of fungi in plants (White et al. 1996). We can hypothesize that Brook charr co-

evolved with this bacterial genus to ensure protection by the bacteria in exchange of nutrients 

offered by the host (Sachs et al. 2004).  



The proximity between bacterial community present in mucus and water samples should also be 

noticed. Prior to probiotic treatment, the PCoA analysis and the dendrogram showed a great 

similarity between the two. This is in accordance with the hypothesis that skin microbiota results 

from the colonization by strains inhabiting the surrounding water (Cahill 1990). Here, the results 

showed that this proximity was disturbed by the appearance of the disease and the increase of F. 

psychrophilum abundance in control tanks.  

Surprisingly, the probiotic strain was neither detected in fish skin mucus nor in water samples 

such that the presence of the probiotic strain was detected by PCR only in the biofilm of test 

tanks, at the end of the treatment. Its absence in fish skin mucus can be explained by the inability 

of our probiotic to out-compete the bacteria already present in the mucus. This strain was isolated 

from skin mucus of Brook charr, thus demonstrating its ability to live on mucus and its 

competence for adhesion. However, the probiotic strain was isolated from another Brook charr 

family where Sphingomonas was not the most abundant genus present. Hypothetically, this 

probiotic strain may not be co-adapted to Sphingomonas, and in turn unable to colonize the 

mucus.  

Aside of this, the absence of the probiotic in water suggests either a low survival of the probiotic 

strain in open water or a quick sedimentation or a biofilm formation. Furthermore, the probiotic 

strain was not detected in the gut from dead fish in test tanks either. This suggests that this 

Rhodococcus strain was not able to colonize the gut. The survival differences recorded between 

tests and the control tanks were significant (diminution of 47% death, p < 0.001) correlated with 

the addition of this probiotic strain in test tanks (Boutin et al. 2012). Surprisingly, the results 

indicate that this beneficial effect was not correlated with a colonization of skin mucus by 

probiotic strains that were isolated from fish skin mucus. In this respect, no community change 

was observed in the skin mucus microbiota between the control and test tank samples. 

Interestingly, in the surrounding water of control tanks, we observed an increase of F. 

psychrophilum abundance that was significantly correlated to fish mortality (Pearson correlation, 

p < 0.001). Such finding makes sense because the disease symptoms encountered in this study 

were clearly associated to the CWD.  

Furthermore, shedding of F. psychrophilum by infected fish has previously been shown to be 

correlated with mortality (Madetoja et al. 2000). In test tanks, no such increase was observed 



after the addition of the probiotic strain, so we can conclude that probiotic controlled the growth 

of F. psychrophilum in the surrounding water, but not on skin mucus as we first hypothesized. 

This conclusion is also supported by the fact that the third water sample from test tanks 

(TEAUA3) tightly clustered with the mucus samples and the initial water samples in the 

dendrogram and the PCoA, whereas the water sample from the control tank was differentiated 

from the initial sample. This result suggests that the probiotic mitigate the fish skin mucus 

colonization by the pathogens by controlling the growth of F. psychrophilum in the water.  

It was recently discovered that pathogens from the genus Flavobacterium can increase their 

survival in the system by colonizing the biofilm of the tank, by this means staying available for 

infection longer (Sundell and Wiklund 2011; Cai and Arias 2012). As hypothesized in the in vitro 

study, the mechanism of action is probably an exclusion via a competition for the nutrients and/or 

a synthesis of antimicrobial compounds (Verschuere et al. 2000). Furthermore, the proportion of 

generalized infection (i.e. infection in the gut by F. psychrophilum) tends to be lower with 

addition of probiotic (60% of infection in the control samples versus 30.8% with the treatment). 

Such antagonistic action would in turn favor the resilience of the skin mucus microbiota. 

However, it remains unclear why we observed that the beneficial effect of this probiotic strain 

had different impacts on fish mortality depending on the family (Boutin et al. 2012).  

Some families are more or less sensitive to the treatment and consequently, this result does not fit 

with the direct effect on surrounding water. The most likely hypothesis is that the differences 

between those families are inherent to the genetics of the host, the inter-individual specific 

microbiota and the physiological response to a low amount of pathogens. It is already known that 

S. fontinalis families differ in their response to a given stress (Crespel et al. 2011). Also, the 

infection dynamics of F. psychrophilum are not well known (Madetoja et al. 2000; Bernardet and 

Bowman 2006). Apparently, the pathogen needs stressful condition to become infectious and 

injuries may also facilitate infections (Madetoja et al. 2000; Starliper 2011). Finally, a recent 

study revealed that genetic background is an important factor in the susceptibility to F. 

psychrophilum and particularly differences in the host transcriptome response (Langevin et al. 

2012). 

In conclusion, the probiotic strain Rhodococcus sp. used in this experiment did not disturb the 

natural microflora of fish skin. Our results indicate that the beneficial effect on fish survival 



(diminution of 47% death) was most likely associated to an improvement of the surrounding 

water quality by a control of the pathogenic abundance of F. psychrophilum to a non infectious 

level in water and by avoiding biofilm formation by the pathogen. These results indicate that the 

probiotic strain used is harmless for the fish and is a promising candidate for aquaculture. This 

first analysis of the influence of this probiotic strain on natural microflora of Brook charr 

associated with the previous study (Boutin et al. 2012) showing differential effect on survival 

clearly shows that probiotics interact with the pathogen but also with the host and his microbiota 

because each family responded differently to the treatment. However, it remains unclear how this 

beneficial effect operates and how the host can respond differently if there is no colonization. 

This phenomenon is probably imputable to a genetic basis of the host-microbiome interaction. To 

provide a better understanding of this question, we need to understand the biology of this strain 

by analyzing further its antimicrobial functions against F. psychrophilum in vitro and understand 

the genetic basis of resistance to this bacterium.  
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Table 1 Detection of Flavobacterium psychrophilum and Rhodococcus probiotic strain on 

samples from skin and gut of Brook charr, water, biofilms and biofilters. Presence of the bacteria 

was assessed by PCR methods and represented as percentage of positive samples. 

Samples Condition Family F. psychrophilum  F. columnare 
Rhodococcus sp. 
(probiotic strain) 

Dead fishes skin (n=10) treatment S9 80 % 0 % 0 % 

Dead fishes skin (n=3) treatment S5 100 % 0 % 0 % 

Dead fishes skin (n=8) placebo S9 87.50 % 0 % 0 % 

Dead fishes skin (n=2) placebo S5 100 % 0 % 0 % 

Dead fishes gut (n=10) treatment S9 20 % 0 % 0 % 

Dead fishes gut (n=3) treatment S5 66.70 % 0 % 0 % 

Dead fishes gut (n=8) placebo S9 62.50 % 0 % 0 % 

Dead fishes gut (n=2) placebo S5 50 % 0 % 0 % 

fish skin mucus (n=60) treatment S9 66.70 % 0 % 0 % 

fish skin mucus (n=60) treatment S5 66.70 % 0 % 0 % 

fish skin mucus (n=60) placebo S9 66.70 % 0 % 0 % 

fish skin mucus (n=60) placebo S5 66.70 % 0 % 0 % 

water (n=3) treatment  66.70 % 0 % 0 % 

water (n=3) placebo  100 % 0 % 0 % 

Biofilter (n=3) treatment  0 % 0 % 0 % 

Biofilter (n=3) placebo  0 % 0 % 0 % 

Biofilm (n=3) treatment  0 % 0 % 33 % 

Biofilm (n=3) placebo   0 % 0 % 0 % 



 

Figures legends 

Figure 1. Bacterial composition and structure at the genus level of fish skin mucus, water 

samples and probiotic solution (Prob). 

Figure 2. PCoA analysis of bacterial analysis of fish skin mucus, water samples and 

probiotic solution. 

Figure 3. Dendrogram analysis based on Theta YC index of fish skin mucus, water 

samples and probiotic solution. 

 



 

 



 

 



 

 

 

 


